1-nature of light-2optics.hanyang.ac.kr/~shsong/1-nature of light-rev.pdf · 2016. 8. 31. · 11....

38
Physical Physical Optics Optics Professor 송 석호, Physics Department (Room #36-401) 2220-0923, 010-4546-1923, [email protected] Office Hours Mondays 10:00-12:00, Wednesdays 10:00-12:00 Grades Midterm Exam 30%, Final Exam 30%, Homework 20%, Attend 10% Textbook Introduction to Optics (F. Pedrotti, Wiley, New York, 1986) Homepage http://optics.hanyang.ac.kr/~shsong Reference web: Lecture note of Prof. Robert P. Lucht, Purdue University

Upload: others

Post on 26-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Physical Physical OpticsOpticsProfessor 송 석호, Physics Department (Room #36-401)

    2220-0923, 010-4546-1923, [email protected]

    Office Hours Mondays 10:00-12:00, Wednesdays 10:00-12:00

    Grades Midterm Exam 30%, Final Exam 30%, Homework 20%, Attend 10%

    Textbook Introduction to Optics (F. Pedrotti, Wiley, New York, 1986)

    Homepage http://optics.hanyang.ac.kr/~shsong

    Reference web: Lecture note of Prof. Robert P. Lucht, Purdue University

  • OpticsOptics

    www.optics.rochester.edu/classes/opt100/opt100page.html

  • Light is a Ray (Geometrical Optics)

    1. Nature of light2. Production and measurement of light3. Geometrical optics4. Matrix methods in paraxial optics5. Aberration theory6. Optical instrumentation27. optical properties of materials

    Light is a Wave (Physical Optics)

    8. Wave equations9. Superposition of waves10. Interference of light11. Optical interferometry12. Coherence13. Holography14. Matrix treatment of polarization15. Production of polarized light

    Course outlineCourse outline

    Light is a Wave (Physical Optics)

    25. Fourier optics16. Fraunhofer diffraction17. The diffraction grating18. Fresnel diffraction19. Theory of multilayer films20. Fresnel equations* Evanescent waves

    26. Nonlinear optics

    Light is a Photon (Quantum Optics)

    21. Laser basics22. Characteristics of laser beams23. Laser applications24. Fiber optics

  • Also, see Figure 2-1, Pedrotti

  • (Genesis 1-3) And God said, "Let there be light," and there was light.

  • A Bit of HistoryA Bit of History

    1900180017001600 200010000-1000

    “...and the foot of it of brass, of the lookingglasses of the women

    assembling,” (Exodus 38:8)

    Rectilinear Propagation(Euclid)

    Shortest Path (Almost Right!)(Hero of Alexandria)

    Plane of IncidenceCurved Mirrors(Al Hazen)

    Empirical Law of Refraction (Snell)

    Light as PressureWave (Descartes)

    Law of LeastTime (Fermat)

    v

  • More Recent HistoryMore Recent History

    2000199019801970196019501940193019201910

    Laser(Maiman)

    Quantum Mechanics

    Optical Fiber(Lamm)

    SM Fiber(Hicks)

    HeNe(Javan)

    Polaroid Sheets (Land)Phase Contrast (Zernicke)

    Holography (Gabor)

    Optical Maser(Schalow, Townes)

    GaAs(4 Groups)

    CO2(Patel)

    FEL(Madey)

    Hubble Telescope

    Speed/Light (Michaelson)

    Spont. Emission (Einstein)

    Many New Lasers

    Erbium Fiber Amp

    Commercial Fiber Link (Chicago)

    (Chuck DiMarzio, Northeastern University)

  • LasersLasers

  • Nature of LightNature of Light

    ParticleParticle

    Isaac Newton (1642Isaac Newton (1642--1727)1727)

    OpticsOptics

    WaveWave

    Huygens (1629Huygens (1629--1695)1695)

    Treatise on Light (1678)Treatise on Light (1678)

    WaveWave--Particle DualityParticle Duality

    De De BroglieBroglie (1924)(1924)

  • Maxwell -- Electromagnetic waves

  • PlanckPlanck’’s hypothesis (1900)s hypothesis (1900)

    Light as particlesLight as particlesBlackbody Blackbody –– absorbs all wavelengths and conversely emits absorbs all wavelengths and conversely emits all wavelengthsall wavelengthsLight emitted/absorbed in discrete units of energy (quanta),Light emitted/absorbed in discrete units of energy (quanta),

    E = n h fE = n h fThus the light emitted by the blackbody is,Thus the light emitted by the blackbody is,

    ⎟⎟⎠

    ⎞⎜⎜⎝

    −=

    1

    12)( 52

    kThc

    e

    hcMλλ

    πλ

  • Photoelectric Effect (1905)Photoelectric Effect (1905)

    Light as particlesLight as particlesEinsteinEinstein’’s (1879s (1879--1955) explanation1955) explanation

    light as particles = photonslight as particles = photons

    Kinetic energy = hƒ - Ф

    Electrons

    Light of frequency ƒ

    Material with work function Ф

  • WaveWave--particle duality (1924)particle duality (1924)

    All phenomena can be explained using either All phenomena can be explained using either the wave or particle picturethe wave or particle picture

    Usually, one or the other is most convenientUsually, one or the other is most convenient

    In In OPTICSOPTICS we will use the wave picture we will use the wave picture predominantlypredominantly

    ph

  • Nature of LightNature of Light

    Particle : Isaac Newton (1642Particle : Isaac Newton (1642--1727)1727)

    Wave : Christian Huygens (1629Wave : Christian Huygens (1629--1695)1695)

    WaveWave--Particle Duality : Luis De Particle Duality : Luis De BroglieBroglie (1924)(1924)

    All phenomena can be explained using All phenomena can be explained using either the wave or particle pictureeither the wave or particle pictureUsually, one or the other is most convenientUsually, one or the other is most convenientIn In OPTICSOPTICS we will use the wave picture we will use the wave picture predominantlypredominantly

  • LetLet’’s warms warm--upup

    일반물리일반물리

    전자기학전자기학

  • Question Question

    How does the light propagate through a glass medium?

    (1) through the voids inside the material.(2) through the elastic collision with matter, like as for a sound.(3) through the secondary waves generated inside the medium.

    Construct the wave front tangent to the wavelets

    Secondaryon-going wave

    Primary incident wave

    What about –r direction?

  • Electromagnetic WavesElectromagnetic Waves

    0εQAdE =⋅∫

    0=⋅∫ AdB

    dtdsdE BΦ−=⋅∫

    dtdisdB EΦμε+μ=⋅∫ 000

    Gauss’s Law

    No magnetic monopole

    Faraday’s Law (Induction)

    Ampere-Maxwell’s Law

    Maxwell’s Equation

  • Maxwell’s Equation

    Gauss’s Law

    No magnetic monopole

    Faraday’s Law (Induction)

    Ampere-Maxwell’s Law

    ∫∫∫ ερ

    =⋅∇=⋅ dvdvEAdE0

    0=⋅∇=⋅ ∫∫ dvBAdB

    ∫∫∫ ⋅−=⋅×∇=⋅ AdBdtdAdEsdE

    ∫∫

    ∫∫

    ⋅εμ+⋅μ=

    Φεμ+μ=⋅×∇=⋅

    AdEdtdAdj

    dtdiAdBsdB E

    000

    000

    tEjB∂∂

    εμ+μ=×∇ 000

    djtE=

    ∂∂

    ε0 ( )djjB +μ=×∇ 0

    0ερ

    =⋅∇ E⇒

    0=⋅∇ B⇒

    tBE∂∂

    −=×∇⇒

  • Wave equationsWave equations

    tBE∂∂

    −=×∇tEB∂∂

    =×∇ 00εμ

    ( ) ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛∂∂

    −∂∂

    =×∇∂∂

    =×∇×∇tB

    tE

    tB 0000 εμεμ

    ( ) BB 2−∇=×∇×∇ kzjyix ˆˆˆ ∂∂

    +∂∂

    +∂∂

    =∇

    ( ) ( ) BBBB 22 −∇=∇−⋅∇∇=×∇×∇( ) ( ) ( )CBABCACBA ⋅−⋅=××

    2

    2

    002

    tBB

    ∂∂

    =∇ εμ

    2

    2

    002

    tEE

    ∂∂

    =∇ εμ

    022

    002

    2

    =∂∂

    −∂∂

    tB

    xB εμ

    022

    002

    2

    =∂∂

    −∂∂

    tE

    xE εμ

    Wave equations

    In vacuum

  • Scalar wave equationScalar wave equation

    2 2

    0 02 2 0x tμ ε∂ Ψ ∂ Ψ− =

    ∂ ∂

    0 cos( )kx tωΨ = Ψ −

    02002 =ωεμ−k cvk

    ≡==00

    1εμ

    ωSpeed of Light

    smmc /103sec/1099792.2 88 ×≈×=

  • Transverse ElectroTransverse Electro--Magnetic (TEM) wavesMagnetic (TEM) waves

    BEtEB ⊥⇒∂∂

    εμ−=×∇ 00

    Electromagnetic Wave

  • Energy carried by Electromagnetic WavesEnergy carried by Electromagnetic Waves

    Poynting Vector : Intensity of an electromagnetic wave

    BES ×=0

    2

    0

    2

    0

    0

    1

    1

    BcEc

    EBS

    μ=

    μ=

    μ=

    (Watt/m2)

    ⎟⎠⎞

    ⎜⎝⎛ = c

    EB

    202

    1 EuE ε=Energy density associated with an Electric field :

    2

    021 BuB μ

    =Energy density associated with a Magnetic field :

  • n1n2

    Reflection and Refraction

    11 θ′=θReflected ray

    Refracted ray 2211 sinsin θθ nn =

    Smooth surface Rough surface

  • Reflection and Refraction

    00εμμε

    ==vcnIn Media,

  • Interference & Diffraction

  • Reflection and Interference in Thin Films Reflection and Interference in Thin Films

    • 180 º Phase changeof the reflected light by a media with a larger n

    • No Phase changeof the reflected light by a media with a smaller n

  • Interference in Thin Films

    tn1

    Phase change: π

    n2 Phase change: π

    n2 > n1

    λ=λ==δ1

    12

    nmmt n

    Bright ( m = 1, 2, 3, ···)

    ( ) ( )λ+=λ+==δ1

    21

    21

    12

    nmmt n

    Bright ( m = 0, 1, 2, 3, ···)

    tnPhase change: π

    No Phase change

    ( ) ( )λ+=λ+==δn

    mmt n 21

    212

    λ=λ==δnmmt n2

    Bright ( m = 0, 1, 2, 3, ···)

    Dark ( m = 1, 2, 3, ···)

  • InterferenceYoung’s Double-Slit Experiment

  • Interference

    The path difference

    λ=θ=δ msind( )λ+=θ=δ 21msind

    ⇒ Bright fringes m = 0, 1, 2, ····

    ⇒ Dark fringes m = 0, 1, 2, ····

    The phase differenceλ

    θπ=π⋅

    λδ

    =φsind22

    θ=−=δ sindrr 12

  • Hecht, Optics, Chapter 10

    Diffraction

  • Diffraction

  • Diffraction GratingGrating

  • Diffraction of XDiffraction of X--rays by Crystals rays by Crystals

    d

    θθ

    θ

    dsinθ

    Incidentbeam

    Reflectedbeam

    λθ md =sin2 : Bragg’s Law

  • Regimes of Optical DiffractionRegimes of Optical Diffraction

    d > λ

    Far-fieldFraunhofer

    Near-fieldFresnel

    Evanescent-fieldVector diff.