1-s2.0-0255270188850025-main

Upload: saurab-devanandan

Post on 28-Feb-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 1-s2.0-0255270188850025-main

    1/14

    189

    A Computational Design Method for Multicomponent

    Condensation

    Eine Methode zur Berechnung der Kondensation von Vielstoffgemischen

    ANDRZEJ BURGHARDT and MAREK BEREZOWSKI

    Polish Academy of Sciences, I nstitute of Chemical Engineeri ng, Bdtycka 5, 44-100 Gliwice (Poland)

    (Received June 30, 1988)

    Abstract

    A mathematical model has been developed which describes quantitatively the phenomena occurring during the

    condensation of multicomponent mixtures in which all constituents condense to form a homogeneous liquid

    phase. As a result of the analysis of the model equations two specific modes of the vapour mixture condensation

    have been defined and described: equilibrium condensation and total local condensation.

    The derived model of the process and the results of the analysis of the model equations have served as a basis

    for the proposed method of condenser design as well as for the relevant algorithm and numerical calculation

    procedure. The proposed numerical algorithm for the condenser design was tested for three- and tive-compo-

    nent mixtures. By changing the composition and the inlet temperature of the vapour, as well as the temperature

    of the cooling medium, a wide range of condensation intensities was covered, and thus the stability and

    convergence of the numerical method were tested.

    The results of the theoretical analysis as well as those of the numerical calculations led to the development

    of a simplified method of calculation which is particularly useful for mixtures with more than three components,

    and has the advantage of being almost five times faster.

    Kurzfassung

    Ein mathematisches Model1 wurde entwickelt, das den Vorgang der Kondensation eines Vielstoffgemisches,

    dessen Komponenten alle kondensierbar und dessen Kondensat eine homogene fliissige Phase bildet, quantitativ

    beschreibt. Als Ergebnis der Analyse der Modellgleichungen lie&n sich zwei Grenzfalle der Kondensation eines

    Vielstoffgemisches definieren und beschreiben: die Gleichgewichtskondensation und die lokale Totalkondensa-

    tion.

    Dieses Model1 bildet die Grundlage fiir den Vorschlag zu einer Berechnungsmethode fur die Auslegung von

    Kondensatoren fur Vielstoffgemische. Beispielhaft wird der Berechnungsalgorithmus an einem Drei- und einem

    Fiinfstoffgemisch erhiutert. Die Parameter Eintrittszusammensetzung,

    Temperatur des Dampfes und

    Eintrittstemperatur des Kiihlmittels wurden in breiter Variation untersucht, urn damit von der Gleichgewichts-

    kondensation bis zur lokalen Totalkondensation die Stabilitlit und die Konvergenz des Berechnungsverfahrens

    zu priifen.

    Aufgrund der theoretischen Analyse und der numerischen Berechnungen konnte ein einfaches Ngherungsver-

    fahren entwickelt werden, da13 besonders ntitzlich bei Vielstoffgemischen mit mehr als drei Komponenten ist.

    Die Rechenzeiten des Naherungsverfahrens sind nur ein funftel derer der vollstandigen Methoden.

    Wnopse

    Ein mathematisches ModeN wurde entwickelt, das

    die Kondensation eines Vielstoff gemisches quantitati v

    beschr eibt, desser t Komponenten all e kondensierbar

    sind und dessen K ondensat eine homogene Jl ii ssige

    Phase bildet. Di eses Modell ist die Grundlage der

    vorgeschlagenen Methode zur Auslegung entsprechen -

    der Kondensatoren.

    Die Verii nderung der Stofl stri ime beider Phasen,

    deren Zusammensetzung und Temperatu r im Verlauf

    der Kondensation wir d durch ein System von dif feren-

    tiellen Massen- und Enthat piebilanzen wiedergegeben.

    Urn die in diesen Bil anzen auftr etenden Stoff -

    stromdichten der von der Dampf - in die Fbissigkeits-

    phase ii bergehenden Komponenten und die Wii rme-

    stromdichte durch den Kondensatfi lm berechnen zu

    kii nnen, ist die Kenntn is der an der Phasengrenze

    0255-2701/88/%3.50

    Chem. Eng. Process.. 24 ( 1988) 189-202

    0 Elsevier Sequoia/Printed in The Netherlands

  • 7/25/2019 1-s2.0-0255270188850025-main

    2/14

    19

    herrschenden Bedingungen erf orderl ich. Di e Zu-

    standsvari ablen (Zusammensetzung der Dampf- und

    der F li issigkeitsphase, Temperatur an der Phasen-

    grenze) lassen sich mit den Gln . (I )+) aufgrund eines

    Systems algebra& her Verkni ipf ungen berechnen. Di e

    Stoff stromdichten der Komponenten von Vielstoff -

    gemischen sind durch die Gln . (6)-o-() defi niert.

    Der an der Phasengrenze angenommene Gleich-

    gewichtszustand wir d durch die Matri xrelati onen (13)

    und (14) beschr ieben. Nach Ei nf tih rung oben genannter

    Abhii ngigkeiten in die Gl. (I ) erhalten wir die Matrix -

    formel (15), aufgrund derer die Molenbrti che der Kom-

    ponenten an der Phasengrenze bestimmt werden

    konnen.

    Di e Matri zen der Stoflti bergangskoefizienten und

    der Kor rekturkoefi zienten fu r Vielstoffgemische sind

    durch die Gln . (16)-(23) gegeben. Bei Einsetzen der

    Gln . (16)-(18) in der Beziehung (I S) gelangt man nach

    Transformationen zur Gl. (28). Aus dieser Gl eichung

    geht hervor , da@ die Zusammensetzung der fr i issigen

    Phase an der Phasengrenze stark von der Kondensa-

    tionsintensittit abhiingt, die durch die globale Molen-

    stromdichte N charakteri siert ist, welche in den

    Matri zen 8 und 4 vorkommt. Es wurde die Ver-

    ii nderung von x, als Funkti on von 4 analysiert, und es

    wurden zwei Grenzfti ll e des Kondensationsmechanis-

    mus fi r 4 -B 0 und 4 --t co herausgestellt. Aus der Gl.

    (28) geht hervor, da@ im Fall e sehr gr oper Molen-

    stromdichten des kondensierenden Dampfes N + co

    die Zusammensetzung der Fhi ssigkeit an der Phasen-

    grenze xi , gleich der Dampfzusammensetzung yi ist. I n

    diesem Fall ist die Temperatur der Phasengrenze, die

    aus den Gleichgewichtsbeziehungen hervorgeht, gleich

    der Siedetemperatur der F li issigkeit von der Zusam-

    mensetzung x,, = yi. Den KondensationsprozeB bei

    groaen Molenstromdichten N bezeichnet man als art-

    lithe Totalkondensation.

    Im zweiten Grenzfall , das he@ fu r N + 0, gelten

    die Gln. (33) und (34), die die sog. Gleichgewichtskon-

    densation de@ieren. Fur die Werte von N, die von

    Nul l und Unendli ch abweichen, ist das I nterval1 der

    Phasengrenztemperaturen durch die Ungleichung (35)

    bestimmt.

    Die Abhtingigkeit (28) kann erheblich vereinfacht

    we& en durch Einf ii hrung der Annahmen (36) und (37),

    die den Stofltr ansport im Kondensatji lm charakte-

    ri sieren. Di e Anwendung der Filmtheorie fur die Be-

    stimmung a& Matrix der Korr ekturkoefi zienten (20)

    fi ih rt zum System der algebrai schen Gleichungen (39)

    (41), aufgr und deren die Zustandsvari ablen an der

    Phasengrenze und die globale Molenstromdichte

    berechnet werden ki innen.

    Di e quanti tative Formuli erung des Modell s, die die

    Berechnung der Veranderungen der Zustandrvariablen

    in der Dampfphase und im Kondensat er laubt, ist

    durch a& System der Dtzerentialgleichungen (43)-

    (46) gegeben. In detail li er ten Berechnungen ist es ni itz-

    li ch, den Kondensationsgrad (47) einzuftihren und das

    oben genannte System der Dtr erentialgleichungen in

    die Gln . (48)-(50) zu transformieren. Di e Stofl str iime

    der beiden Phasen und die Zusammensetzung

    er piis-

    sigen Phase kii nnen aus den Gln. (51)-(53) berechnet

    wet& n,

    Urn die Wiirmeaustauschflache aufgrund der Gl.

    (54) bestimmen zu ki innen, miissen die Dtr erential -

    gleichungen (48H50) im Bereich des Kondensations-

    grades & I fi ir gegebene Randbedingungen in tegri ert

    wetden. Di eses Dtrerentialgl eichungensystem wur de

    mit H ii fe der modtj?zierten Methode von Eul er i nte-

    gri er t. Di e erhaltenen Rekursionsgleichungen (58x65)

    & fi nieren direkt die Zustandsvariablen (yi, xi, T,,

    T,, GG, G3 am Ende jedes l ntegrationsschr ittes. Di e

    Genauigkeit dieser Methode ist vergleichbar mit der

    der Runge-Kutta-Gil l Methode vierter Ordnung, die

    ln tegrati onszeit ist aber vie1 ki ir zer.

    Die Zustandrvariablen an der Phasengrenze, die bei

    jedem l ntegrationsschr itt bendtigt wet-den, wurden aus

    den Gln . (39x41) mit H il fe der Newton-Raphson

    Methode berechnet. D ie Eigenwerte der Matri x der

    D usionskoefl zienten (68) und (69), die zur Berech-

    nung der Matrix funktion exp( -4& notig sind, wur-

    den mit Hi I fe der Transformationsmethode, die in Li t.

    I 4 bearbeitet wurde, berechnet.

    Der vorgeschlagene Berechnungsalgori thmus zum

    Entwur f von Kondensatoren wurde anhand von

    Berechnungen eines Dreistoff- und eines F ii nf-

    stoff gemisches erli iu tert. D ie Eintr ittszusammenset-

    zungen und Temperatur en des Dr eistoflgembches

    Benzol-Toluol-Xylol wie such die Ein tri ttstempera-

    tur en des Ki ih lmi ttels sind in der Tabell e I angegeben.

    GroJe Anderungen der oben genannten Parameter

    wurden vorgenommen, urn einen breiten Bereich & r

    Kondensationsin tensit ii ten zu analysieren (von der

    Gleichgewichtskondensation bis zur Sirt li chen Total-

    komiensation) und urn auf diese Weise die Stabil it ii t

    und Konvergenz der Methode zu pri if en.

    Es hat sich gezeigt, da4 in alien in & r Tabelle 1

    zusammengestell ten Berechnungsbeispielen die Berech-

    nungsprozedur konvergent und stabil war, sogar fti r

    Kondensationsstromdichten, die gegen Null gehen

    (N + 0). I n den B il dern 2-6 sind die Zusammenset-

    zungs- und TemperaturproJl e als Funk tionen des Kon-

    densationsgrades fi ir zwei gewii hl te Temperaturen des

    Kiihlmittels dargestellt.

    Die Ergebnisse der Berechnungen fii r ah F& f-

    stofl gemisch, dessen Eintr ittszusammensetzung in & r

    Tabelle 2 gegeben ist, wurden i n den Bildern 7-9

    dargestellt.

    Di e wachsende Zahl der Komponenten ver li in gert

    erhebli ch die Zeit der numerischen Berechnungen. Das

    wir d dadurch verur sacht, a?$ in jedem I ntegrations-

    schr itt die Eigenwerte der Di ff usionskoefi zientenmatri x

    berechnet werden mtissen. Di es ist die zeitraubendste

    numerische Prozedur des ganzen Al gori thmus. Deshalb

    wurde eine verein fachte Methode zur Auslegung von

    Kondensatoren fi ir Vielstofigemische vorgeschlagen.

    Da fti r die Mehrzahl der Vielstoflgemische die Dt ii -

    sionskoeflzientenmatrix eine diagonal-dominierend

    Matrix ist, wurden die nichtdiagonalen Elemente

    dieser Matri x vernachli issigt. Auf diese Weise werden

    die Kreuzefl ekte des Stofl transportes vernachll issigt,

    und die Eigenwerte mu& en nicht berechnet werden.

  • 7/25/2019 1-s2.0-0255270188850025-main

    3/14

    191

    Bei dieser Methode wir d die Berechnungszeit ungeftihr

    auf ein Funftel reduziert.

    Ein Vergleich der Ergebnisse, die mit H il fe dieser

    Methode erhalten wurden, mit den Ergebnissen der

    genauen Berechnungen ist in

    den

    Bil dern IO und 11

    dargestelit. Dar in zeigt sich, daJ3 diese Methode zur

    ni iherungsweisen Auslegung von Kondensatoren f ii r

    Vielstofiemische empfohlen werden kann.

    1. Introduction

    The methods currently used in the design of heat

    exchangers in which multicomponent condensation

    takes place fall into two groups: the equilibrium

    methods employing the works of Kern [ 11, Silver [2]

    and Bell and Chaly [3], and those based on the

    original paper by Colbum and Drew [4]. To describe

    the phenomena occurring during the condensation,

    the latter group makes use of the relations defining

    the mass and energy fluxes both in the vapour phase

    and in the layer of condensate. The discussion car-

    ried out in ref. 5 shows that the use of the equi-

    librium methods in the design of condensers may

    lead to substantial errors incurred in determining the

    heat fluxes and, consequently, to incorrect dimen-

    sions of these apparatuses.

    Although there are a number of papers dealing

    with the condensation of multicomponent mixtures

    containing inert components [6-lo], the condensa-

    tion of mixtures in which all constituent species

    condense has not been properly analysed. The exten-

    sive study presented in ref. 5 is restricted to binary

    mixtures.

    The literature survey carried out in ref. 5 reveals

    that previous research, both experimental and theo-

    retical, was concerned exclusively with binary mix-

    tures. Moreover, the authors were interested mainly

    in determining the overall coefficients of heat transfer

    from the condensing vapour to the wall, based on the

    measured heat fluxes and assuming various empirical

    values of the driving force. Thus, a real mechanism

    of the process, which also includes the diffusion of

    the condensing species, was not considered.

    The reason for the apparent lack of interest in the

    process discussed lies in the considerable mathemati-

    cal difficulties concerned with the design procedures

    for such condensers. While, by employing certain

    simplifying assumptions, there is always a possibility

    of obtaining explicit relations defining the individual

    mass fluxes for mixtures containing inert components

    [ 11, 121, the fluxes for mixtures in which all species

    condense are given by implicit formulae.

    It should also be noted that the evaluation of the

    state variables at the vapour-liquid interface along

    the condenser becomes much more complicated than

    in the case of mixtures with some inert components.

    This has also been pointed out in ref. 5, where a

    specially developed procedure for determining the

    interfacial state variables was presented.

    The main objective of the present paper is to

    derive a mathematical model describing quantita-

    tively the phenomena occurring during the condensa-

    tion of multicomponent mixtures in which all con-

    stituents condense, employing both the conclusions

    given in ref. 5 and the existing experimental results

    for binary mixtures.

    The model will serve as a basis for developing an

    appropriate numerical design procedure.

    2. The model and its analysis

    The basic assumptions of the model of condensa-

    tion of vapour mixtures are as follows.

    (1) The layer of condensate flows down the wall

    as a laminar film, and the flow itself is determined by

    the equilibrium between the gravitational and vis-

    cous forces. The possible effect of turbulence of the

    layer of condensate and that of the vapour velocity

    on the heat transfer resistance may be allowed for

    using relations valid for the condensation of pure

    substances.

    (2) The flow of the vapour phase is a plug flow

    with perfect radial mixing.

    (3) According to the film theory, the diffusional

    and heat resistances are located in suitably thin

    layers adjacent to the interface and are defined by the

    mass and heat transfer coefficients.

    (4) Thermodynamic equilibrium prevails at the

    interface.

    (5) The wall is cooled from the outside by an

    appropriate coolant which takes away the heat of

    condensation.

    (6) The possibility of the formation of mist in the

    vapour phase is not allowed for. It is also assumed

    that the temperature of the vapour is determined

    solely by the equilibrium relations from the moment

    when it reaches the dew point temperature.

    Typical concentration and temperature profiles

    are given in Fig. 1, together with the positive direc-

    tions of the mass and heat fluxes.

    The changes of the flow rates, composition and

    temperatures of both phases during the condensation

    are described by the appropriate differential mass

    and energy balances.

    Basic quantities appearing in these balances are

    the mass fluxes of the condensing species and the flux

    of energy transferred between the phases. Unequivo-

    cal definition of the fluxes requires knowledge of the

    interfacial state variables, which determine the kinet-

    ics of the condensation. To evaluate these variables

    the relations employed are those which hold at

    steady state for any cross-section perpendicular to

    the interface:

    -equality of the mass fluxes at the interface

    Nio = N,L

    i=l,2,...,n-1

    -

    energy balance at the interface

    i Nj AHj + a,(7, - Z-,) =

    k(T, - 7,-)

    j I

    (1)

    (2)

  • 7/25/2019 1-s2.0-0255270188850025-main

    4/14

    192

    CONDENSAT

    I

    1

    GC

    G,+dG, G,+dG.

    T, + dT,

    T,+fl, Ta+flo

    5, + dX, v, + dv,

    Fig. 1. Schematic diagram of concentration and temperature

    profiles in a cross-sectional area of the condenser.

    where

    1

    -z~+~+$

    k

    W

    -equilibrium relations at the interface

    y,=.L(x,,, -5, . . . 2 %I,,T*, PI

    i=l,2,...,n

    (3)

    (4)

    i=

    I

    If we assume that the pressure P, the vapour

    temperature TG, the complete composition of both

    phases, yi and xi, and the coolant temperature Tc

    are all given for a certain cross-section of the con-

    denser, then 2n + 2 unknown variables may be calcu-

    lated using eqns. (l)-(S), namely n mole fractions

    y2(i=l,2,...,n),

    n mole fractions ya (i =

    . . ,

    n),

    the interfacial temperature

    T I

    and the

    t&~l.flux of the condensing vapour N.

    The mass flux of the ith component in the vapour

    phase is given by

    Nit = 4.a + Y, f Nj = AGI + Y,N

    j=l

    i-1,2,...

    ,n-1 (6)

    where the diffusional flux is

    n-1

    LX = c B?gAYj Yj,)

    (7)

    j=l

    For the liquid phase a similar relation is valid:

    n-1

    N,L = c &X&1 - Xi) + XiIN

    i=l,2,...,n-1

    j= I

    (8)

    If the flow rates, composition and temperatures of

    both phases are known in a given cross-section, then

    the matrices of the mass transfer coefficients, &

    and &, may be determined using the procedure

    described in refs. 11 and 12.

    By introducing the relations defining the mass

    fluxes, eqns. (6)-(g), into eqn. (1) we obtain

    n--l

    n--l

    jc,

    (S - xi) + -TIN=

    jc,

    B~(rj -

    y,d +

    Y,~N

    i=l,2,...

    *n--l (9)

    which can be written in a concise matrix form:

    fMx, - x) + x,N = B%Y - ~1) + YIN

    (10)

    where E and p; are the (n - 1) x (n - 1) matrices of

    mass transfer coefficients, and y, x, y, and x1 are the

    (n - 1) x 1 column matrices of mole fractions in the

    bulk vapour and liquid phases and at the interface,

    respectively.

    According to the assumptions of the model the

    mole fractions x,, and y, are related by the equi-

    librium formulae (3), which may be written as fol-

    lows:

    yi1 = Ki (x,, T,, P)

    i =

    1,2,. . . ,n

    (11)

    where, as was pointed out, the equilibrium constants

    will, in general, depend on the composition of the

    liquid phase, the interfacial temperature and the

    pressure.

    For an ideal mixture, the equilibrium constants

    will be functions of the temperature and pressure

    only:

    K, = Pn(Td

    ,

    P

    (2)

    Upon introducing the diagonal matrix K, the

    equilibrium relation ( 11) may be expressed in the

    matrix form

    that is,

    YI = Kx,

    (13)

    (14)

    Inserting eqn. (14) into ( 10) and solving for x1 we

    get

    x Y + mi)-VW

    (1%

    Each of the matrices of mass transfer coefficients

    is a function of the total mass flux of the condensing

    vapour N through the matrix of correction factors 8

    [ 131, that is,

    Bt; = B&G

    (16)

    BIL= &@L

    (17)

    where the matrices & and 8, are functions of the

  • 7/25/2019 1-s2.0-0255270188850025-main

    5/14

    193

    following matrices:

    &=NBo-

    (18)

    &= NBC

    (19)

    The form of these functions depends on the mass

    transport model employed.

    Assuming that the positive directions of the fluxes

    pertain to species leaving the vapour phase, the

    following functions defining the correction matrices

    are obtained [ 131:

    -according to the film theory

    @G

    = @o[K - exp( -W-

    0, = h_[exp~~d - El - I

    -according

    to the penetration theory

    O,=exp(- z)k-erf( )]-

    O,=exp(- Z)[E+erf(- 5)]-

    (20)

    (21)

    (22)

    (23)

    It has also been shown in ref. 13 that the limiting

    values of the correction matrices are independent of

    the mass transfer model used. Thus, for the gas

    phase we have

    Oor o~co

    for

    &i+cc (24)

    Oo=E

    for

    &=O

    (25)

    interfacial temperature for the vapour composition

    considered, namely T, y) . Th is mode of condensa-

    tion is termed the local total condensation.

    The second limiting case is obtained for very small

    fluxes of the condensing vapour: N 40, that is,

    @+O.

    Making use of eqns. (25) and (27) we get for this

    case the limiting value of the liquid-phase composi-

    tion at the interface:

    ~~~ox,= Bo-~~+K)- ~+PG-l~~~)

    (30)

    *L+O

    Equation (30) was obtained by assuming a value

    of zero for the total flux N, without discussing

    further the mechanism of such a process. Owing to

    the fact that in the condensation process the mass

    transport is unidirectional, the value N = KY_ r NJ

    may be equal to zero only when all fluxes of the

    condensing species also approach zero (Ni +O,

    i =l ,2 ,..., n ).

    Therefore, in order to determine correctly the

    concentrations at the interface, the interfacial energy

    balance should be taken into account, with the indi-

    vidual mass fluxes given by eqn. (6).

    Hence, after some transformations we obtain

    N = k T , - T c ) - a ; TG T , ) - i I s I AH j

    A&

    j-1

    II

    31)

    while for the liquid phase

    @L=o

    for

    cbI_+co

    26)

    AH;, = 2 Y7AHj

    j=- I

    &=E

    for

    (PI_=0

    (27)

    Upon introducing eqns. ( 16)-( 19) into eqn. ( 15),

    which defines the mole fractions at the interface, we

    may transform it into the following form:

    x1 = [@,--&&,-OL + K +

    O,-e&E - K)] --I

    x (Y + -4k+L-@LX)

    (28)

    It follows from the above equation that the liquid

    composition at the interface indeed depends on the

    intensity of condensation, characterized by the mag-

    nitude of the tlux of the condensing vapour, N,

    which appears in the matrices 0 and 4. Let us

    examine more closely the change of x, as a function

    of 8 and 9.

    Using eqns. (24) and (26) it may be proved that

    d_@_

    Xl =

    Y

    TB XI = Y) < TI < T,(Y) (35)

    When

    TG > T,, y),

    that is, when the vapour is

    Thus, we reach an interesting conclusion: for very superheated, some temperature difference exists be-

    large fluxes of the condensing vapour the liquid

    tween the bulk vapour and the interface, but there is

    composition at the interface becomes equal to that in

    no further driving force to take away the superheat

    the bulk vapour. Since, according to the assumptions

    Tc = T , , y) = T I ) . Th us,

    cooling of the superheated

    of the model, there exists thermodynamic equi-

    vapour may occur with simultaneous evaporation of

    librium at the interface, the interfacial temperature

    the condensate. Generally, however, in such in-

    T I must be equal to the boiling point of the liquid

    stances (N + 0) the superheated vapour already un-

    whose composition is equal to the bulk vapour com-

    dergoes cooling down to the dew point temperature

    position (y,). This is the lowest possible value of the

    in the inlet part of the heat exchanger.

    32)

    It may be seen from eqn. (31) that if N is to be

    zero the following relations must hold:

    Tc = T I = TG

    33)

    &ir=O*Y,=Y,

    i=l,2,...,n

    (34)

    Thus, no concentration gradients appear in the

    vapour, and its interfacial composition is equal to

    that of the bulk phase. Since thermodynamic equi-

    librium prevails at the interface, Y, ( =yJ is in equi-

    librium with x,, and, consequently,

    T I

    must be equal

    to the dew point temperature of the vapour of

    composition y, namely,

    T, y).

    This mode of the

    process is called the equilibrium condensation.

    For finite values of N from the interval (0, co) the

    interfacial temperature falls within the range

  • 7/25/2019 1-s2.0-0255270188850025-main

    6/14

    194

    In the quantitative description of the condensa-

    tion certain simplifying assumptions are usually em-

    ployed concerning the mass transfer in the liquid

    phase.

    As has already been mentioned, for large values

    of N the correction matrix e,_ tends to zero and,

    consequently, the matrix of transfer coefficients B:

    also takes very small values. Moreover, the flow of

    the condensate is usually laminar, which also leads to

    very small mass transfer coefficients.

    Hence, the following model of mass transport in

    the liquid phase may be assumed:

    Pi-0

    and hence I

    IL0 (36)

    that is,

    N, z x,~N

    (37)

    With such an assumption the calculations become

    considerably simpler as the diffusional fluxes in the

    liquid phase need no longer be determined. Equation

    (28) may thus be reduced to

    x, =

    [K + 8,-+,(E -K)] -y

    (38)

    satisfying the limiting cases for Q. + co and &. + 0

    derived using the general formula (28).

    Finally, making use of the film theory we obtain

    the following set of algebraic equations defining the

    interfacial parameters and the total flux of the con-

    densing vapour:

    x, =

    [E - exp( -&)(E - K)]-*y

    (39)

    N = [k(T, - TG) -

    az T, -

    T,)]/AH,

    (41)

    where

    NCmx

    aE 1 - exp( -NC,,,/c&

    (42)

    3. Concentratioo and temperature profdes

    along the condense r

    The interfacial state variables, determined using

    the relations derived in the previous Section, un-

    equivocally define all the mass and energy fluxes.

    These fluxes may now be employed in the appropri-

    ate mass and heat balances characterizing the con-

    denser analysed.

    For the parallel flow of the vapour, condensate

    and cooling medium the mass and heat balances are

    given by the following set of differential equations:

    (43)

    d.vi

    1

    dF= +QVi-yy,N)

    i=l ,2,...,n-I

    (44)

    dT,

    dF +

    c

    NC

    wm,

    -=

    G&&y

    (45)

    d

    Tc

    -=+

    w-c- TX)

    dF

    - G&c

    (46)

    where the negative sign pertains to the vapour and

    the coolant flowing cocurrently with the condensate

    (which, in turn, flows down the condenser under the

    action of gravity).

    In the detailed design calculations it is convenient

    to introduce a parameter describing the degree of

    condensation,

    u = (Gco - GG)/GGO

    which varies within the range [0, 11.

    (47)

    Inserting o into eqns. (43))(46) and using the

    assumptions introduced earlier, finally we obtain the

    following differential equations:

    dYi

    Yi - X~I

    _-

    du-

    l-v

    i=l,2,...,n-1

    dTo

    ---Z

    dv

    (49)

    dTc W, - Tc) Go

    -=

    dv G&c N

    (50)

    The cocurrent flow of the vapour, condensate and

    cooling medium is assumed in these equations.

    Moreover, in each cross-sectional area of the con-

    denser defined by the degree of condensation v, the

    following relations must hold which determine the

    flow rates of both phases together with the average

    composition of the liquid:

    Go=G&l-t))

    (51)

    G,_ = Go,,v

    (52)

    xi=Ye-Ylv -4

    i=l,2,...,n-1

    V

    (53)

    The heat transfer area is calculated using the

    equation

    F= Goo

    dv/N

    It shozld be noted

    that the intensity of condensa-

    tion has a substantial effect on the state variables of

    the condensing mixture. Applying the conclusions

    given in the previous Section, for the local total

    condensation we have

    (54)

    dri

    -0

    do-

    i=l,2,...,n-1

    and

    dTo/dv = 0

    (56)

    that is, for large fluxes of the condensing vapour its

    composition and temperature do not change as the

    condensation proceeds.

  • 7/25/2019 1-s2.0-0255270188850025-main

    7/14

    4. Numerical solution of tbe model equations

    The boundary conditions associated with these

    In order to determine from eqn. (54) the heat

    transfer area required for the condensation of a given

    equations are defined by the inlet composition and

    multicomponent mixture, it is necessary to integrate

    eqns. (48)-(50) over the whole range of degrees of

    temperature of the vapour mixture:

    condensation (V = O-l).

    To = Too,

    Yi =y,

    i=l,2,...,n-I

    for v = 0

    (57)

    Depending on the direction of flow of the cooling

    medium we thus have either an initial value problem

    (cocurrent flow:

    Tc = T ,,

    for v = 0) or a boundary

    value problem (countercurrent flow: T, = T,, for

    v = 1).

    The equations analysed were integrated numeri-

    cally using the modified Euler method. Employing

    certain special features of the right-hand sides of

    eqns. (48)-(50), their partial analytical integration

    was carried out within a single integration step. The

    recurrent formulae which explicitly define the values

    of yi,

    T ,

    and

    T ,

    at the end of each step were thus

    obtained.

    The use of such an algorithm substantially

    reduces the calculation time with respect to the

    fourth-order Runge-Kutta-Gill method, without di-

    minishing the overall accuracy.

    Thus, the numerical integration was performed on

    the basis of the following recurrent formulae defining

    the values of the parameter at the end of each

    integration step:

    vk+,=vk+Av

    (58)

    GGO

    Fk+,=Fk+-Au

    N/C

    (59)

    1 -v,

    Y i , k+ l =X i l , k + Y i , k -X i * , k ) 1 _v

    & + I

    Tcc ,k +, = T,,k +(Tak - T1.k ) ( ; I> (61)

    where

    T

    C.k+ l = T,,k +(TC,k --T , ,k )

    =P

    -k, Go Av

    --

    GzCpc Nk

    >

    G

    G,k+I =GG~(l-vk+ l )

    G

    ,_,,~+,=GGoQ+,

    (62)

    (63)

    (W

    x i , k + I =

    YzU-Yi ,k + l( l -vk+ l )

    v k + l

    The values of the interfacial state variables (x,,

    T,)

    required at each integration step were calculated

    iteratively from the algebraic equations (39) and

    195

    (40), employing the Newton-Raphson procedure for

    an assumed value of the total flux of condensation N.

    The value of N was subsequently verified using the

    energy balance (41). If the error was found to be

    larger than an arbitrarily selected value E, N was

    modified according to the method of interpolation

    and the interfacial state variables were recalculated.

    The matrix function exp( -I&) appearing in eqn.

    (39) was evaluated using Sylvesters theorem:

    n-1

    exp( -+o) = C Zo(&) exp( -*o,)

    r-1

    (66)

    where the matrix coefficients Z,(A,) are defined by the

    following formulae:

    n-1

    n (D- -SE)

    j=

    Z,(4) = ,_

    jg, (2, 4)

    j#V

    (67)

    in which D-r = A represents the inverse of the multi-

    component diffusion coefficients matrix and ;lj are

    the eigenvalues of this matrix.

    The elements of the inverse matrix D- = A are

    given by

    A..=J L+

    2

    22

    Din ]=I D,

    iti

    (68)

    The necessary eigenvalues Iii of D-i = A were

    computed by employing two separate methods: the

    characteristic polynomial for a ternary mixture, and

    the transformation method of Burghardt and War-

    muzit%ki [ 141 for mixtures containing more than

    three components.

    The mass transfer coefficients goi appearing in

    &ii.

    doi = NIBoi (70)

    were calculated from the known correlations for

    binary systems in which the binary diffusion co-

    efficients have been replaced by the eigenvalues

    of the multicomponent diffusion matrix, Li. So the

    Sherwood and Schmidt numbers were evaluated as

    follows:

    s ii =& j

    SCoi=*

    8 Pd 1

    U

    (71)

    The physical properties of the pure species in both

    phases were taken from the literature [ 15, 161, while

    those for

    of the formulae in ref.

    At each integration step the physicochemical

    parameters the vapour and liquid were

    TG and TL ) and compo-

    sition of the phases. The vapour-liquid equilibrium

    data were taken from refs. 18 and 19.

  • 7/25/2019 1-s2.0-0255270188850025-main

    8/14

    196

    5. Numerical results ad conclusions

    In order to test the numerical procedures and

    algorithms proposed, the calculations were carried

    out for two different systems, a ternary mixture and

    a five-component system.

    As a ternary mixture the system benzene-toluene-

    xylene, condensing inside vertical tubes of diameter

    d = 0.021 m, was selected.

    The local vapour mass and heat transfer co-

    efficients Boi and cto

    were calculated for turbulent

    flow with the aid of the following correlations:

    Nu, = 0.026 Re,O.* Pr,13

    (72)

    Sh,, = 0.026 Reo.s Scoi3

    (73)

    For laminar flow the equations which approxi-

    mate the theoretical Graetz solution were used.

    The heat transfer coefficient for the condensate

    film was evaluated from the formula [ 151

    Nu, = ( Nu,~ + Nu,~) 4

    (74)

    where

    Nu, = 0.797 Re,-1

    (75)

    Nu, = 8.66 x lo- Re,0.382 Prr,o,5689

    (76)

    The inlet vapour and coolant flow rates and the

    coefficient of heat transfer into the cooling medium

    were kept constant in all calculations:

    Go0 = 1.89 x lO-5 kmol s-

    Gco = 0.248 kg s-

    t(c = 1745 W m-* K-

    However, the initial composition and temperature

    of the condensing mixture, as well as the inlet tem-

    perature of the cooling medium, were varied appre-

    ciably (the initial conditions for which the

    computations were performed are summarized in

    Table 1). By making substantial changes in the initial

    composition and, especially, in the temperature of

    the coolant, the stability and convergence of the

    numerical method were tested over a wide range of

    condensation intensities. As the choice of the initial

    temperature of the coolant, Too, affects the magni-

    tude of the total flux of the condensing vapour, N, it

    is possible to verify the method over the whole

    region between the local total condensation and the

    equilibrium condensation.

    TABLE I. Initial conditions for the mxture benzene-toluene-xylene

    In Table 1 the values of the final degree of

    condensation, v,, above which condensation could

    no longer occur, are given for certain temperatures

    of the cooling medium. In a cross-section of the

    condenser characterized by this particular value, vk,

    the temperature difference between the interface and

    the coolant dropped to a few tenths of a degree

    Kelvin and the flux N tended to zero.

    In all the calculations shown in Table 1, that is,

    for both very large and very small intensities of

    condensation, the method proposed here was conver-

    gent and stable.

    Figures 2-6 illustrate the concentration and tem-

    perature profiles in the condenser as functions of the

    degree of condensation for two values of the temper-

    ature of the cooling medium,

    T ,-, =

    293 K and

    Fig. 2. Bulk and interface. concentration profiles in the vapour

    and liquid phases as functions of the degree of condensation for

    the mxture benzenetohtene-xylene (y,, = yss = 0.330).

    T [Kl

    Tm-293 K

    39l

    lb

    375.

    fi -

    Tr

    I I

    I I I

    I I

    I I

    0

    92 a4 06

    96 v

    l .0

    Fig. 3. Profiles of the dew point, boiling point and interface

    temperatures as functions of the degree of condensation for the

    mxture benzene-toluette-xyleneene(y,, = yrn = 0.330).

    Initial vapour Temperature of cooling

    composition

    medium, T,, (K)

    YIO Y20 293 323 343 348 352 353 315 382 383 385 387 389 410

    0.33 0.33 x x x , = 0.75 I& 0.4 k = 0.3 k o.z * 0.09

    0.99 0.001 x x x 0, = 0.98

    0.001 0.99 x 0, = 0.98

    0.001 0.001 x ut O.%

    x ,

    numerical calculations performed; I+, maximal degree of condensation.

  • 7/25/2019 1-s2.0-0255270188850025-main

    9/14

    Q37

    Q36_

    Q35-

    Q32-

    0

    a2 a4

    a6

    aa

    v

    1.0

    Fig. 4. Vapour-phase and interface concentration profiles as func-

    tions of the degree of condensation for the mixture benzene-

    toluene-xylene (y10 = y,, = 0.330).

    a33

    a3(

    1

    1 I

    I

    I

    I I I

    I I

    I I

    a2 a4

    0.6

    a8

    1.0 v

    Fig. 5. Liquid-phase concentration profiles as functions of the

    degree of condensation for the mixture benzen~toluene-xylene

    (Y10 = y20 = 0.330).

    ____

    Tkl,

    389

    t

    l-b

    387 -

    385 -

    383-

    38f -

    379-

    To-353 K

    ii;

    0

    0 1

    d.2 - a3

    1

    a4

    a5

    a6

    a7

    as

    1.

    Fig. 6. Profrles of the dew point, boiling point and interface temperatures as functions of the degree of condensation for the mxture

    benzene-toluene-xylene ( y10 = yzO= 0.330).

  • 7/25/2019 1-s2.0-0255270188850025-main

    10/14

    198

    353 K, and thus for widely different condensation

    intensities.

    For To, = 293 K the process fully corresponds to

    the local total condensation. This is demonstrated by

    the fact that the vapour and liquid composition

    remain unchanged along the condenser and that the

    liquid composition at the interface is equal to that of

    the bulk vapour (Fig. 2). The interfacial tempera-

    ture, also constant throughout the condenser, is

    equal to the boiling point of the liquid whose compo-

    sition is yi (Fig. 3).

    In Figs. 46, showing the course of condensation

    at T ,-, =

    353 K, the differences between the inter-

    facial liquid composition and that of the bulk vapour

    are clearly visible; also, the interfacial temperature

    differs from the boiling point of the liquid of the

    same composition as the vapour phase. Even in that

    case, however, the course of the process, characteris-

    tic of the final stages of condensation (v -+ l), be-

    comes evident.

    For v = 0.8, the liquid composition at the inter-

    face and that of the bulk vapour become equal; the

    interfacial temperature T , also becomes equal to the

    boiling point of the liquid phase, Ts. This is clear

    evidence of the fact that, for such degrees of conden-

    sation, local total condensation occurs in the system:

    the matrix tends to infinity as the matrix of mass

    transfer coefficients BG becomes equal to zero, which,

    in turn, results from the vapour flow rate approach-

    ing zero. The analysis of this phenomenon is much

    the same as that for binary mixtures [5].

    Another example is a design procedure for a

    condenser-evaporator in which a five-component

    mixture condenses in the intertubular space, while

    the cooling medium, R-l 14, evaporates inside the

    copper tubes of

    d ,Jd i 20 /16

    mm and pitch

    t = 1.5

    do.

    The inlet vapour flow rate, temperature

    and pressure are GGO 40 kg SC, TGo 448.2 K and

    P =

    0.1013 MPa, respectively. The evaporation of

    R-l 14 occurs at constant pressure; it is also assumed

    that the coefficient of heat transfer into the coolant is

    constant and equal to 7500 W rn- K-.

    Because of the nature of the process, the highest

    evaporation temperature of R-l 14 at which the total

    condensation of the mixture was still possible had to

    be determined. The composition of the mixture is

    given in Table 2.

    The calculations were performed for various boil-

    ing points of R-l 14. At the boiling points equal to

    293 K and 298 K and for the corresponding pres-

    sures P, = 0.187 and 0.221 MPa, the mixture con-

    densed completely. For the boiling point of 303 K

    TABLE 2. Composition of the five-component mixture

    the condensation is no longer complete, since for

    L)~= 0.99 the interfacial temperature

    T ,

    reaches

    303.3 K and the condensation ceases.

    The concentration and temperature profiles calcu-

    lated for Tco = 293, 298 and 303 K are shown in

    Figs. 7-9.

    Appreciable variation of the liquid and vapour

    composition along the condenser, together with large

    differences between the interfacial liquid composition

    and that of the bulk vapour, which may be seen in

    Figs. 7 and 8, suggest that the process analysed

    differs from the local total condensation.

    It is also evident from Fig. 9, which shows the

    interfacial temperature profiles

    T,,

    that the process

    does not approach that of the equilibrium condensa-

    tion, as T , is markedly different from the saturation

    Fig. 7. Vapour-phase and interface concentration profiles as func-

    tions of the degree of condensation for the five-component mix-

    ture Table 2).

    Component

    Initial composition y, Boiling temperature (K)

    Molecular mass

    2-Methylbutane

    0.15

    301.0

    72.15

    Ethylbenzene

    0.25

    409.3

    106.17

    Methylcyclohexane

    0.20

    374.1

    98.19

    Butylcyclopentane

    0.25

    429.9

    126.24

    n-Hexylcyclopentane

    0.15

    476.3

    154.30

  • 7/25/2019 1-s2.0-0255270188850025-main

    11/14

    199

    and becomes identical with that for binary mixtures:

    Tco=293 K

    Fig. 8. Liquid-phase concentration profiles as functions of the

    degree of condensation for the five-component mixture Table 2).

    temperature of the mixture,

    T,,.

    Even in this case,

    however, the local total condensation may be ob-

    served during the final stages of the process (v + 1),

    thus confirming theoretical conclusions reached in

    the previous Sections. The numerical example pre-

    sented here is rather special from two points of view.

    Firstly, the difference between the boiling points of

    the individual components is large (about 175 K);

    secondly, at the final stage of condensation the differ-

    ence between the interfacial temperature and that of

    the coolant does not exceed more than a few degrees

    (for TcO = 303 K it falls to zero). Consequently, the

    condensation intensities in the process studied cover

    a relatively wide range of values.

    As the number of components increases, the cal-

    culations become progressively more laborious and

    time-consuming. This results mainly from having to

    evaluate the matrix function exp( -4o) at each inte-

    gration step, and thus determining n - 1 eigenvalues

    of the matrix of diffusion coefficients (n = number of

    components). As this is the most time-consuming

    operation in the whole algorithm, a simplified calcu-

    lational procedure has been proposed: assuming that

    for the majority of multicomponent mixtures en-

    countered in practice the matrices of diffusion co-

    efficients

    are diagonally dominant [ 141, the

    non-diagonal elements (and, consequently, the diffu-

    sional cross-effects) may be neglected.

    The matrix relation (39) is thus markedly simpler

    Yi

    Xi=l+(Ki-l)exp(-~oi)

    (77)

    where

    +oi = NIBoi (78)

    leading to a fivefold reduction of the calculation

    time.

    In order to compare the simplified method with

    the exact results, the error involved in evaluating the

    total flux of the condensing vapour was determined

    as a function of the degree of condensation; the

    results are presented in Fig. 10. It may be seen from

    this Figure that the error becomes appreciable only

    during the terminal stage of the process, when the

    flux of the condensing vapour decreases as a result of

    diminishing temperature differences.

    Figure 11 illustrates the error resulting from the

    use of the simplified method in determining the

    length of the tubes of the condenser. This error is

    large only for the cases where the temperature of the

    cooling medium approaches that of the interface.

    Taking into account the fact that the example of

    the design calculations for the condenser-evaporator

    presented in this work is rather special and that the

    temperature differences in industrial condensers sel-

    dom reach such low values, the simplified method

    seems to be fully applicable to determining the area

    of heat transfer during multicomponent condensation.

    Nomenclature

    C

    CP

    D,

    D

    d

    E

    F

    G

    g

    AH

    4

    K

    k

    M

    Ni

    N

    P

    P&l3

    T

    V

    W

    xi

    Yi

    molar density of fluid mixture, kmol me3

    specific heat, kJ mol- K-

    binary diffusion coefficient, m2 s-i

    multicomponent diffusion coefficients matrix,

    m* s-

    tube diameter, m

    unit matrix

    heat transfer area, m*

    molar flow rate, kmol s-

    acceleration due to gravity, m s-*

    molar enthalpy of evaporation, kJ kmoll

    diffusional flux of component i , kmol m-* s-i

    = Y,~/x,, equilibrium constant

    overall heat transfer coefficient, W m-* K-i

    molar mass, kg kmoll

    molar flux of component

    i ,

    kmol m-* s-i

    =X7=, Nj, total molar flux of mixture,

    kmol rnd2 ss

    pressure, Pa

    vapour pressure of component i , Pa

    temperature, K

    degree of condensation

    velocity of fluid, m s-l

    mole fraction in liquid phase

    mole fraction in vapour phase

  • 7/25/2019 1-s2.0-0255270188850025-main

    12/14

    200

    428-

    0

    a2

    Q3 Q4

    a5

    a7

    a9 v

    T [Kl r

    r

    1s

    333 1

    303

    , I

    0

    02 a4 06 08 v

    0

    Fig. 9. Profiles of the dew point, boiling point and interface temperatures as functions of the degree of condensation for the five-component

    mixture Table 2).

  • 7/25/2019 1-s2.0-0255270188850025-main

    13/14

    201

    18

    46

    4

    2

    4

    ~ 298 K

    I

    I

    Ta-293 K

    I

    I

    Fig. 10. Error in the total condensation flux calculated using the

    simplified method as a function of the degree of condensation for

    the five-component mixture (Table 2).

    CL

    B

    u

    Nur_

    Pr

    Re

    ReL

    SCGi

    Sk

    heat

    t ra nsfe r co efficient, W m - K -

    mass transfer coefficients matrix,

    kmol m-* s-

    mass transfer coefficient, kmol m - 2 s-

    = G,M,/dx, wetting rate, kg m s-

    thickness, m

    dynamic viscosity, kg m-

    s

    correction factor matrix

    the rm a l conductivi ty , W m - K -

    eigenvalue of matrix

    D-

    me2

    s

    density, kg m--3

    =

    ad/l,

    Nusselt number

    = a,(q,*/p,g) 3/,IL, Nusselt number for

    condensate

    = CJ /A., Prandtl number

    = wdplq, Reynolds number

    =r _, Reynolds number for condensate

    = v/( I/ ), calculational Schmidt number for

    component i

    = /& d/C( I/ ), calculational Sherwood

    number for component i

    Subscripts

    :

    refers to boiling point

    refers to coolant

    D refers to dew point

    I

    I

    .FoIK]

    293 29s

    3 :

    4 _

    -2 -

    -3 -

    -4 -

    -5 -

    b=D_L

    I

    ,M)%

    -6 _

    9

    1

    il

    Fig. II. Error in the length of the condenser tubes calculated

    using the simplified method as a function of the cooling medium

    temperature for the five-component mixture (Table 2).

    refers to vapour

    I

    refers to interface

    i

    denotes component

    L

    refers to condensate film

    M

    refers to mixture

    W

    refers to wall

    0 refers to inlet conditions

    Superscript

    denotes corrected heat and mass transfer

    coefficients

    eferences

    D. Q. Kern, Process Heat Tr ansfer, McGraw-Hill, New York,

    1950.

    L. Silver, Gas cooling with aqueous condensation,

    Trans. I nst.

    Chew. Eng., 25 (1947) 3@42.

    K. J. Bell and M. A. Chaly, An approximate generalized

    design method for multicomponent partial condensers, AIChE

    Symp. Ser., 69 (1973) 72-79.

    A. D. Colburn and T. 8. Drew, Design of cooler condensers

    for mixtures of vapours with non-condensing gas, Trans.

    AIChE, 33 (1937) 197-203.

    A. Burghardt and M. Lipowska, Metodyka oblicze6 konden-

    sator6w dwuskladnikowych mieszanin par, Ini.

    Chem. Proc.,

    3

    (1982) 499-522.

    J. T. Schrodt, Simultaneous heat and mass transfer from

    multicomponent condensing vapour-gas systems, AIChE J., 19

    (1973) 753 759.

    R. Krishna and C. B. Panchal, Condensation of a binary

    vapour mixture in the presence of an inert gas, Chem. Eng.

    Sri ., 32 (1977) 741-145.

  • 7/25/2019 1-s2.0-0255270188850025-main

    14/14

    202

    8 K. E. Porter and G. V. Jeffreys, The design of cooler-con-

    densers for the condensation of binary vapours in the presence

    of a non-condensable gas. Trans. I nst. Chem. Eng., 41 (1963)

    126-139.

    9 T. Mizushina, U. Ueda, S. Ikeno and K. Ishii, Simplified

    calculation of a cooler-condenser for gas-multicomponent va-

    pour mixtures, ht. J. Heat Mass Transfer, 7 (1964) 95-100.

    10 R. Krupiczka and R. Herman, Wykraplanie mieszanin par w

    obecnoOci inert&, Ini.

    Chem.,

    9 (1979) 673-689.

    11 A. Burghardt and R. Krupiczka, Muss

    Transfer i n Multicom-

    ponent Systems, Zaklad Narodowy im. Ossolitiskich, Wroctaw,

    1980, pp. 15-68.

    12 A. Burghardt and R. Krupiczka, Massopierienos w

    mnogokomponentnych sistemach,

    Usp. Mech.,

    4 (1981) 3-39.

    13 A. Burghardt, Modele transportu masy dla rnieszanin

    wielosk dnikowych, In,?. Chem. Proc., 5 (1984) 593-614.

    14 A. Burghardt and K. Warmuzihki, Zagadnienie wartosCi

    whxsnych przy wyznaczaniu strumieni masy w ukladach

    wieloskladnikowych, Ini. Chem.

    Proc.,

    4 (1983) 281-291.

    15

    VDI Wiirmeatlus,

    VDI-Verlag, Diisseldorf, 4th edn., 1984.

    16 S. Bretsznajder, WlaFnoici Gnzdw iCieczy, WNT, Warsaw, 1962.

    17 R. C. Reid and T. K. Sherwood, The Proper ties of Gases and

    Liqui&,

    McGraw-Hill, New York, 1966.

    18 J. Gmehling and U. Gnken,

    Vapor-L iquid Equilibri um Data

    Collection, Part I (Chemistry Data Seri esj, DECHEMA, Frank-

    furt-on-Main, 1977.

    19 M. Hi&a, S. Ohe and K. Nagahama,

    Computer Aided Data

    Book of Vapor-Liqui d Equilibr ia,

    Elsevier, Amsterdam, 1978.