1. operational amplifier.ppt

Upload: taha-al-abed

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 1. Operational Amplifier.ppt

    1/29

    Operational Amplifier 1

    Op-Amp

  • 7/29/2019 1. Operational Amplifier.ppt

    2/29

    Operational Amplifier

    An operational amplifier ("op-amp") is

    a DC-coupled high-gain electronic

    voltage amplifier with a differentialinput and, usually, a single-ended output.

    An op-amp produces an output voltage that

    is typically hundreds of thousands timeslarger than the voltage difference between

    its input terminals

    Ref:080114HKN Operational Amplifier 2

  • 7/29/2019 1. Operational Amplifier.ppt

    3/29

    Applications

    audio- and video-frequency pre-amplifiers and buffers

    differential amplifiers

    differentiators and integrators

    filters precision rectifiers

    precision peak detectors

    voltage and current regulators

    analog calculators

    analog-to-digital converters digital-to-analog converters

    voltage clamps

    oscillators and waveform generators

    Operational Amplifier 3

  • 7/29/2019 1. Operational Amplifier.ppt

    4/29

    Ref:080114HKN Operational Amplifier 4

    Vd

    +

    Vo

    Rin~inf Rout~0

    Input 1

    Input 2

    Output

    +Vcc

    -Vcc

    Characteristics

    Very high differential gain

    High input impedance

    Low output impedance

    Provide voltage changes(amplitude and polarity)

    Used in oscillator, filter

    and instrumentation

    Accumulate a very high

    gain by multiple stages

    ddo VGV

    510saylarge,yver

    normallygainaldifferenti:dG

  • 7/29/2019 1. Operational Amplifier.ppt

    5/29

    Ref:080114HKN Operational Amplifier 5

    IC Product

    +

    1

    2

    3

    4

    8

    7

    6

    5

    OFFSET

    NULL

    -IN

    +IN

    V

    N.C.

    V+

    OUTPUT

    OFFSET

    NULL

    +

    1

    2

    3

    4

    8

    7

    6

    5

    OUTPUT A

    -IN A

    +IN A

    V

    V+

    OUTPUT B

    -IN B

    +IN B+

    DIP-741 Dual op-amp 1458 device

  • 7/29/2019 1. Operational Amplifier.ppt

    6/29

    Ref:080114HKN Operational Amplifier 6

    Single-Ended Input

    +

    Vo

    ~Vi

    +

    Vo

    ~Vi

    + terminal : Source

    terminal : Ground

    0o phase change

    + terminal : Ground

    terminal : Source 180o phase change

  • 7/29/2019 1. Operational Amplifier.ppt

    7/29

    Ref:080114HKN Operational Amplifier 7

    Double-Ended Input

    ~

    V1

    +

    Vo

    ~V2

    +

    Vo

    ~Vd

    Differential input

    0o phase shift change

    between Vo and Vd

    VVVd

    Qu: What Vo should be if,

    V1

    V2

    (A) (B)

    Ans: (A or B) ?

  • 7/29/2019 1. Operational Amplifier.ppt

    8/29

    Ref:080114HKN Operational Amplifier 8

    Distortion

    Vd

    +

    Vo

    +Vcc=+5V

    Vcc=5V0

    +5V

    5V

    The output voltage never excess the DC

    voltage supply of the Op-Amp

  • 7/29/2019 1. Operational Amplifier.ppt

    9/29

    Ref:080114HKN Operational Amplifier 9

    Common-Mode Operation

    +

    Vo

    Vi ~

    Same voltage source is applied

    at both terminals

    Ideally, two input are equally

    amplified

    Output voltage is ideally zero

    due to differential voltage is

    zero

    Practically, a small output

    signal can still be measured

    Note for differential circuits:

    Opposite inputs : highly amplifiedCommon inputs : slightly amplified

    Common-Mode Rejection

  • 7/29/2019 1. Operational Amplifier.ppt

    10/29

    Ref:080114HKN Operational Amplifier 10

    Common-Mode Rejection Ratio (CMRR)

    Differential voltage input :

    VVVd

    Common voltage input :

    )(21 VVVc

    Output voltage :

    ccddo VGVGV Gd : Differential gain

    Gc : Common mode gain

    )dB(log20CMRR 10c

    d

    c

    d

    G

    G

    G

    G

    Common-mode rejection ratio:

    Note:

    When Gd >> Gc or CMRRVo = GdVd

    +

    NoninvertingInput

    InvertingInput

    Output

  • 7/29/2019 1. Operational Amplifier.ppt

    11/29

    Operational Amplifier 11

    CMRR ExampleWhat is the CMRR?

    Solution :

    dBCMRRand

    V(2)From

    V(1)From

    VV

    VV

    40)10/1000log(20101000

    607007060

    806006080

    702

    4010060

    2

    20100

    60401008020100

    21

    21

    cd

    cdo

    cdo

    cc

    dd

    GG

    GGV

    GGV

    VV

    VV

    +

    100V

    20V

    80600V

    +

    100V

    40V

    60700V

    (1) (2)

  • 7/29/2019 1. Operational Amplifier.ppt

    12/29

    Ref:080114HKN Operational Amplifier 12

    Op-Amp Properties(1) Infinite Open Loop gain

    - The gain without feedback- Equal to differential gain

    - Zero common-mode gain

    - Pratically, Gd = 20,000 to 200,000

    (2) Infinite Input impedance- Input current ii ~0A

    - T- in high-grade op-amp- m-A input current in low-grade op-amp

    (3) Zero Output Impedance

    - act as perfect internal voltage source- No internal resistance

    - Output impedance in series with load

    - Reducing output voltage to the load

    - Practically,Rout ~ 20-100

    +

    V1

    V2 Vo

    +

    Vo

    i1~0

    i2~0

    +

    Rout

    Vo'Rload

    outload

    loadoload

    RR

    RVV

  • 7/29/2019 1. Operational Amplifier.ppt

    13/29

    Ref:080114HKN Operational Amplifier 13

    Frequency-Gain Relation

    Ideally, signals are amplifiedfrom DC to the highest AC

    frequency

    Practically, bandwidth is limited

    741 family op-amp have a

    limited bandwidth of few KHz.

    Unity Gain frequencyf1: the

    gain at unity

    Cutoff frequencyfc: the gain

    drop by 3dB from dc gain Gd

    (Voltage Gain)

    (frequency)

    f1

    Gd

    0.707Gd

    fc0

    1

    GB Product :f1 = Gdfc

    20log(0.707)=3dB

  • 7/29/2019 1. Operational Amplifier.ppt

    14/29

    Ref:080114HKN Operational Amplifier 14

    GB ProductExample: Determine the cutoff frequency of an op-amp

    having a unit gain frequencyf1 = 10 MHz and voltage

    differential gain Gd = 20V/mV

    Sol:

    Sincef1 = 10 MHzBy using GB production equation

    f1 = Gdfc

    fc=

    f1/

    Gd= 10 MHz / 20 V/mV

    = 10 106 / 20 103

    = 500 Hz

    (Voltage Gain)

    (frequency)

    f1

    Gd

    0.707Gd

    fc0

    1

    10MHz

    ? Hz

  • 7/29/2019 1. Operational Amplifier.ppt

    15/29

    Ref:080114HKN Operational Amplifier 15

    Ideal Vs Practical Op-Amp

    Ideal Practical

    Open Loop gainA 105

    BandwidthBW 10-100Hz

    Input ImpedanceZin >1M

    Output ImpedanceZout 0 10-100

    Output Voltage Vout Depends onlyon V

    d

    = (V+

    V

    )

    Differential

    mode signal

    Depends slightly

    on average input

    Vc = (V++V)/2

    Common-Mode

    signal

    CMRR 10-100dB

    +

    ~

    AVinVin Vout

    Zout=0

    I deal op-amp

    +

    AVinVin Vout

    Zout

    ~Zin

    Practical op-amp

  • 7/29/2019 1. Operational Amplifier.ppt

    16/29

    Ref:080114HKN Operational Amplifier 16

    Ideal Op-Amp Applications

    Analysis Method :Two ideal Op-Amp Properties:

    (1) The voltage between V+ and V is zero V+ = V

    (2) The current into both V+

    and V

    terminals is zero

    For ideal Op-Amp circuit:

    (1) Write the kirchhoff node equation at the non-invertingterminal V+

    (2) Write the kirchhoff node equation at the invertingterminal V

    (3) Set V+ = V and solve for the desired closed-loop gain

  • 7/29/2019 1. Operational Amplifier.ppt

    17/29

    Ref:080114HKN Operational Amplifier 17

    Noninverting Amplifier

    (1) Kirchhoff node equation at V+yields,

    (2) Kirchhoff node equation at V

    yields,

    (3) Setting V+ = V yields

    or

    +VinVo

    Ra Rf

    iVV

    00

    f

    o

    a R

    VV

    R

    V

    0

    f

    oi

    a

    i

    R

    VV

    R

    V

    a

    f

    i

    o

    R

    R

    V

    V1

  • 7/29/2019 1. Operational Amplifier.ppt

    18/29

    Operational Amplifier 18

    +

    vi

    Ra

    vov-

    v+

    Rf

    +

    vi

    Ra

    vov-

    v+

    Rf

    R2R1

    +

    vivo

    v-

    v+

    Rf

    +

    vivo

    v-

    v+

    Rf

    R2R1

    Noninverting amplifier Noninverting input with voltage divider

    i

    a

    f

    o vRR

    R

    R

    Rv ))(1(

    21

    2

    Voltage follower

    io vv

    i

    a

    f

    o v

    R

    Rv )1(

    Less than unity gain

    io vRR

    Rv

    21

    2

  • 7/29/2019 1. Operational Amplifier.ppt

    19/29

    Ref:080114HKN Operational Amplifier 19

    Inverting Amplifier

    (1) Kirchhoff node equation at V+yields,

    (2) Kirchhoff node equation at V

    yields,

    (3) Setting V+ = V yields

    0

    V

    0_

    f

    o

    a

    in

    R

    VV

    R

    VV

    a

    f

    in

    o

    R

    R

    V

    V

    Notice: The closed-loop gainVo/Vin is

    dependent upon the ratio of two resistors,and is independent of the open-loop gain.

    This is caused by the use of feedback output

    voltage to subtract from the input voltage.

    +

    ~

    Rf

    Ra

    VinVo

  • 7/29/2019 1. Operational Amplifier.ppt

    20/29

    Ref:080114HKN Operational Amplifier 20

    Multiple Inputs

    (1) Kirchhoff node equation at V+yields,

    (2) Kirchhoff node equation at V

    yields,

    (3) Setting V+ = V yields

    0V

    0_

    c

    c

    b

    b

    a

    a

    f

    o

    R

    VV

    R

    VV

    R

    VV

    R

    VV

    c

    aj j

    j

    f

    c

    c

    b

    b

    a

    afo

    R

    VR

    R

    V

    R

    V

    R

    VRV

    +

    Rf

    Va

    VoRb

    Ra

    RcVb

    Vc

  • 7/29/2019 1. Operational Amplifier.ppt

    21/29

    Ref:080114HKN Operational Amplifier 21

    Inverting IntegratorNow replace resistorsRa andRfby complex

    componentsZa

    andZf, respectively, therefore

    Supposing

    (i) The feedback component is a capacitor C,

    i.e.,

    (ii) The input component is a resistor R,Za =RTherefore, the closed-loop gain (Vo/Vin) become:

    where

    What happens ifZa = 1/jCwhereas,Zf=R?Inverting differentiator

    in

    a

    f

    o VZ

    ZV

    CjZf

    1

    dttvRC

    tv io )(1

    )(

    tjii eVtv )(

    +

    ~

    Zf

    Za

    VinVo

    +

    ~

    R

    Vin Vo

    C

  • 7/29/2019 1. Operational Amplifier.ppt

    22/29

    Ref:080114HKN Operational Amplifier 22

    Op-Amp IntegratorExample:

    (a) Determine the rate of change

    of the output voltage.

    (b) Draw the output waveform.

    Solution:

    +

    RVoVi

    0

    +5V

    10 k

    0.01FC

    Vo(max)=10 V

    100s

    (a) Rate of change of the output voltage

    smV/

    Fk

    V

    50

    )01.0)(10(

    5

    RC

    V

    t

    V io

    (b) In 100 s, the voltage decrease

    VssmV/ 5)100)(50( oV

    0

    +5V

    0-5V

    -10V

    Vi

    Vo

  • 7/29/2019 1. Operational Amplifier.ppt

    23/29

    Ref:080114HKN Operational Amplifier 23

    Op-Amp Differentiator

    RCdt

    dVv io

    +

    R

    C

    VoVi0to t1 t2

    0

    to t1 t2

  • 7/29/2019 1. Operational Amplifier.ppt

    24/29

    Ref:080114HKN Operational Amplifier 24

    Non-ideal case (Inverting Amplifier)

    +

    ~

    Rf

    Ra

    VinVo

    3 categories are considering

    Close-Loop Voltage Gain

    Input impedance Output impedance

    Equivalent CircuitRf

    Ra

    Vin Vo+

    +

    R RV

    -AV

    +

    AVinVin Vout

    Zout

    ~

    Zin

    Practical op-amp

  • 7/29/2019 1. Operational Amplifier.ppt

    25/29

    Ref:080114HKN Operational Amplifier 25

    Close-Loop GainRf

    RaVin

    Vo+

    +

    R R

    -AV

    Ra Rf

    R

    V

    V

    Vin Vo

    Applied KCL at V terminal,

    0

    f

    o

    a

    in

    R

    VV

    R

    V

    R

    VV

    By using the open loop gain,

    AVVo

    0f

    o

    f

    oo

    a

    o

    a

    in

    AR

    V

    R

    V

    AR

    V

    AR

    V

    R

    V

    fa

    aafaf

    o

    a

    in

    RRAR

    RARRRRRRRV

    R

    V

    The Close-Loop Gain,Av

    RARRRRRRR

    RAR

    V

    VA

    aafaf

    f

    in

    ov

  • 7/29/2019 1. Operational Amplifier.ppt

    26/29

    Ref:080114HKN Operational Amplifier 26

    Close-Loop Gain

    When the open loop gain is very large, the above equation become,

    a

    f

    vR

    RA

    ~

    Note : The close-loop gain now reduce to the same formas an ideal case

  • 7/29/2019 1. Operational Amplifier.ppt

    27/29

    Ref:080114HKN Operational Amplifier 27

    Input ImpedanceRf

    Ra

    VinVo

    +

    +

    R

    -AV

    R'

    RV

    Rf

    +

    R

    -AV

    if

    V

    Input Impedance can be regarded as,

    RRRR ain //

    whereR is the equivalent impedanceof the red box circuit, that is

    fi

    VR

    However, with the below circuit,

    A

    RR

    i

    VR

    RRiAVV

    of

    f

    off

    1

    )()(

  • 7/29/2019 1. Operational Amplifier.ppt

    28/29

    Ref:080114HKN Operational Amplifier 28

    Input ImpedanceFinally, we find the input impedance as,

    1

    11

    of

    ainRR

    A

    RRR

    RARR

    RRRRR

    of

    of

    ain)1(

    )(

    Since, RARR of )1( , Rin become,

    )1(

    )(~

    A

    RRRR

    of

    ain

    Again with )1( ARR of

    ain RR ~

    Note: The op-amp can provide an impedance isolated from

    input to output

  • 7/29/2019 1. Operational Amplifier.ppt

    29/29

    Ref:080114HKN Operational Amplifier 29

    Output ImpedanceOnly source-free output impedance would be considered,

    i.e. Vi is assumed to be 0 Rf

    Ra

    Vo+

    R

    -AV

    RV

    io

    VV

    Rf

    Ra R+

    R

    -AV

    V

    i2 i1

    (a)(b)

    Firstly, with figure (a),

    o

    fafa

    ao

    af

    a VRRRRRR

    RRVV

    RRR

    RRV

    //

    //

    By using KCL,io

    = i1

    + i2

    o

    o

    faf

    oo

    R

    AVV

    RRR

    Vi

    )(

    //

    By substitute the equation from Fig. (a),

    RRARRRRRRRRRRRRRR

    iV

    R

    afafao

    fafao

    o

    o

    out

    )1())(1()(

    isimpedance,outputThe

    R andA comparably large,

    a

    fao

    outAR

    RRRR

    )(~