1 nonlinear equations jyun-ming chen. 2 contents bisection false position newton quasi-newton...

69
1 Nonlinear Equations Jyun-Ming Chen

Upload: alexandra-harper

Post on 03-Jan-2016

269 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

1

Nonlinear Equations

Jyun-Ming Chen

Page 2: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

2

Contents

• Bisection

• False Position

• Newton

• Quasi-Newton

• Inverse Interpolation

• Method Comparison

Page 3: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

3

Solve the Problem Numerically

• Consider the problem in the following general form:

f(x) = 0

• Many methods to choose from:– Interval Bisection

Method

– Newton

– Secant

– …

Page 4: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

4

Interval Bisection Method

• Recall the following theorem from calculus

• Intermediate Value Theorem ( 中間值定理 )– If f(x) is continuous on [a,b]

and k is a constant, lies between f(a) and f(b), then there is a value x[a,b] such that

f(x) = k

Page 5: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

5

Bisection Method (cont)

• Simply setting k = 0

• Observe:– if sign( f(a) ) ≠ sign( f(b) )– then there is a point x [a, b] such that f(x) = 0

Page 6: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

6

Definition

• non-trivial interval [a,b]:f(a) ≠ 0, f(b) ≠ 0

and

sign( f(a) ) ≠ sign( f(b) )

sign(-2) = -1

sign(+5) = 1

Page 7: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

7

Idea

• Start with a non-trivial interval [a,b]

• Set c(a+b)/2

• Three possible cases:

⑴ f(c) = 0, solution found

⑵ f(c) ≠ 0, [c,b] nontrivial

⑶ f(c) ≠ 0, [a,c] nontrivial

• Keep shrinking the interval until convergence

• → ⑴ problem solved• → ⑵⑶ a new smaller

nontrivial interval ½ size_______

Page 8: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

8

Algorithm

What’s wrong with this code?

Page 9: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

9

Remarks

• Convergence– Guaranteed once a nontrivial interval is found

• Convergence Rate– A quantitative measure of how fast the

algorithm is– An important characteristics for comparing

algorithms

Page 10: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

10

Convergence Rate of Bisection

• Let: – Length of initial

interval L0

– After k iterations, length of interval is Lk

– Lk=L0/2k

– Algorithm stops when Lk eps

• Plug in some values…

93.1910

1log

10

1Let

62

6

k

eps

L

This is quite slow, compared to other

methods…Meaning of

eps

Page 11: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

11

How to get initial (nontrivial) interval [a,b] ?

• Hint from the physical problem

• For polynomial equation, the following theorem is applicable:

roots (real and complex) of the polynomial

f(x) = anxn + an-1xn-1 +…+ a1x + aο

satisfy the bound:

) , , , (1

1 10 nn

aaaMaxa

x ) , , , (1

1 10 nn

aaaMaxa

x

Page 12: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

12

Example

• Roots are bounded by

• Hence, real roots are in [-10,10]

• Roots are

–1.5251,

2.2626 ± 0.8844i

093 23 xxx109) 1, 3, ,1( max

1

11 x

complex

Page 13: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

13

Other Theorems for Polynomial Equations

• Sturm theorem: – The number of real roots of an algebraic

equation with real coefficients whose real roots are simple over an interval, the endpoints of which are not roots, is equal to the difference between the number of sign changes of the Sturm chains formed for the interval ends.

Page 14: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

14

Sturm Chain

Page 15: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

15

Example

38879.1 ,32836.10802951.0 ,334734.0 ,21465.1

13)( 5

ix

xxxf

Page 16: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

16

Sturm Theorem (cont)

• For roots with multiplicity:– The theorem does not apply, but …– The new equation : f(x)/gcd(f(x),f’(x))

• All roots are simple

• All roots are same as f(x)

Page 17: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

17

Sturm Chain by Maxima

Page 18: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

18

Maxima (cont)

Page 19: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

19

Descarte’s Sign Rule• A method of determining the

maximum number of positive and negative real roots of a polynomial.

• For positive roots, start with the sign of the coefficient of the lowest power. Count the number of sign changes n as you proceed from the lowest to the highest power (ignoring powers which do not appear). Then n is the maximum number of positive roots.

• For negative roots, starting with a polynomial f(x), write a new polynomial f(-x) with the signs of all odd powers reversed, while leaving the signs of the even powers unchanged. Then proceed as before to count the number of sign changes n. Then n is the maximum number of

negative roots.

3 positive roots

4 negative roots

Page 20: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

20

False Position Method

• x2 defined as the intersection of x axis and x0f0-x1f1

• Choose [x0,x2] or [x2,x1], whichever is non-trivial

• Continue in the same way as bisection

• Compared to bisection:x2=(x1+x0)/2

Page 21: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

21

False Position (cont)

Determine intersection point

• Using similar triangles:

)(

)11

(

1

1

0

0

01

102

1

1

0

0

102

1

21

0

02

f

x

f

x

ff

ffx

f

x

f

x

ffx

f

xx

f

xx

)(1

011001

2 fxfxff

x

)(1

011001

2 fxfxff

x

Page 22: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

22

False Position (cont)

Alternatively, the straight line passing thru (x0,f0) and (x1,f1)

Intersection: simply set y=0 to get x

)( 001

010 xx

xx

fffy

0001

01

001

010 )(0

xxfff

xx

xxxx

fff

Page 23: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

23

Example

0 ,1 ,0

0sin3)(

1010

ffxx

exxxf x

k xk (Bisection) fk xk (False

Position)

fk

1 0.5 0.471

2 0.25 0.372

3 0.375 0.362

4 0.3125 0.360

5 0.34315 -0.042 0.360 2.93×10-5

Page 24: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

24

False Position

• Always better than bisection?

Page 25: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

25

(x0, f0)

Newton’s Method

tangent line thru (x0 , f0)

00 )( slope fxf

)(

)0 (

axis-on with intersecti

)(

0100

000

xxff

yset

x

xxffy

,...3,2,1 ,1

kf

fxx

k

kkk

,...3,2,1 ,1

kf

fxx

k

kkk

Graphical Derivation

Also known as Newton-Raphson method

Page 26: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

26

Newton’s Method (cont)

• Derived using Taylor’s expansion

f(x)

))(x-x(xf)f(x(x)f

)(xfxx

xxxf

xxxfxfxf

ofion approximat good a is

ˆthen

large not too and near is if

)(2

)())(()()(

000

00

20

0000

Page 27: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

27

Taylor’s Expansion (cont)

0)(ˆ

0)(for iteratenext theas

0)(ˆ ofroot theTake

xf

xf

xf

,...3,2,1 ,1

kf

fxx

k

kkk

,...3,2,1 ,1

kf

fxx

k

kkk

Page 28: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

28

Example

• Old Barbarians used the following formula to compute the square root of a number a

explain why this works:

)(2

11

kkk x

axx

8-84

4-025.11

3

2-2

1-1

0

104.7 107.41

103 1.00030 )025.1(2

1

102.5 025.1)25.1

125.1(

2

1

102.5 25.1)2

12(

2

1

1 2

:Error

x

x

x

x

x

Finding square root of 1 (a=1)

with x0 = 2

Page 29: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

29

Newton’s Method

)(2

1 ...

)22

( 2

2)(

)(

)(

)(

0)( solve toMethod sNewton' Use

0)( of roots theof one is

22

1

2

1

2

kk

kk

kk

k

kkk

k

kkk

x

ax

x

a

x

xx

x

axxx

xxf

axxf

xf

xfxx

xf

axxfa

01)( 2 xxf

Page 31: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

31

Definition

• Error of the ith iterate

• Order of a method m, satisfies

where Ek is an error bound of k

)lim (i.e.

valueconverged theis where

αx

x

ii

ii

constantlim 1

k

mk

k

Ε

Ε constantlim 1

k

mk

k

Ε

Ε

Page 32: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

32

Linear Convergence of Bisection

root

a0

L2

L1

L0

a1 b1

a2 b2

b0

2

2

1222

0111

0

LabL

LabL

abL

22

is bounderror The

2 isroot of approx. reasonable a

,],[With

000

00

00

Lab

ba

ba

22

is bounderror The

2 isroot of approx. reasonable a

,],[With

000

00

00

Lab

ba

ba

Page 33: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

33

/2

2

1limor

2

1 /2

/2

22

11

1

211

00

L

E

E

Ε

ΕL

L

k

k

k

Linear Convergence of Bisection (cont)

• We say the order of bisection method is one, or the method has linear convergence

Page 34: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

34

Quadratic Convergence of Newton

• Let x* be the converged solution

• Recall

)()()(

)(2

1)()()( 2

xfxfxf

xfxfxfxf

)(

)(1

k

kkk xf

xfxx

Page 35: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

35

Quadratic Convergence of Newton (cont)

• Subtracting x*:

21

2

2

1

1

)(

)(

2

1

)(

)(

2

1

)(

)(21

)()(

)(

)(

kk

kkk

kk

kk

k

kkk

xf

xf

xf

xf

xf

xfxfxf

xf

xfxxxx

Or we say Newton’s method has quadratic convergence

Page 36: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

36

Example: Newton’s Method

• f(x)= x3–3x2 – x+9=0

10)9131max(1

1

9,1,3,1

]10,10[ thmRecall

0123

,,,x

aaaa

xk xk

0 0

1 9

2 6.41

46 -1.5250

163)(

93)(

0 choose

2

23

0

xxxf

xxxxf

x

Worse than bisection !?

Page 37: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

37

Why?

• plot f(x) • Plot xk vs. k

-1.525k

xk 60

5

30

10

-1.525

-10 25 35 40

Page 38: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

38

Newton Iteration

-20

0

20

40

60

80

100

0 10 20 30 40 50 60 70

k

xk 1數列

Page 39: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

39

Case 1:

Page 40: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

40

Case 2:

Diverge to

Page 41: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

41

Recall Quadratic Convergence of Newton’s

• The previous example showed the importance of initial guess x0

• If you have a good x0, will you always get quadratic convergence?– The problem of multiple-root

21 )(

)(

2

1kk xf

xf

Page 42: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

42

Example• f(x)=(x+1)3=0• Convergence is linear near multiple roots

Prove this!!

Page 43: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

43

Multiple Root

• If x* is a root of f(x)=0, then (x-x*) can be factored out of f(x)– f(x) = (x-x*) g(x)

• For multiple roots:– f(x) = (x-x*)k g(x) – k>1 and g(x) has no factor of (x-x*)

Page 44: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

44

Multiple Root (cont)

0][*)*(*)(:1

0*)(*)(

)(*)()()(:1

)](*)()([*)(

)(*)()(*)()(

1

1

1

k

k

kk

xxxfk

xgxf

xgxxxgxfk

xgxxxkgxx

xgxxxgxxkxf

Implication:

Page 45: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

45

• where k is the multiplicity of the root

• Get quadratic convergence!

• Problem: do not know k in advance!

Remedies for Multiple Roots

)(

)(1

n

nnn xf

xfkxx

Page 46: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

46

Modified Newton’s Method

0(x) ofroot thealso is 0(x) ofroot the

:Check

0)( ofroot thefind tomethod sNewton' use

)(

)()(function new a Define

)(*)()(*)()(

)(*)()( ofty multiplici1

fF

xF

xf

xfxF

xgxxxgxxkxf

xgxxxfkkk

k

Page 47: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

47

Modified Newton’s Method (cont)

)(*)()(

)(*)(

)(*)()(*)(

)(*)(

)(

)()(

) converge alwaysNewton (hence,

roots multiple no has 0)(

1

xgxxxkg

xgxx

xgxxxgxxk

xgxx

xf

xfxF

llyquadratica

xF

kk

k

Page 48: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

48

Examplef(x)=(x–1)3sin((x – 1)2)

Page 49: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

49

Quasi-Newton’s Method

• Recall Newton:

• The denominator requires derivation and extra coding

• The derivative might not explicitly available (e.g., tabulated data)

• May be too time-consuming to compute in higher dimensions

)(

)(1

k

kkk xf

xfxx

Page 50: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

50

Quasi-Newton (cont)

• Quasi:

• where gk is a good and easily computed approx. to f’(xk)

• The convergence rate is usually inferior to that of Newton’s

k

kkk g

xfxx

)(1

Page 51: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

51

Secant Method

– Use the slope of secant to replace the slope of tangent

– Need two points to start

)()()(

)(

Or,

)()(

11

1

1

1

kkkk

kkk

kk

kkk

xxxfxf

xfxx

xx

xfxfg

Order: 1.62

Page 52: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

52

Idea:

• x2: Intersection of x-axis and a line interpolating x0 f0 & x1 f1

• x3: Intersection of x-axis and a line interpolating x1 f1 & x2 f2

• xk+1: Intersection of x-axis and a line interpolating xk-1fk-1 & xkfk

x0x1

‧‧

x2

Page 53: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

53

Comparison

• Newton’s method • False Position

(Newton)

xkxk+1

‧‧‧

f ’(xk)

Page 54: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

54

Secant vs. False Position

False PositionSecant

Page 55: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

55

Beyond Linear Approximations

• Both secant and Newton use linear approximations• Higher order approximation yields better accuracy?• Try to fit a quadratic polynomial g(x) thru the

following three points:g(xi) = f(xi), i = k, k–1, k – 2

• Let xk+1 be the root of g(x) = 0– Could have two roots; choose the one near xk

• This is called the Muller's Method

Page 56: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

56

• See Textbook

• g(x) 通過 (xk-2, fk-2), (xk-1, fk-1), (xk,fk)

Muller's MethodOrder: 1.84

Page 57: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

57

Finding the Interpolating Quadratic Polynomial g(x)

kkkk

kkkk

kkkk

faxaxaxg

faxaxaxg

faxaxaxg

axaxaxg

012

2

10112

121

20212

222

012

2

)(

)(

)(

)(

3 eqns to solveunknowns : a2 , a1 , a0

))((1

)()( 121

21

1

1

21

1

kkkk

kk

kk

kk

kkk

kk

kkk xxxx

xx

ff

xx

ff

xxxx

xx

fffxg ))((

1)()( 1

21

21

1

1

21

1

kkkk

kk

kk

kk

kkk

kk

kkk xxxx

xx

ff

xx

ff

xxxx

xx

fffxg

Or,

Double-check !

Page 58: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

58

SummaryIterative Methods for Solving f(x)=0• Basic Idea:

– Local approximation + iterative computation

– At kth step, construct a polynomial p(x) of degree n, then solve p(x) = 0; take one of the roots as the next iterate, xk+1

• In other words,– construct p(x)

– solve p(x) = 0; find the intersection between y=p(x) and x-axis

– choose one root

Page 59: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

59

Revisit Newton

‧xk+1 xk

))(()()(

ofroot theis

)(

)(

1

1

kkk

k

k

kkk

xxxfxfxp

x

xf

xfxx

p(x): is a linear approximation passing thru(xk,fk) with the slope fk

Page 60: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

60

Revisit Secant

p(x)

)()(1

1k

kk

kkk xx

xx

fffxp

p(x): is a linear approximation

passing thru (xk-1,fk-1) and (xk,fk) with the secant slope

xk-1xk

‧‧

Page 61: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

61

Revisit Muller

• p(x) is a parabola (2nd degree approximation) passing thru three points

• Heuristic: choose the root that is closer to the previous iterate

• Potential problem:– No solution (parabola and x-axis do not

intersect!)

Page 62: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

62

Categorize by Starting Condition

• Bisection and False Position– Require non-trivial

interval [a,b]

– Convergence guaranteed

• Newton: one point – x0 → x1 →…

• Secant: two points– x0 x1 → x2 → …

• Muller: three points – x0 x1 x2 → x3→ …

• These methods converge faster but can diverge …

Page 63: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

63

A Slightly Different Method:Inverse Interpolation

• Basic Idea (still the same)– Local approximation + iterative computation

• Method:– At kth step, construct a polynomial g(y) of

degree n; then compute the next iterate by setting g(y = 0):

)0(1 ygxk

Page 64: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

64

Inverse Linear Interpolation

• Secant: Inverse linear Interpolation

‧‧

(xk-1, fk-1)

(xk, fk)

(xk+1, fk+1)x

y

)(

)(

1

11

1

1

1

1

kkk

kkkk

kkk

kkk

kk

kk

k

k

fff

xxxx

fyff

xxxx

xx

ff

xx

fy

x = g(y), xk+1=g(0)

Page 65: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

65

Inverse Quadratic Interpolation

• Find another parabola: x = g(y)

• Set the next iteratexk+1 = g(0)

))((1

)()( 121

21

1

1

21

1

kkkk

kk

kk

kk

kkk

kk

kkk fyfy

ff

xx

ff

xx

fffy

ff

xxxyg ))((

1)()( 1

21

21

1

1

21

1

kkkk

kk

kk

kk

kkk

kk

kkk fyfy

ff

xx

ff

xx

fffy

ff

xxxyg

Page 66: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

66

Example (IQI)

• Solve f(x)=x3–x=0– x0 = 2, x1 = 1.2, x2 = 0.5

k xk+1 xk-2 fk-2 xk-1 fk-1 xk fk

1 0.8102335181319 2 6 1.2 0.528 0.5 -0.3752 1.3884057934643 1.2 0.528 0.5 -0.375 0.810234 -0.2783333 1.5252259894989 0.5 -0.375 0.810234 -0.27833 1.388406 1.2879834 0.9414762279683 0.810234 -0.27833 1.388406 1.287983 1.525226 2.0229295 0.9844320642825 1.388406 1.287983 1.525226 2.022929 0.941476 -0.1069736 1.0010409722070 1.525226 2.022929 0.941476 -0.10697 0.984432 -0.0304137 1.0000043435326 0.941476 -0.10697 0.984432 -0.03041 1.001041 0.0020858 0.9999999997110 0.984432 -0.03041 1.001041 0.002085 1.000004 8.69E-069 1.0000000000000 1.001041 0.002085 1.000004 8.69E-06 1 -5.78E-10

Page 67: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

67

Professional Root Finder

• Need guaranteed convergence and high convergence rate

• Combine bisection and Newton (or inverse quadratic interpolation)– Perform Newton step whenever possible

(convergence is achieved)– If diverge, switch to bisection

Page 68: 1 Nonlinear Equations Jyun-Ming Chen. 2 Contents Bisection False Position Newton Quasi-Newton Inverse Interpolation Method Comparison

68

Brent’s Method

• Guaranteed to converge• Combine root bracketing, bisection and

inverse quadratic interpolation– van Wijngaarden-Dekker-Brent method– Zbrent in NR

• Brent uses the similar idea in one-dimensional optimization problem– Brent in NR