1 non-seasonal box-jenkins models. 2 four-step iterative procedures 1)model identification...

50
1 Non-Seasonal Box- Jenkins Models

Upload: christina-booth

Post on 18-Dec-2015

217 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

1

Non-Seasonal Box-Jenkins Models

Page 2: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

2

Four-step iterative procedures

1) Model Identification

2) Parameter Estimation

3) Diagnostic Checking

4) Forecasting

Page 3: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

3

Step One: Model Identification

Page 4: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

4

Model Identification

I. Stationarity

II. Theoretical Autocorrelation Function (TAC)

III. Theoretical Partial Autocorrelation Function (TPAC)

IV. Sample Partial Autocorrelation Function (SPAC)

V. Sample Autocorrelation Function (SAC)

Page 5: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

5

Stationarity (I)

A sequence of jointly dependent random variables

is called a time series

}:{ tyt

Page 6: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

6

Stationarity (II)

Stationary process Properties :

.),()3(

.])[()()2(

.)()1(22

tallforyyCov

tallforuyEyVar

tallforuyE

kktt

yytt

yt

Page 7: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

7

Stationarity (III)

Example: The white noise series {t } ’s are iid as N(0,

2). Note that

.tallfor0),(Cov)3(

.tallfor)(E)(Var)2(

.tallfor0)(E)1(

stt

22tt

t

Page 8: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

8

Stationarity (IV)

Three basic Box-Jenkins models for a stationary time series {yt } :

(1) Autoregressive model of order p (AR(p))

i.e., yt depends on its p previous values

(2) Moving Average model of order q (MA(q))

i.e., yt depends on q previous random error terms

,2211 tptpttt yyyy

,2211 qtqtttty

Page 9: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

9

Stationarity (V)

Three basic Box-Jenkins models for a stationary time series {yt } : (3) Autoregressive-moving average model of order

p and q (ARMA(p,q))

i.e., yt depends on its p previous values and q previous random error terms

,2211

2211

qtqttt

ptpttt yyyy

Page 10: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

10

AR(1) (I)

Simple AR(1) process without drift

.

)LL1(

L1y

or

y)L1()L(

)operatorshiftbacktheisLwhere(Lyy

)noisewhiteiswhere(yy

2t2

11t1t

2211t

1

tt

tt1

tt1t

tt1t1t

Page 11: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

11

AR(1) (II)

Now,

Var(yt) and cov(yt, yt-s) are finite if and only if

|1| < 1, which is the stationarity requirement

for an AR(1) process.

.1

),()3(

.1

)()2(

.0)()1(

21

12

21

2

tallforyyCov

tallforyVar

tallforyE

s

stt

t

t

Page 12: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

12

AR(1) (IV)

Special Case: 1 = 1

It is a “random walk” process. Now,

Thus,

.1 ttt yy

1

0

.t

jjtty

.||),()3(

.)()2(

.0)()1(

2

2

tallforstyyCov

tallfortyVar

tallforyE

stt

t

t

Page 13: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

13

AR(1) (V)

Consider,

yt is a homogeneous non-stationary series.

The number of times that the original series

must be differenced before a stationary series

results is called the order of integration.

.1

t

ttt yyy

Page 14: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

14

Theoretical Autocorrelation Function (TAC) (I)

Autoregressive (AR) ProcessesConsider an AR(1) process without drift :

Recall that

.1

),()3(

.1

)()2(

.0)()1(

21

12

021

2

tallforyyCov

tallforyVar

tallforyE

s

s

stt

t

t

.11 ttt yy

Page 15: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

15

Theoretical Autocorrelation Function (TAC) (II)

The autocorrelation function at lag k is

So for a stationary AR(1) process, the TAC dies down gradually as k increases.

.

...,2,1,0

1

0

k

kk kfor

Page 16: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

16

Theoretical Autocorrelation Function (TAC) (III)

Consider an AR(2) process without drift :

The TAC functions are

.2211 tttt yyy

.2

1

,1

2211

2

21

22

2

11

kforkkk

Page 17: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

17

Theoretical Autocorrelation Function (TAC) (IV)

Then the TAC dies down according to a mixture of damped exponentials and/or damped sine waves.

In general, the TAC of a stationary AR process dies down gradually as k increases.

Page 18: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

18

Theoretical Autocorrelation Function (TAC) (V)

Moving Average (MA) ProcessesConsider a MA(1) process without drift :

Recall that.11 ttty

.10

1),()3(

.)1())2(

.0)()1(

21

21

20

s

syyCov

tallforVar(y

tallforyE

sstt

t

t

Page 19: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

19

Theoretical Autocorrelation Function (TAC) (VI)

Therefore the TAC of the MA(1) process is

The TAC of the MA(1) process “cuts off” after lag k=1.

.10

11 2

1

1

0

k

k

kk

Page 20: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

20

Theoretical Autocorrelation Function (TAC) (VII)

Consider a MA(2) process :

The TAC of a MA(2) process cuts off after 2 lags.

.20

,1

,1

)1(

22

21

22

22

21

211

kfork

Page 21: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

21

Theoretical Partial Autocorrelation Function (TPAC) (I)

Autoregressive Processes

By the definition of the PAC, the parameter k is the kth PAC kk. Therefore, the partial autocorrelation function at lag k is

As mentioned before, if k=1, then

That is, PAC=AC. The TPAC of an AR(1) process “cuts off” after lag 1.

.kkk

.1111

Page 22: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

22

Theoretical Partial Autocorrelation Function (TPAC) (II)

Moving Average Processes

Consider

which is a stationary AR process with infinite order. Thus, the partial autocorrelation decays towards zero as j increases.

11

11

,j

tjtj

ttt

y

y

Page 23: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

23

Summary of the Behaviors of TAC and TPAC (I)

Behaviors of TAC and TPAC for general non-seasonal models

Model TAC TPAC

Dies down Dies down

Autoregressive of order p

Moving Average of order q

Mixed Autoregressive-Moving Average of order (p,q)

Dies down Cuts off after lag p

Cuts off after lag q

Dies down

tptpttt zzzz 2211

qtqttttz 2211

qtqttt

ptpttt zzzz

2211

2211

Page 24: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

24

Summary of the Behaviors of TAC and TPAC (II)

Model TAC TPACFirst-order autoregressive

Second-order autoregressive

Dies down in a damped exponential fashion; specifically:

Cuts off after lag 1

Dies down according to a mixture of damped exponentials and/or damped sine waves; specifically:

Cuts off after lag 2

Behaviors of TAC and TPAC for specific non-seasonal models

11 k forkk

,1

,1

2

21

22

2

11

32211 k forkkk

ttt zz 11

tttt zzz 2211

Page 25: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

25

Summary of the Behaviors of TAC and TPAC (III)

Behaviors of TAC and TPAC for specific non-seasonal models Model TAC TPACFirst-order moving average

Second-order moving average

Cuts off after lag 1; specifically: Dies down in a fashion dominated by damped exponential decay

Cuts off after lag 2; specifically: Dies down according to a mixture of damped exponentials and/or damped sine waves

20

,1 2

1

11

k fork

.20

,1

,1

)1(

22

21

22

22

21

211

k fork

11 tttz

2211 ttttz

Page 26: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

26

Summary of the Behaviors of TAC and TPAC (IV)

Behaviors of TAC and TPAC for specific non-seasonal models Model TAC TPACMixed autoregressive-movingaverage of order (1,1)

Dies down in a damped exponential fashion; specifically:

Dies down in a fashion dominated by damped exponential decay

2

,21

))(1(

11

112

1

11111

k forkk

1111 tttt zz

Page 27: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

27

Sample Autocorrelation Function (SAC) (I)

For the working series zb, zb+1, , zn, the sample autocorrelation at lag k is

where

n

btt

kn

btktt

k

zz

zzzzr

2

1

bn

zz

n

btt

Page 28: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

28

Sample Autocorrelation Function (SAC) (II)

rk measures the linear relationship between

time series observations separated by a lag of k time units

The Standard error of rk is

The trk statistic is

.1

211

1

2

bn

r

s

k

jj

rk

.k

k

r

kr s

rt

Page 29: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

29

Sample Autocorrelation Function (SAC) (III)

Behaviors of SAC

(1) The SAC can cut off. A spike at lag k exists in the SAC if rk is statistically large. If

Then rk is considered to be statistically large. The SAC cuts off after lag k if there are no spikes at lags greater than k in the SAC.

2kr

t

Page 30: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

30

Sample Autocorrelation Function (SAC) (IV)

(2) The SAC dies down if this function does not cut off but rather decreases in a ‘steady fashion’. The SAC can die down in(i) a damped exponential fashion(ii) a damped sine-wave fashion(iii) a fashion dominated by either one of

or a combination of both (i) and (ii).The SAC can die down fairly quickly or

extremely slowly.

Page 31: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

31

Sample Autocorrelation Function (SAC) (V)

The time series values zb, zb+1, …, zn should be considered stationary, if the SAC of the time series values either cuts off fairly quickly or dies down fairly quickly.

However if the SAC of the time series values zb, zb+1, …, zn dies down extremely slowly, then the time series values should be considered non-stationary.

Page 32: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

32

Sample Partial Autocorrelation Function (SPAC) (I)

The sample partial autocorrelation at lag k is

where

for j = 1, 2, …, k-1.

,3,21

,1

1

1,1

1

1,1

1

k ifrr

rrr

k ifr

rk

jkjk

k

jjkjkk

kk

jkkkkjkkj rrrr ,1,1

Page 33: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

33

Sample Partial Autocorrelation Function (SPAC) (II)

rkk may intuitively be thought of as the sample autocorrelation of time series observations separated by a lag k time units with the effects of the intervening observations eliminated.

The standard error of rkk is

The trkk statistic is

.1

1

bns

kkr

.kk

kk

r

kkr s

rt

Page 34: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

34

Sample Partial Autocorrelation Function (SPAC) (III)

Behaviors of SPAC similar to its of the SAC. The only difference is that rkk is considered to be statistically large if

for any k.2kkrt

Page 35: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

35

Sample Partial Autocorrelation Function (SPAC) (IV)

The behaviors of the SAC and the SPAC of a time series data help to tentatively identify a Box-Jenkins model.

Each Box-Jenkins model is characterized by its theoretical autocorrelation (TAC) function and its theoretical partial autocorrelation (TPAC) function.

Page 36: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

36

Step Two: Parameter Estimation

Page 37: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

37

Parameter Estimation

Given n observations y1, y2, …, yn, the likelihood

function L is defined to be the probability of obtaining the data actually observed.

For non-seasonal Box-Jenkins models, L will be a function of the , ’s, ’s and

2 given y1, y2, …, yn.

The maximum likelihood estimators (m.l.e.) are those value of the parameters for which the data actually observed are most likely, that is, the values that maximize the likelihood function L.

Page 38: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

38

Step Three: Diagnostic Checking

Page 39: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

39

Diagnostic Checking

Often it is not straightforward to determine a single model that most adequately represents the data generating process. The suggested tests include

(1) residual analysis,

(2) overfitting,

(3) model selection criteria.

Page 40: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

40

Residual Analysis

If an ARMA(p,q) model is an adequate representation of the data generating process, then the residuals should be uncorrelated.

Use the Box-Pierce statistic

or the Ljung-Box-Pierce statistic

2)(

1

2 ~)()()( qpk

k

ll erdnkQ

2)(

1

2* ~

)()2)(()( qpk

k

l

l

ldn

erdndnkQ

Page 41: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

41

Overfitting

If an ARMA(p,q) model is specified, them we could estimate an ARMA(p+1,q) or an ARMA(p,q+1) process.

Then we check the significance of the additional parameters (but be aware of multicollinearity problems),

Page 42: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

42

Model Selection Criteria

Akaike Information Criterion (AIC)AIC = -2 ln(L) + 2k

Schwartz Bayesian Criterion (SBC)SBC = -2 ln(L) + k ln(n)

where L = likelihood function k = number of parameters to be

estimated, n = number of observations.

Ideally, the AIC and SBC will be as small as possible

Page 43: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

43

Step Four: Forecasting

Page 44: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

44

Forecasting

Given a the stationary series zb, zb+1, , zt, we would like to forecast the value zt+l.

= l-step-ahead forecast of zt+l made at time t,

= l-step-ahead forecast error =

The l-step-ahead forecast is derived using the minimum mean square error forecast and is given by

)(ˆ tz lt

)(te lt).(ˆ tzz ltlt

),,,|)(ˆ 1 tbbltlt zzzzE(tz

Page 45: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

45

Forecasting with AR(1) model (I)

The AR(1) time series model is

where t ~ N(0,).

1-step-ahead point forecast

ttt zz 11

).,,,|(

),,,|()(ˆ

111

1111

tbbtt

tbbttt

zzzEz

zzzzEtz

Page 46: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

46

Forecasting with AR(1) model (II)

Recall that t+1 is independent of zb, zb+1, …, zn and it has a zero mean. Thus,

The forecast error is

Then the variance of the forecast error is

.

)(

)(ˆ)(

1

111

111

t

ttt

ttt

zz

tzzte

.)var()](var[ 211 tt te

.)(ˆ 11 tt ztz

Page 47: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

47

Forecasting with AR(1) model (III)

2-step-ahead point forecast

The forecast error is

The forecast error variance is

).(ˆ)(ˆ 112 tztz tt

.)(

))(ˆ(

))(ˆ(

)(ˆ)(

112112

1112

11211

222

tttt

ttt

ttt

ttt

te

tzz

tzz

tzzte

.)1()var()](var[ 21

2221

21122 ttt te

Page 48: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

48

Forecasting with AR(1) model (IV)

l-step-ahead point forecast

The forecast error is

The forecast error variance is

.2)(ˆ)(ˆ 11 l fortztz ltlt

.1

)(

11

1

22

111

l for

te

tl

ltltltlt

.11

1)](var[ 2

21

21

lfortel

lt

Page 49: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

49

Forecasting with MA(1) model (I)

The MA(1) model is

where t ~ N(0,).

l-step-ahead point forecast

11 tttz

.2

,1)(ˆ 1

l for

l fortz t

lt

Page 50: 1 Non-Seasonal Box-Jenkins Models. 2 Four-step iterative procedures 1)Model Identification 2)Parameter Estimation 3)Diagnostic Checking 4)Forecasting

50

Forecasting with MA(1) model (II)

The forecast error is

The variance of forecast error is

.2)1(

,1)](var[

221

2

l for

l forte lt

.2

,1)(

111

1

l for

l forte

ltt

tlt