1. nanotechnology: overview of aerosol manufacture of ... · 1 1. nanotechnology: overview of...

102
1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory Department of Mechanical and Process Engineering, ETH Zürich, Switzerland www.ptl.ethz.ch Sponsored by Swiss National Science Foundation and Swiss Commission for Technology and Innovation

Upload: others

Post on 17-Aug-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

1

1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles

Prof. Sotiris E. PratsinisParticle Technology Laboratory

Department of Mechanical and Process Engineering,ETH Zürich, Switzerland

www.ptl.ethz.ch

Sponsored bySwiss National Science Foundation and

Swiss Commission for Technology and Innovation

Page 2: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

2

Nanoparticles

1 - 100 nm (at least into two dimensions)

Remember, the thickness (diameter) of a human hair is 50,000 - 100,000 nm!

Page 3: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

3

Page 4: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

4

The Melting Point Decreases with Decreasing Nanoparticle Size

Mel

ting

Poin

t, K

Mel

ting

Poin

t, K

Particle diameter, Å

Particle diameter, nm

Au BiPeppiatt, Proc. Roy. Soc. A 345, 1642 (1975)

Buffat and Borel, Phys. Rev. A 13, 2287 (1976)

Page 5: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

5

Applications of Nanoparticles• Large area per gram (adsorbents, membranes)

• Stepped surface at the atomic level (catalysts)

• Easily mix in gases and liquids (reinforcers)

• Superfine particle chains (recording media)

• Easily carried in an organism (new medicine)

• Superplasticity

• Cosmetics that last way into the night ...

Some people believe that nanoparticles are

a new state of matter!

Page 6: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

6

Comparison of wet- & dry-technologyDry-technology (aerosol):

•Mix precursor•Dry flame conversion•Filtration•Milling

Wet-technology:

•Dissolve•Add precipitation agent•Temperature/Pressure treatment•Filtration•Washing•Drying•Calcination•Milling

Short process chains, very short process time:Reduced costs, green processes

http://www.stanfordmaterials.com/zr.html#info

Page 7: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

7

Page 8: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

8

AEROSOL MANUFACTURING OF NANOPARTICLES Wegner, Pratsinis Chem. Eng. Sci. 58, 4581-9 (2003).

ProductParticles

Carbon black

Titania

Fumed Silica

Filamentary Ni

Fe, Pt, Zn2SiO4/Mn

Volumet/y

8 M

2 M

0.2 M

0.6 M

0.04M

~0.02M

Value$/y

8 B

4 B

2 B

0.7B

~0.1B

~0.3B

Process

Flame, CxHy

Flame, TiCl4

Flame, SiCl4

Hot –Wall, Zn

Hot-Wall, Ni(CO)4

Hot-Wall, Spray…

CoagulationCoalescence

X

X

X

X

X

X

Surface Growth

X

?

-

X

X

X

Zinc Oxide

Page 9: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

9

A rough analogy to flame aerosol reactors

… just well attached to the ground !

Page 10: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

10

Page 11: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

11

Attic red-figure hydria, 430-420 BC, Abdera Archeological Museum, Greece

Attic black-figure amphora, 540-530 BC,Museum of Cycladic Art, Athens, Greece

Page 12: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

12

Page 13: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

13

Page 14: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

14

Page 15: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

15

Page 16: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

16

Page 17: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

17

Prof. Gael W. UlrichDept. of Chemical Engineering University of New Hampshire

Page 18: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

18

Prof. Ulrich's insightful proposals

1. New particle formation (nucleation) cannot be distinguished from chemical reaction.

2. No surface growth.

3. Turbulence does not affect particle growth.

4. Aggregates or agglomerates form when coagulation is faster than coalescence.

5. The particle size distribution is self-preserving

Page 19: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

19

Page 20: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

20

Page 21: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

21

Applications

Paints

Paper coatingsPlastics coatings

TiO2 (titania)

Niche Fields:Catalysts, Sensors,

Photocatalysts,

Cosmetics etc.

Page 22: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

22

Page 23: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

23

Page 24: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

24

Page 25: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

25

Page 26: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

26

Limitations of science in the ‘70sUnderstanding of particle formation has little impacton industrial aerosol reactor design.

Providing a plausible particle synthesis scenario alone was not enough:

1. Probably industrial reactor data could not be duplicated in the laboratory reactors

2. Traditional aerosol instruments were too slow 3. No scale-up relationships4. Too complex fluid mechanics (reactive systems).

Industrial reactors were still treated as "black boxes" Design and operation were dominated by empiricism.

Page 27: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

27

Page 28: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

28

Page 29: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

29

Page 30: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

30

Page 31: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

31

Thermophoretic Sampling (Dobbins and Megaridis, 1987))Thermophoretic Sampling (Dobbins and Thermophoretic Sampling (Dobbins and MegaridisMegaridis, 1987)), 1987))

0

10

20

30

40

50

60

0 1 2 3 4Distance from the burner, cm

Ave

rage

prim

ary

part

icle

dia

met

er, n

m .

TiO2 data by thermophoreticsampling

Image Analysis

TEM

16 ± 4 nm

Page 32: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

32

Sintering rate of particle area a

)a(a1dtda

s−−=τ

Koch, Friedlander, J. Colloid Interface Sci. 140, 419 (1990)

Page 33: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

33

2βN21

dtdN −=

)a(aτ1a

dtdN

N1

dtda

s−−−=

f1/Dppc )v(vdd /=

Number Concentration

Agglomerate area

Collision diameter

Kruis, Kusters, Pratsinis, Scarlett, Aerosol Sci. Technol. 19, 514 (1993)

Page 34: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

34

c = 0.01 c = 0.1

a = 1.4

a = 1.0

b = 3.0

b = 0.3 Tem

pera

ture

, f(a

)

Coolin

g Rate

,

(b)

Concentration, f(c)

Predictions within 3% of product SSA (Gutsch, 1997)

Design of Equipment

f

H. Mühlenweg, A. Gutsch, A. Schild, C. Becker “Simulation for process and product optimization”, Silica 2001, 2nd International Conference on Silica, Mulhouse, France (2001) and G. Vargas Commercializing Chemical Technology: Realization of Complete Solutions using Chemical Nanotechnology, Lecture at Nanofair, St. Gallen, Switzerland, Sept. 11, 2003.

Page 35: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

35

N 234 nano-structure black

Niedermeier, Messer, Fröhlich (TR814.1E)

Page 36: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

36

TODAYAerosol Scientists and Engineers lead R & D for aerosol manufacture at Degussa, DuPont, Millennium, Cabot etc.

Basic and exploratory research is needed for:On-line control of existing reactors for flexible

manufacture of various particlesHigh value functional nanoparticles with

sophisticated composition and structure.Manufacture these nanoparticles without going

through the Edisonian cycle of the past. Health effects of nanoparticles.

Page 37: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

1

Novel Processes and Uses of Flame-made Nanoparticles

Prof. Sotiris E. PratsinisParticle Technology Laboratory

Department of Mechanical and Process Engineering,ETH Zürich, Switzerland

www.ptl.ethz.ch

Sponsored by theSwiss National Science Foundation and Swiss

Commission for Technology and Innovation

Page 38: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

2

Flame-made particles

Pros ChallengesHigh purity AgglomeratesEasy collection Size controlNo liquid waste MulticomponentProven scale-up ceramic/ceramicNo moving parts metal/ceramic

Page 39: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

3

Experimental set-up for TiO2 production

MethaneAirArgon / TiCl4

FIC

FIC

FIC

Argon

MethaneAir

TiCl4

Flame Reactor

Hood

Filter Assembly

Pump

NaOH Solution

Pratsinis, Zhu, Vemury, Powder Technol. 86, 87-93 (1996)

Page 40: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

4

Mixing of reactant gases ==> product size-shapePratsinis, Zhu, Vemury, Powder Technol. 86, 87-93 (1996); Johannessen, Pratsinis, Livberg, ibid., 118, 242-250 (2001).

CH4

Air

Air

TiCl4

CH4

CH4

CH4

Air Air

TiCl4TiCl4TiCl4

Page 41: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

5

Kammler, PhD thesis, ETH #14622 (2002)

U.S. Patent5,861,132(1999)

Precision Size Control by Charging

Electrically Assisted Synthesisof Nanoparticles

S. Vemury, S.E. Pratsinis, L. Kibbey, J. Mater. Res. 12, 1031-1042 (1997).

Page 42: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

6

w/o electric field

200 nmH

AB

200 nm

with electric fieldHABHAB Evolution of TiO2 particle

growth with and w/oexternal electric fields

Filter20 cm

Filter20 cm

2 cm10 cm 10 cm

5 cm 5 cm

0 kV/cm 2 kV/cm

0.5 cm 0.5 cm

Kammler, Pratsinis, Morrison, Jr., Hemmerling, Combust. Flame 124, 369 (2002)

Page 43: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

7

Dental n-Composites: flame-made silicas in adimethylacrylate matrix (50:50)

with OX50 (Degussa)with ETH non-aggl. SiO2

SSA = 35 m2/g SSA = 50 m2/g

Müller, Vital, Kammler, Pratsinis, Beaucage, Burtscher, Powder Technol. 140, 40-48 (2004).

Page 44: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

8

Precision Synthesis by Nozzle Quenching

Wegner, Stark, Pratsinis, Mater. Lett. 55, 318 (2002)

Page 45: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

9

Reduction of Agglomeration6 L/min O2 flow rate

Nozzle BND = 1.5 cm

No nozzleProduct powder

TS in front of nozzle (BND = 1.5 cm)

Page 46: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

10Burner - Nozzle Distance, cm

0 1 2 3 4 5BE

T-eq

uiva

lent

Par

ticle

Dia

met

er, n

m

0

5

10

15

20

25

30 2 L/min O23456

0

10

20

30

40

50

FilterNo Nozzle

O2 / Ti decreasesControl of TiO2size, color & crystallinity

Page 47: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

11

100 150 200 2500

50

100

made

made

flame-

wet-phase-

NO

x rem

oved

/ %

Process temperature / °CStark, Wegner, Pratsinis, Baiker,J. Catal. 197, 182 (2001)

V2O5/TiO2: Catalytic Removal of NOxIn Exhaust Gases by SCR with NH3

Page 48: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

12

0.5

m

Baghouse filter(2.5 m tall)

Pilot unit for flame

synthesis of C/SiO2 ,

and now catalysts:

V2O5 /TiO2 and TiO2 /SiO2

Kammler, Mueller, Senn, Pratsinis, AIChE J. 47, 1533 (2001)

Page 49: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

13

Comparison to conventional DeNOx catalyst @ U. Essen (Prof. Cramer)

Fixed bed pilot-scale testreactor, 2.4 cm/sec

Gas composition:-400 ppm NO-400 ppm NH3-10 vol% oxygen in nitrogen

Reference:-impregnated Degussa P 25-same V content in both catalysts-specific surface area: 50-55 m2/g

160 200 240 2800

20

40

60

80

100

18 wt% VOx/TiO2, flame-made, 100 g/h

20 wt% VOx/TiO2, impregnated

NO

rem

oved

/ %

Reactor Temperature / °C

•W. J. Stark, A. Baiker, S. E. Pratsinis, Part. Part. Sys. Charact. 19, 306-311 (2002)

Page 50: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

14

0 2 4100

125

150

175

200

225

Spe

cific

sur

face

are

a / m

2 g-1

Titania content / wt%

Epoxidation Catalysts: TiO2 /SiO2

Hydrogen/air flame, burner diameter 19 mm, 0.73 m3 H2/h; 5.2 m3 air/h

150 g/h

•W. J. Stark, S. E. Pratsinis, A. Baiker, J. Catal., 203, 516 (2001) and Ind. Eng. Chem. Res., 41, 4921 (2002)

Page 51: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

15

TiO2/SiO2 epoxidation catalystsIndustrially (Shell, Enichem, Arco), several Mt/y :

C3 ⇒ propene ⇒ propene oxide ⇒ polymers, surfactants

50

60

70

80

90

100

6 g/h 150 g/h 500 g/h

Flame-madeEnichemAerogelShell

peroxide usage olefin usage

Sel

ectiv

ity /

%

•W. J. Stark, H. K. Kammler, R. Strobel, D.Günther, A. Baiker, S. E. Pratsinis, Ind. Eng. Chem. Res., 41, 4921 (2002)

OH

1

OH

O

2

TBHP (5)

Ti/silica

Page 52: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

16

X-ray Absorption Near Edge Spectroscopy

4, 5, 6 - coordinated Ti

tetrahedral Ti

•J. D. Grunwaldt, C. Beck, W. J. Stark, A. Hagen, A. Baiker, Phys. Chem. Chem. Phys., 4, 3514 (2002).

OTi

OOO

SiSi

SiSi

TiO O

OO

OH

Si

SiSi

SiTi

O OOO

O

Si

SiSi

Si

H H

TiO O

OO

OH

Si

SiSi

Si

O

H

H

1.3 % Ti, flame

1 % Ti, wet-phase

OTi

OOO

SiSi

SiSi

In-situ XANES:-Geometry of the active site-Water content-Degree of hydration

Page 53: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

17

Selectivity

10 100 100020

40

60

80

100

Co Cr Mn Fe

Per

oxid

e se

lect

ivity

/ %

Content / ppm10 100 1000

20

40

60

80

100

Co Cr Mn FeO

lefin

sel

ectiv

ity /

%

Content / ppm

Even 40 ppm of transition metal strongly reduce selectivity

Good selectivity requires very pure catalysts.

•W. J. Stark, R. Strobel. D. Günther, S. E. Pratsinis, A. Baiker, J. Mater. Chem. 12, 3620-25 (2002)

Page 54: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

18

HollowHollow

Bi2O3 SolidSolid

0.1 µm

2 cm

Flame Spray PyrolysisAl2O3, ZnO, CeO2, ZrO2ZnO/SiO2 , BaTiO3 Au, Pt on TiO2, SiO2, Al2O3

Mädler, Pratsinis, J.Am.Ceram.Soc. 85, 1713 (2002)VaristorsSensorsCatalysts

Page 55: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

19

Flame spray pyrolysisStrobel, Stark, Mädler, Pratsinis, Baiker, J. Catal. 213, 296-304 (2003)

Spray flame producing Pt/Al2O3

Page 56: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

20

Enantioselective hydrogenation of ethyl pyruvate by FSP-made Pt/Al2O3

Synthesis of chiral pharmaceuticals.

Strobel, Stark, Mädler, Pratsinis, Baiker, J. Catal. 213, 296-304 (2003)

0

25

50

75

100

0 50 100 150 200

Time / min

Enan

tiom

eric

exc

ess

(ee)

/ %

E4759

FSP-made

0

25

50

75

100

0 50 100 150 200

Time / min

Con

vers

ion

/ %

Engelhard (E4759)

FSP-made

Page 57: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

21

Open structure enhances activity

0

0.2

0.4

0.6

0.8

1 10 100

Pore diameter / nm

Por

e vo

lum

e / c

m3 g

-1

E4759 flame made

Nonporous, dense particles

Better accessibility

High surface without trappedPt in micropores.

Maximum use of expensive platinum reduces costs

Strobel, Stark, Mädler, Pratsinis, Baiker, J. Catal. 213, 296-304 (2003)

Page 58: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

22ZnO diameter (dXRD), nm

0 5 10 15

Wav

elen

gth,

l 1/

2 , n

m

340

350

360

370

380l Bulk

Flame made (FSP) this workFSP powder thermally treated (2h @ 600°C)Wet-made, Meulenkamp (1998)

Wavelength , nm300 350 400 450

Abs

orba

nce

(sca

led)

, a.u

.

12 nmdXRD= 3 nm 4

50 nm

Blue Shift of Absorption Spectra

Rapid Synthesis of Stable ZnO Quantum Dots (1 - 5 nm)

Quantum Size Effect

5 nm

λ

λ

Mädler, Stark, Pratsinis, J.Appl. Phys. 92, 6537-40 (2002)

Tani, Mädler, Pratsinis, J. Mater. Sci. 37, 4627-4632 (2002)

Page 59: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

23

Angular, rough, edgy-like n-CeO2

Mädler, Stark, Pratsinis, J. Mater Res. 17, 1356 (2002).

20 nm

100 nm

as-prepared

annealed for2h @ 900°COxygen flow rate, l/min

0 2 4 6 8

Ave

rage

par

ticle

size

, nm

02468

10121416

dBET

dXRD

CatalystsFuel CellsPolishing

Page 60: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

24

Tani, Watanabe, Takatori and Pratsinis, J. Am. Ceram. Soc., 86, 898 (2003).

Al2O3-N

Al2O3-N-O

Al2O3-H-N

Al2O3-Cl

400 nm1 µm

SupportingFlame

Filter

Hood

Vacuum Pump

MainFlame

Air

DispersingAir or O2

FIC

FIC

FICAir

H2

FICEmulsion

pump

SupportingFlame

Filter

Hood

Vacuum Pump

MainFlame

Air

DispersingAir or O2

FIC

FIC

FICAir

H2

FICEmulsion

pump

Hollow particles byemulsion-fed FSP

Page 61: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

25

CeO2

Fe2O3

ZnO

CeO2

Fe2O3

ZnO

400 nm1 µm

Y2O3

ZrO2

TiO2

400 nm400 nm1 µm1 µm

Y2O3

ZrO2

TiO2

Tani, Watanabe, Takatori and Pratsinis, J. Am. Ceram. Soc., 86, 898 (2003).Emulsion-fed FSP.

Page 62: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

26

Conclusions• V2O5 / TiO2: SCR of NOx with NH3

– Purity improves conversion over wet-made ones• TiO2 / SiO2 : Olefin epoxidation:

– improved selectivity– role of transition metal dopants– structure of the active site– pilot-scale production (500 g/h)

• Pt / Al2O3: enantioselective hydrogenation– Open structure improves efficiency

Page 63: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

27

Conclusions

• Nanoparticle Technology is a frontier for scientific advances and even, for business opportunities (millionaires are made today!).

• Flame Processing is advantageous for particle manufacture:Unique Structure, Crystallinity and Purity Close control of Particle Size and Morphology

• Functional nanoparticles with tailor-made characteristics are made for catalyst, dental, battery and other materials.

Page 64: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

28S.E. PratsinisS.E. Pratsinis

H.K. KammlerH.K. KammlerK. WegnerK. Wegner

S. TsantilisS. Tsantilis

T. T. TaniTani

R. R. MüllerMüller

W.J. StarkW.J. Stark

O. WilhelmO. Wilhelm

J. KimJ. KimR. JossenR. Jossen

L. L. MädlerMädlerS. S. VeithVeith

ETHZ, Particle Technology LaboratoryETHZ, Particle Technology Laboratory

Page 65: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20041

2. Selected Fundamentals of Aerosol Formation

Prof. Sotiris E. PratsinisParticle Technology Laboratory

Department of Mechanical and Process Engineering,ETH Zürich, Switzerland

www.ptl.ethz.ch

Sponsored bySwiss National Science Foundation and

Swiss Commission for Technology and Innovation

Page 66: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20042

Particle Dynamics

Coagulation

Shrinkingby evaporationor dissolution

Fragmentation

Growth by condensation or chemical reaction

Diffusion Settling

Convection out

Convection in

Page 67: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20043

Theory: Population Balance Equation

tn

∂∂

growth

∂∂+

tdvdn

vun⋅∇+ nD∇⋅∇= nc⋅∇−

convection diffusion external force

( ) ( ) ( )∫ −−β+v

v~dv~vnv~nv~v,v~02

1 ( ) ( ) ( )∫∞β−

0v~dv~nvnv~,v

coagulation

fragmentation

( ) ( ) ( ) ( )∫∞

γ+−v

v~dv~nSv~,vvnvS

zyx u,u,u {0unnuun ∇⋅+∇=⋅∇u = gas velocity vector

D = particle diffusivitycontinuity

c = velocity of particles of size v (e.g. settling)β = coagulation rate

S = fragmentation rate

= fragment size distributionγ

Page 68: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20044

2. Fundamentals of Particle Formation

2.0 Books

Smoke, Dust and Haze, S.K. Friedlander, Oxford, 2nd edition, 2000Aerosol Processing of Materials, T.Kodas M. Hampden-Smith, Wiley, 1999Aerosol Technology, W. Hinds, Wiley, 2nd Edition, 2000.

2.1 CoagulationAtmospheric processes (air pollution, smog), Plumes, Tailpipe exhaust, Optical fibers for telecommunications, Carbon blacks for tires, Pigments, Enlargement by granulation or flocculation

The theory of coagulation is based on:a) collision theoryb) field forces

Page 69: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20045

2.1.1 Collision frequency function

Assume that collisions occur between two clouds of partices of volume vi and vj:

The number of collisions per unit time and unit volume is:

Where the collision frequency is the rate of collisions per particle per unit volume. This function depends on temperature, pressure and particle size.

vj vi vk

( )P v v n nij i j i j= β ,

Page 70: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20046

The birth of particles of size k=(i+j) is given by:

The factor ½ is included to correct for double counting.

The loss of particles of size k by collision with all other particles is:

12

Piji j k+ =∑

Piki=

∞∑

1

Page 71: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20047

Then the net rate of change in particle concentration is:

This is the basic equation for coagulation that is encountered in many physical phenomena:Granulation, Flocculation etc.

It used to be very intimidating 10 years ago, but not anymore. It can be easily solved.

GOAL: To determine collision frequency function

∑ ∑−= ikijk PP

dtnd

21

( ) ( )∑β−∑ β=∞

==+ 121

iikik

kjijiji nv,vnnnv,v

Page 72: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20048

2.1.2 CASE 1: Brownian Coagulation

In a stagnant gas coagulation takes place by diffusion of particles to the surface of each other.

Consider a sphere of radius ai at a fixed point.Particles of radius aj are in Brownian motion and diffuse to the surface of ai:

We would like to calculate the concentration profile njaway from the surface of particle i so we can calculate the flux of particles j to the surface of particle i. This will give the rate of collisions of particles i and j per unit area of particle i.

ai

ai+aj

aj

Page 73: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 20049

Let us drop the subscript j for convenience and write a balance for particles of size aj.For spherical symmetry:

With boundary conditions:

∂∂

∂∂

∂∂

nt

Dr r

r nr

=

2

2

r a ai j= + : n = 0r → ∞ : n n= 0t = 0 : n n= 0 ∀ r

Page 74: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200410

The solution of this equation is:

( )

( )

n r t na a

re dzi j z

r a a

Dti j

, = −+

− +

∫00

21 1 2 2

π

[ ]

+−+−=

Dt2aar

erfcr

aan jiji10

Page 75: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200411

Now calculate the rate at which particles arrive at the surface

For (dP=1µm t>10s or dp=0.1µm t>0.01s):

By definition , so: (1)

( ) ( )F a a J a a D nri j a a i j

r a ai j

i j

= + = +

+

= +4 4

2 2π π

∂∂

( )= + ++

4 10π

πa a Dn

a aDti j

i j

t >> 0

( )F a a Dni j= +4 0πβ = Fn0

Page 76: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200412

Now consider that the sphere ai is in Brownian motion. Then we introduce the diffusion coefficient describing the relative motion of the two particles:

Einstein equation

0

(2)

( )D D

x xtij

i j= =−

2

2

D xt

x xt

xt

D Diji i j j

i j= − + = +2 2

22

2 2

Page 77: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200413

Then the collision frequency function becomesfrom (1) & (2):

where

This is the collision frequency function in the continuum limit .

( ) ( )( )β πv v D D a ai j i j i j, = + +4f

TkD B=

+

+

πµπ=β

2d

2d

d1

d1

3Tk4 j,Pi,P

j,Pi,P

B

( )31j

31i31

j31

i

B vvv1

v1

3Tk2 +

+

µ=

( )dP >> λ

Page 78: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200414

2.1.3 Coagulation of Monodisperse Particles

Assume that all particles have the same size during coagulation. This is a bold assumption but amazingly good and useful. Then, we can describe the rate of change of particle concentration as:

where the collision frequency function is:

Then and integration gives:

( )dNdt

v v N= − 12 1 1

2β ,

( ) ( )µ

=+

+

µ=β

3Tk8vv

v

1

v

13

Tk2v,v B311

31131

131

1

B11

dNdt

N= −β2

2 N NN=

+

00β t1

2

Page 79: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200415

This simple expression can be used to estimate the half-life of an aerosol, or the time needed for particles to grow to a certain size by coagulation, or even the significance of coagulation with respect to other processes.

For example, estimate the time needed to reduce the concentration of a monodisperse aerosol to 90%, 50% or 10% of its initial concentration 108 particles/cm3, and initial diameter 100nm, cm3/s.

For N

N00 9= . : t

NNN

s=−

≈2 1

15

0

0β.

For N

N00 5= . : t s≈ 14

For N

N00 1= . : t s≈ 125

Page 80: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200416

2.1.4 CASE 2: Coagulation in the free molecule regime

In this case the concept of continuum does not exist anymore so we cannot write the Navier-Stokes equations as we did for case 1.

Instead we rely on the kinetic theory of gases (e.g. N. Davidson, Statistical Mechanics, Ch. 10, McGraw, New York, 1962).

The mean scalar velocity of N gas molecules of mass m1 per cm3 having a Maxwellian distribution is:

The total rate at which molecules strike a surface dS is

c k TmB= 8

( )e s Nc dS= 14

Page 81: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200417

For a sphere of radius a2 colliding with particles (molecules) of equivalent spherical radius a1

where a=a1+a2 is the collision radius. Now if the sphere also moves then the number of collisions increases as:

This is the collision frequency function for .dP << λ

( )βπ ρfm

B

P

k Tv v

v v=

+

+3

46 1 11 6

1 2

1 2

11 3

21 3 2

( )F N N k Tv v

v vfmB

P= = +

+β ππρ π

8 1 1 341 2

1 2 2 3

11 3

21 3 2

F Nc a N c c a= = +π π122

12

22 2

( )F e s Nc S N k Tm

a Nc a= = = =14

14

8 41

2 2π

π π

Page 82: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200418

2.1.7 Self-Preserving Theory

Observation of natural particle suspensions in gases (atmospheric aerosols) undergoing coagulation indicated that after a long time the particle size distribution attains a shapethat is invariant with time.

More specifically, when the size distribution is scaled by some factor (e.g. average particle size) then the distributions fall on top of each other and are called self-preserving. This was observed first experimentally(e.g. Husar & Whitby, Environ. Sci. Technol. 7:241, 1973):

Page 83: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200419

Size distribution of an aging free molecule aerosol generated by exposing filtered laboratory air in 90 m3

polyethylene bag to solar radiation.

Size distribution as on left side, plotted in the self-preserving form. The curve is based on the data.

Page 84: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200420

According to this, the particle volume v becomes non-dimensional by dividing by the average volume concentration where V is the aerosol volumetric concentration [mp

3/mG3]=[-]

and N the number concentration respectively:

And the particle size distribution is defined in a non-dimensional form as:

VvN

vv ⋅==η

( ) ( ) 2N

Vvn=ηψ

Page 85: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200421

2.2 Particle Formation by Nucleation-Condensation

A phase transition is encountered in many industrial(e.g. crystallization, carbon black production) and environmental (e.g. smog formation) processes

The fundamental equation that describes these processes is:

With boundary conditions:

∂∂nt

v ni+ ∇ ⋅ = 0

at d dP P= ∗ n v Ii i∗ ∗= nucleation

t = 0 ( )n n dP= 0 initial distribution

Page 86: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200422

The goal is to determine:

1. the critical diameter for particle formation which isdictated by thermodynamics

2. the growth rate that is determined by thermodynamics and transport

3. the nucleation rate which is determined by thermodynamicsand kinetic theory by physical (e.g.cooling) or chemical (e.g.reactions) driving forces

Page 87: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200423

2.2.1 Critical Particle Size

Key feature: The curved interface

The goal is to derive an expression relating the concentration (vapor pressure) of species A with a particle (droplet) of radiusdP at equilibrium (Seinfeld, 1986)

If the interface was flat which is, for example, the tabulatedequilibrium concentration or vapor pressure at a given temperature and pressure.

Consider the change in Gibbs free energy accompanying the formation of a single drop (embryo) of pure material A of diameter dP containing g molecules of A:

(1)∆G G Gembryo system pure vapor= −

Page 88: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200424

Now let’s say that the number of molecules in the starting condition of pure vapor is nT. After the embryo forms, the number of vapor molecules remaining is . Then the above equation is written as:

(2)

where GV and Gl are the free energies of a molecule in a liquid and vapor phases and σ is the surface energy

(3)

Noting that

Where vl is the volume occupied by a molecule in the liquid phase (equivalent sphere in liquid phase).

n n gT= −

vTPlv GndgGnGG −σπ++=∆ 2

( ) ( )∆G g G G d dv

G G dl v PP

ll v P= − + = − +π σ π π σ2

32

6

gv dl

P= π 3

6

Page 89: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200425

Before we go further let’s evaluate the difference in Gibbs freeenergy:

dG = VdP then dG = (vl - vv) dP

But vl << vv then dG = - vv dP

According to ideal gas law vv = kBT/P

Then

Where S is the saturation ratio.

G G k T dPP

k T PP

k T Sv l BP

P

BA

AB

A

A− = − = − = −∫

0 0ln ln

Page 90: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200426

Now equation 3 becomes:

Now plot ∆G as a function of dP

S <1 monotonic increase in ∆GS > 1 positive and negative contributions at small dP the surface tension dominates and the behavior of ∆G as a function of dP is close to that for S <1. For larger dP the first term becomes important.

∆G

dP

S < 1

dP∗

S > 1

droplet at equilibriumwith surrounding vapor

∆G dv

k T S dP

lB

volume free energy of an embryo

P

surfacefree energy

= − +π π σ3

26

ln1 244 344

123

Page 91: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200427

At

This is the minimum possible particle size.

This equation relates the equilibrium radius of a droplet of a pure substance to the physical properties of the substance and the saturation ratio of its environment. It is called also the Kelvin equation and the critical diameter is called the Kelvin diameter.

∂∂∆GdP

= 0 ⇒ d vk T SP

l

B

∗ = 4σln

Page 92: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200428

This equation relates the equilibrium radius of a droplet of a pure substance to the physical properties of the substance and the saturation ratio of its environment. It is called also the Kelvin equation and the critical diameter is called the Kelvin diameter.

The Kelvin equation states that the vapor pressure over a curved interface always exceeds that of the same substance over a flat surface:

See the anchoring of the surface molecules on a flat and a curved surface. Surface molecules are anchored on two molecules on the layer below flat surfaces while on curved interfaces some are anchored on just one!These can easily escape (evaporate) from the condensed (liquid or solid) phase.

Page 93: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200429

2.3 Particle Growth

The mechanism for particle growth refers to droplet or particle growth from gas (condensation), to crystal growth from solution etc.. In all cases mass should be transported to the particle surface.

In principle, two steps are required, a diffusional step followed by a surface reaction or rearrangement step.In condensation the former is dominant while in crystallization is the latter. In many processes both can be dominant.

Page 94: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200430

2.3.1 Mass transfer to a particle surface (continuum)

Consider a single droplet growing by condensation without convection at rather dilute conditions. The goal is to determine the flux of mass to its surface. For this the vapor concentration profile around the droplet is needed at steady state:

(1)

D = vapor diffusivityC = vapor concentration

(moles/cm3)

dP

droplet

vapor molecules

0rCr

rrD

tC 2

2 =

∂∂

∂∂=

∂∂

Page 95: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200431

With boundary conditions:at r = dP/2 C = Cd the equilibrium concentration at the droplet surface

at r = ∞ C = C∞ bulk vapor concentration

Solving the above equation for C as a function of r gives:

(2)

Then the rate of condensation F is:

(3)

r2d1

CCCC P

d

d −=−−

( )( )

2P2

P

Pd

2Pdr

d2d2

d0CCDrCDF π

+−=

∂∂= ∞

=

( ) Pd dCCD2 π−= ∞

Page 96: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200432

And the rate of particle volume growth is:

where MW and ρP are the molecular weight and density of the condensing material

So the diameter growth rate is (molecules/cm2):

(4)dP = ∞

( ) ( )P

Pd

P

3P dMWCCD2MWF

dt6dd

dtdv

ρπ−=

ρ=π= ∞

( )PPd

MWCCD4dtdd

ρ−

Page 97: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200433

2.3.2 Mass transfer to a particle surface (free molecule)

The collision rate per unit area is:

(5)

where c and m1 are the molecular velocity and mass and NAV the Avogadro number

so z becomes (6)( ) 21

1

BdAVm

Tk84

CCNz

π

−= ∞

4cCNz AV=

Page 98: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200434

Then the rate of condensation F to particle surface is:

(7)

And the rate of particle volume growth is:

(8)

So the diameter growth rate is:

(9)

( )d2P

21

1

BAV CCd

m2TkN/areazF −π

π

=⋅= ∞

( )P

d2P

21

1

B

P

MWCCdm2TkMWF

dtdv

ρ−π

π

= ∞

( )d

21

1

B

P

P CCm2TkMW2

dtdd −

πρ

= ∞

Page 99: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200435

2.3.3 Mass transfer to a particle surface (entire spectrum)

For particle growth from the free molecule to continuum regime, the expression for the continuum regime is extended by an interpolation factor:

(10)

where the Knudsen number is Kn= 2λ/dP

This is called the Fuchs effect.

+−= ∞ dP Kn1MWCCD4dd ( )

++ρ 2PP Kn33.1Kn71.11ddt

Page 100: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200436

The effect of of temperature depression is to reduce the partial pressure of vapor at the droplet surface and slow the rate of evaporation. Similarly a temperature enhancement slows the rate of condensation.

(adapted from Hinds (1982))

Page 101: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200437

(adapted from Hinds (1982))

Page 102: 1. Nanotechnology: Overview of Aerosol Manufacture of ... · 1 1. Nanotechnology: Overview of Aerosol Manufacture of Nanoparticles Prof. Sotiris E. Pratsinis Particle Technology Laboratory

ETH Zurich Pratsinis 200438(adapted from Hinds (1982))