1 fourier analysis

Upload: arshad-kv

Post on 06-Jul-2018

252 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 1 Fourier Analysis

    1/60

    Discrete Time Periodic Signals

    A discrete time signal x[n] is periodic with period N  if and only if 

    ][][   N n xn x   +=for all n .

    Definition:

     N 

    ][n x

    n

    Meaning: a periodic signal keeps repeating itself forever

  • 8/18/2019 1 Fourier Analysis

    2/60

    !xample: a Sin"soid

    ( )[ ] 2cos 0.2 0.9 x n nπ π  = +#onsider the Sin"soid:

    $t is periodic with period since 10= N 

    ( )

    ( ) ][29.02.0cos2 

    9.0)10(2.0cos2]10[

    n xn

    nn x

    =++=++=+

    π  π  π  

    π  π  

    for all n.

  • 8/18/2019 1 Fourier Analysis

    3/60

    %eneral Periodic Sin"soid

       

       +=   α π     n

     N 

    k  An x 2cos][

    #onsider a Sin"soid of the form:

    $t is periodic with period N   since 

    ][22cos 

    )(2cos][

    n xk n N 

    k  A

     N n N 

    k  A N n x

    =   

       ×++=

     

     

     

     

      ++=+

    π  α π  

    α π  

    for all n.

    with k & N integers'

  • 8/18/2019 1 Fourier Analysis

    4/60

    ( )π  π   1.03.0cos5][   −=   nn x#onsider the sin"soid:

    $t is periodic with period since 20= N 

    ( )( ) ][231.03.0cos5 

    1.0)20(3.0cos5]20[n xn

    nn x=×+−=

    −+=+π  π  π  

    π  π  

    for all n.

    (e can write it as:

       

      

    −=   π  π   1.0203

    2cos5][   nn x

    !xample of Periodic Sin"soid

  • 8/18/2019 1 Fourier Analysis

    5/60

    n N 

    k  j

     Aen x   

      

    =π  2

    ][

    #onsider a #omplex !xponential of the form:

    for all n.

    $t is periodic with period N  since

    Periodic #omplex !xponentials

    ][ 

    ][

    2

    2

    )(2

    n xe Ae

     Ae N n x

     jk n

     N k  j

     N n N 

    k  j

    =×=

    =+

       

      

    +   

      

    π  

    π  

    π  

    1=

  • 8/18/2019 1 Fourier Analysis

    6/60

    n je jn x   π  1.0)21(][   +=

    #onsider the #omplex !xponential:

    (e can write it as

    !xample of a Periodic #omplex !xponential

    n j

    e jn x   

      

    += 201

    2

    )21(][π  

    and it is periodic with period N = )*'

  • 8/18/2019 1 Fourier Analysis

    7/60

    %oal:(e want to write all discrete time periodic signals in terms

    of a common set of +reference signals,'

    -eference .rames

    $t is like the pro/lem of representing a vector in a

    reference frame defined /y• an origin +*,

    • reference vectors

     x

    ,..., 21   ee

     x

    0

    1e

    2eReference

    Frame

  • 8/18/2019 1 Fourier Analysis

    8/60

    -eference .rames in the Plane and in Space

    .or example in the plane we need two reference vectors

     x

    0

    1e

    2e

    21,ee

    Reference

    Frame

    0 while in space we need three reference vectors 321   ,,   eee

    0

    1e2e

    ReferenceFrame

     x3e

  • 8/18/2019 1 Fourier Analysis

    9/60

    A -eference .rame in the Plane

    $f the reference vectors have "nit length and they areperpendic"lar 1orthogonal 2 to each other& then it is very simple:

    2211   eaea x   +=0

    11ea

    22ea

    (here pro3ection of along

      pro3ection of along

    1a2a 2e

    1e x x

    The plane is a ) dimensional space'

  • 8/18/2019 1 Fourier Analysis

    10/60

    A -eference .rame in the Space

    $f the reference vectors have "nit length and they areperpendic"lar 1orthogonal 2 to each other& then it is very simple:

    332211   eaeaea x   ++=0

    11ea22ea

    (here pro3ection of along

      pro3ection of along  pro3ection of along

    1a

    2

    a2e

    1e x

     x

    The +space, is a 4 dimensional space'

    3a   x 3e

    33ea

  • 8/18/2019 1 Fourier Analysis

    11/60

    !xample: where am I 5

    6

    !0

    1e

    2e

     x

    m300

    m200

    Point + x”  is 4**m !ast and )**m 6orth of point +*,'

  • 8/18/2019 1 Fourier Analysis

    12/60

    -eference .rames for Signals

    (e want to expand a generic signal into the s"m of reference 

    signals'

    The reference signals can /e& for example& sin"soids or complex

    exponentials

    n

    ][n x

    =  

    reference signals

  • 8/18/2019 1 Fourier Analysis

    13/60

    7ack to Periodic Signals

    A periodic signal x [n] with period N  can /e expanded in terms of N  

    complex exponentials

    1,...,0 ,][2

    −==   N k enen

     N 

    k  j

    π  

    as

    ∑−

    =

    =1

    0

    ][][ N 

    k k    nean x

  • 8/18/2019 1 Fourier Analysis

    14/60

    A Simple !xample

    Take the periodic signal x [n] shown /elow:

    n0

    1

    2

    6otice that it is periodic with period N=)'

    Then the reference signals are

    nn j

    nn j

    ene

    ene

    )1(][

    11][

    2

    12

    1

    2

    02

    0

    −==

    ===

    π  

    π  

    (e can easily verify that 1try to /elieve2:

    nn

    nenen x

    )1(5.015.1 

    ][5.0][5.1][ 10

    −×−×=

    +=

    for all n.

  • 8/18/2019 1 Fourier Analysis

    15/60

    Another Simple !xample

    Take another periodic signal x [n] with the same period (N 8)2:

    n0

    3.0−

    3.1

    Then the reference signals are the same0

    2 20

    12

    21

    [ ] 1 1

    [ ] ( 1)

     j n n

     j nn

    e n e

    e n e

    π  

    π  

    = = =

    = = −(e can easily verify that 1again try to /elieve2:

    nn

    nenen x

    )1(8.015.0 

    ][8.0][5.0][ 10

    −×+×=+=

    for all n.

    Same reference signals& 3"st different coefficients

  • 8/18/2019 1 Fourier Analysis

    16/60

    9rthogonal -eference Signals

    6otice that& given any N, the reference signals are all orthogonal

    to each other& in the sense

    =

    ≠=∑

    =  k m N 

    k mnene

     N 

    n

    mk  if  

    if  0][][

    1

    0

    *

    ∑∑∑

      −

    =−

    −−−

    =

    −−

    = −

    =   

     

     

     

    ==

    1

    0  2

    )(221

    0

    21

    0

    *

    1

    1

    ][][

     N 

    n  N 

    k m j

    k m jn

     N 

    k m j N 

    n

    n N 

    k m j N 

    nmk 

    e

    e

    eenene π  

    π  π  π  

    Since

    /y the geometric s"m

  • 8/18/2019 1 Fourier Analysis

    17/60

    0 apply it to the signal representation 0

     N 

    m

     N 

    n

    mk m

     N 

    n

    n x

     N 

    m

    mm

     N 

    n

     Nanenea

    neneanen x

    =   

      =

       

      =

    ∑ ∑

    ∑ ∑∑

    =

    =

    =

    =

    =

    1

    0

    1

    0

    *

    1

    0

    *

    ][

    1

    0

    1

    0

    *

    ][][ 

    ][][][][

    and we can comp"te the coefficients' #all thenk  Nak  X    =][

    1,...,0 ,][][1

    0

    2

    −===   ∑−

    =

    − N k en x Nak  X 

     N 

    n

    kn N 

     j

    π  

  • 8/18/2019 1 Fourier Analysis

    18/60

    Discrete .o"rier Series

    1,...,0 ,][][1

    0

    2

    −== ∑−

    =

    − N k en xk  X 

     N 

    n

    kn N 

     j  π  

    %iven a periodic signal x [n] with period N  we define theDiscrete .o"rier Series 1D.S2 as

    Since x [n] is periodic& we can s"m over any period' The general

    definition of Discrete .o"rier Series 1D.S2 is

    { } 1,...,0 ,][][][1 20

    0

    −===   ∑−+=

    − N k en xn x DFS k  X 

     N n

    nn

    kn N 

     j  π  

    for any 0n

  • 8/18/2019 1 Fourier Analysis

    19/60

    $nverse Discrete .o"rier Series

    { }   ∑−=

    ==1

    0

    2

    ][1][][ N 

    kn N 

     j

    ek  X  N 

    k  X  IDFS n xπ  

    The inverse operation is called $nverse Discrete .o"rier Series

    1$D.S2& defined as

  • 8/18/2019 1 Fourier Analysis

    20/60

    -evisit the Simple !xample

    -ecall the periodic signal x [n] shown /elow& with period N=):

    n0

    1

    2

    1,0,)1(21)1](1[]0[][][1

    0

    2

    2

    =−×+=−+== ∑=− k  x xen xk  X    k k 

    n

    nk  j

      π  

    Then 1]1[,3]0[   −==   X  X Therefore we can write the se"ence as

    { }

    n

    kn j

    ek  X k  X  IDFS n x

    )1(5.05.1 

    ][2

    1][][

    1

    0

    2

    2

    −×−=

    ==   ∑=

    π  

  • 8/18/2019 1 Fourier Analysis

    21/60

    !xample of Discrete .o"rier Series

    #onsider this periodic signal

    The period is N=;*' (e comp"te the Discrete .o"rier Series

    25

    102 2

    9 4 210 10

    100 0

    1  if 1, 2,...,9[ ] [ ]

    1

    5 if 0

     j k 

     j kn j kn j k 

    n n

    ek k x n e e

    e

    π  

    π π  

    π  

    − −−

    = =

    == = = −

    =

    ∑ ∑

    ][n x

    n010

    1

  • 8/18/2019 1 Fourier Analysis

    22/60

    0 now plot the val"es 0

    0 2 4 6 8 100

    5magnitude

    0 2 4 6 8 10-2

    0

    2phase (rad)

    |][|   k  X 

    ][k  X 

  • 8/18/2019 1 Fourier Analysis

    23/60

    !xample of D.S

    #omp"te the D.S of the periodic signal

    )5.0cos(2][   nn x   π  =

    #omp"te a few val"es of the se"ence

    ,...0]3[,2]2[,0]1[,2]0[   ====   x x x xand we see the period is N=)' Then

    n

    kn j

     x xen xk  X  )1(]1[]0[][][1

    0

    2

    2

    −×+==

    ∑=−

      π  

    which yields

    2]1[]0[   ==  X  X 

  • 8/18/2019 1 Fourier Analysis

    24/60

    Signals of .inite 1ie )*&***

    samples?sec2' Then we have

    ( ) ( )  pointsdata 60010201030 33 =×××=   − N 

  • 8/18/2019 1 Fourier Analysis

    25/60

    Series !xpansion of .inite Data

    (e want to determine a series expansion of a data set of length N.

    @ery easy: 3"st look at the data as one period of a periodic se"ence

    with period N  and "se the D.S:

    n

    1− N 0

  • 8/18/2019 1 Fourier Analysis

    26/60

    Discrete .o"rier Transform 1D.T2

    %iven a finite interval of a data set of length N, we define the

    Discrete .o"rier Transform 1D.T2 with the same expression as theDiscrete .o"rier Series 1D.S2:

    { }

    21

    0[ ] [ ] [ ] , 0,..., 1

     N   j kn N 

    n X k DFT x n x n e k N 

    π  − −

    == = = −∑And its inverse

    { }21

    0

    1[ ] [ ] [ ] , 0,..., 1

     N   j kn N 

    n

     x n IDFT X k X k e n N  N 

    π  −

    =

    = = = −∑

  • 8/18/2019 1 Fourier Analysis

    27/60

    Signals of .inite 1ie )*&***

    samples?sec2' Then we have

    ( ) ( )  pointsdata 60010201030 33 =×××=   − N 

  • 8/18/2019 1 Fourier Analysis

    28/60

    Series !xpansion of .inite Data

    (e want to determine a series expansion of a data set of length N.

    @ery easy: 3"st look at the data as one period of a periodic se"ence

    with period N  and "se the D.S:

    n

    1− N 0

  • 8/18/2019 1 Fourier Analysis

    29/60

    Discrete .o"rier Transform 1D.T2

    %iven a finite of a data set of length N  we define the Discrete .o"rier

    Transform 1D.T2 with the same expression as the Discrete .o"rierSeries 1D.S2:

    { }

    21

    0[ ] [ ] [ ] , 0,..., 1

     N   j kn N 

    n X k DFT x n x n e k N 

    π  − −

    == = = −∑and its inverse

    { }21

    0

    1[ ] [ ] [ ] , 0,..., 1

     N   j kn N 

    n

     x n IDFT X k X k e n N  N 

    π  −

    =

    = = = −∑

  • 8/18/2019 1 Fourier Analysis

    30/60

    !xample of Discrete .o"rier Transform

    #onsider this signal

    The length is N=;*' (e comp"te the Discrete .o"rier Transform

    25

    102 29 4

    210 10

    100 0

    1  if 1, 2,...,9[ ] [ ]

    1

    5 if 0

     j k 

     j kn j kn j k 

    n n

    ek k x n e e

    e

    π  

    π π  

    π  

    − − −

    = =

    == = = −

    =

    ∑ ∑

    ][n x

    n0 9

    1

  • 8/18/2019 1 Fourier Analysis

    31/60

    0 now plot the val"es 0

    0 2 4 6 8 100

    5magnitude

    0 2 4 6 8 10-2

    0

    2phase (rad)

    |][|   k  X 

    ][k  X 

  • 8/18/2019 1 Fourier Analysis

    32/60

    D.T of a #omplex !xponential

    #onsider a complex exponential of fre"ency rad '0

    ω 

    ,][ 0n j

     Aen x  ω =   +∞

  • 8/18/2019 1 Fourier Analysis

    33/60

    -ecall Magnit"de& .re"ency and Phase

    0π ω π  − < ≤ +)' (e represented it in terms of magnitude and phase:

    ( )rad ω 0ω 

    0ω 

    magnitude

     phase

    || A

     A∠

    -ecall the following:

    ;' (e ass"me the fre"ency to /e in the interval

    π  −

    π  −   π  

    π  

    ( )rad ω 

  • 8/18/2019 1 Fourier Analysis

    34/60

    #omp"te the D.T0

    { }

    00

    21

    0

    221 1

    0 0

    [ ] [ ] [ ]

      , 0,..., 1

     N   j kn N 

    n

     N N   j k n j kn j n   N  N 

    n n

     X k DFT x n x n e

     Ae e Ae k N 

    π  

    π  π  ω 

    ω 

    − −

    =

     − −   − −−   ÷  

    = =

    = =

    = = = −

    ∑ ∑

    6otice that it has a general form:

    0

    2[ ]  N  X k A W k 

     N 

    π  ω 

     = × − ÷  

    1

    0

    1( )

    1

     j N  N  j n

     N    jn

    eW e

    e

    ω 

    ω 

    ω ω 

    −−−

    −=

    −= =

    −∑

    where 1"se the geometric series2

  • 8/18/2019 1 Fourier Analysis

    35/60

    See its general form:

    1( 1)/2

    0

    sin2

    ( )

    sin2

     N  j n j N 

     N 

    n

     N 

    W e eω ω 

    ω 

    ω 

    ω 

    −− − −

    =

      ÷  = =  

    ÷  

  • 8/18/2019 1 Fourier Analysis

    36/60

    0 since:

    1

    0

    /2 / 2 /2 / 2

    / 2 /2 /2 / 2

    / 2 / 2 /2( 1)/2

    / 2 / 2 / 2

    1( )

    1

     

    sin2

     

    sin

    2

     j N  N  j n

     N    jn

     j N j N j N j N 

     j j j j

     j N j N j N  j N 

     j j j

    eW e

    e

    e e e e

    e e e e

     N 

    e e ee

    e e e

    ω 

    ω 

    ω 

    ω ω ω ω  

    ω ω ω ω  

    ω ω ω 

    ω 

    ω ω ω 

    ω 

    ω 

    ω 

    −− −−

    =

    − − −

    − − −

    − −− −

    − −

    −= =−

    −=

    −   ÷  −    = = ÷ ÷−       ÷  

  • 8/18/2019 1 Fourier Analysis

    37/60

    0 and plot the magnit"de

    -3 -2 -1 0 1 2 30

    2

    4

    6

    8

    10

    12

    ( ) N W    ω 

    ω 

    π  π  −

     N 

    2

     N 

    π  2

     N 

    π  −

  • 8/18/2019 1 Fourier Analysis

    38/60

    !xample

    #onsider the se"ence

    0.3[ ] , 0,...,31 j n x n e nπ  = =

    $n this case 32,3.00   ==   N π  ω 

    Then its D.T /ecomes

    ( ) 23232

    [ ] 0.3 , 0,...,31k 

     X k W k π  ω 

    ω π  =

    = − =

  • 8/18/2019 1 Fourier Analysis

    39/60

    ''' first plot this 0

    0 1 2 3 4 5 60

    10

    20

    30

    40

    ( )π  ω  3.032   −W 

    ω 

    2π  

    32= N 

    π  ω    3.00 =

    d th th l t f it D.T

  • 8/18/2019 1 Fourier Analysis

    40/60

    0 and then see the plot of its D.T

    0 5 10 15 20 25 300

    5

    10

    15

    20

    25

    30

    35

    ( )  2[ ] 0.3 , 0,..., 1

     N  k   N 

     X k W k N π  ω 

    ω π  

    == − = −

    k The max corresponds to fre"ency π  π  π  ω  3.0312.032/25   ≅=×=

    S ! l i M tl /

  • 8/18/2019 1 Fourier Analysis

    41/60

    Same !xample in Matla/

    %enerate the data:

    BB n8*:4;C

    BBx8exp13*'4pin2C

    #omp"te the D.T 1"se the +.ast, .o"rier Transform& ..T2:

    BB E8fft1x2C

    Plot its magnit"de:

    BB plot1a/s1E22

    0 and o/tain the plot we saw in the previo"s slide'

    S ! l i M tl /

  • 8/18/2019 1 Fourier Analysis

    42/60

    Same !xample in Matla/

    %enerate the data:

    BB n8*:4;C

    BBx8exp13*'4pin2C

    #omp"te the D.T 1"se the +.ast, .o"rier Transform& ..T2:

    BB E8fft1x2C

    Plot its magnit"de:

    BB plot1a/s1E22

    0 and o/tain the plot we saw in the previo"s slide'

    S ! l 1 d t i t 2

  • 8/18/2019 1 Fourier Analysis

    43/60

    Same !xample 1more data points2

    #onsider the se"ence

    0.3[ ] , 0,..., 255 j n x n e nπ  = =

    $n this case 0 0.3 , 256 N ω π  = =BB n8*:)FFC

    BBx8exp13*'4pin2C

    BB E8fft1x2C

    BB plot1a/s1E22

    See the plot …

    d it it d l t

  • 8/18/2019 1 Fourier Analysis

    44/60

    0 and its magnit"de plot

    0 50 100 150 200 250 3000

    50

    100

    150

    200

    | [ ] | X k 

    (h t d it 5

  • 8/18/2019 1 Fourier Analysis

    45/60

    (hat does it mean5

    The max corresponds to fre"ency

    38 2 / 256 0.2969 0.3ω π π π= × = ≅

    A peak at index means that yo" have a fre"ency0k 

    0 50 100 150 200 250 3000

    50

    100

    150

    200

    | [ ] | X k 

    0   38k   =

    ( )0 0   2 /k N ω π  ;

    ! l

  • 8/18/2019 1 Fourier Analysis

    46/60

    !xample

     Go" take the ..T of a signal and yo" get this magnit"de:

    0 50 100 150 200 250 3000

    200

    400

    600

    800

    1000

    1200

    |][|   k  X 

    k 271 =k  2   81k   =

    There are two peaks corresponding

    to two fre"encies:π  

    π  π  ω 

    π  π  π  

    ω 

    6328.0256

    281

    2

    2109.0256

    227

    2

    22

    11

    ===

    ===

     N k 

     N k 

    D.T f Si id

  • 8/18/2019 1 Fourier Analysis

    47/60

    D.T of a Sin"soid

    #onsider a sin"soid with fre"ency rad '0

    ω 

    0[ ] cos( ), x n A nω α = +   +∞

  • 8/18/2019 1 Fourier Analysis

    48/60

    Sin"soid 8 s"m of two exponentials

    -ecall that a sin"soid is the s"m of two complex

    exponentials n j jn j j ee A

    ee A

    n x 0022

    ][  ω α ω α    −−+=

    ( )rad ω 0ω 

    0ω 

    magnitude

     phase

    / 2 A

    α 

    π  −

    π  −   π  

    π  

    ( )rad ω 

    0ω −

    0

    ω −

    / 2 A

    α −

    Hse of positive fre"encies

  • 8/18/2019 1 Fourier Analysis

    49/60

    Hse of positive fre"encies

    0 0[ ]2 2

     j n j n j j A A X k DFT e e DFT e eω ω α α    −− = +

    Then the D.T of a sin"soid has two components

    0 /"t we have seen that the fre"encies we comp"te

    are positive' Therefore we replace the last exponential

    as follows:

    0 0(2 )[ ]2 2

     j n j n j j A A X k DFT e e DFT e eω π ω α α    −− = +

    -epresent a sin"soid with positive fre

  • 8/18/2019 1 Fourier Analysis

    50/60

    -epresent a sin"soid with positive fre'

    Then the D.T of a sin"soid has two components

    ( )rad ω 0ω 

    0ω 

    magnitude

     phase

    / 2 A

    α 

    π  

    π  

    ( )rad ω 2π  

    2π  0

    2π ω −

    / 2 A

    02π ω −

    α −

    0 0(2 )[ ]2 2

     j n j n j j A A X k DFT e e DFT e eω π ω α α    −− = +

    !xample

  • 8/18/2019 1 Fourier Analysis

    51/60

    !xample

    #onsider the se"ence

    [ ] 2cos(0.3 ), 0,...,31 x n n nπ  = =

    $n this case 32,3.00   ==   N π  ω 

    Then its D.T /ecomes

    ( ) ( ) 232 3232

    [ ] 0.3 1.7 , 0,...,31k 

     X k W W k π  ω 

    ω π ω π    =

    = − + − =

  • 8/18/2019 1 Fourier Analysis

    52/60

    ''' first plot this 0

    0 1 2 3 4 5 60

    5

    10

    15

    20

    ( ) ( )32 321

    0.3 1.72

    W W ω π ω π    − + −

    / 2 32 / 2 N    =

    π  ω    3.00 =   0   1.7ω π  =

    / 2 32 / 2 N    =

    ω 

    2π  

    and then see the plot of its D.T

  • 8/18/2019 1 Fourier Analysis

    53/60

    0 and then see the plot of its D.T

    k The first max corresponds to fre"ency π  π  ω  3.032/25   ≅×=

    ( ) ( )32 32 21

    [ ] 0.3 1.7 , 0,..., 12 k 

     N 

     X k W W k N π  

    ω 

    ω π ω π    

    == − + − = −

    0 5 10 15 20 25 30 350

    5

    10

    15

    20

    his is N! a fre"uency 

    Symmetry

  • 8/18/2019 1 Fourier Analysis

    54/60

    Symmetry

    $f the signal is real& then its D.T has a symmetry: ][n x

    *][][   k  N  X k  X    −=

    $n other words:

    ][][

    |][||][|

    k  N  X k  X 

    k  N  X k  X 

    −−∠=∠−=

    Then the second half of the spectr"m is red"ndant 1it does not

    contain new information2

    7ack to the !xample:

  • 8/18/2019 1 Fourier Analysis

    55/60

    7ack to the !xample:

    0 5 10 15 20 25 30 350

    5

    10

    15

    20

    $f the signal is real we 3"st need the first half of the spectr"m&

    since the second half is red"ndant'

    Plot half the spectr"m

  • 8/18/2019 1 Fourier Analysis

    56/60

    Plot half the spectr"m

    $f the signal is real we 3"st need the first half of the spectr"m&

    since the second half is red"ndant'

    0 5 10 150

    5

    10

    15

    20

    Same !xample in Matla/

  • 8/18/2019 1 Fourier Analysis

    57/60

    Same !xample in Matla/

    %enerate the data:

    BB n8*:4;C

    BBx8cos1*'4pin2C

    #omp"te the D.T 1"se the +.ast, .o"rier Transform& ..T2:

    BB E8fft1x2C

    Plot its magnit"de:

    BB plot1a/s1E22

    0 and o/tain the plot we saw in the previo"s slide'

    Same !xample 1more data points2

  • 8/18/2019 1 Fourier Analysis

    58/60

    Same !xample 1more data points2

    #onsider the se"ence

    [ ] cos(0.3 ), 0,..., 255 x n n nπ  = =

    $n this case 0 0.3 , 256 N ω π  = =BB n8*:)FFC

    BBx8cos1*'4pin2C

    BB E8fft1x2C

    BB plot1a/s1E22

    See the plot …

    and its magnit"de plot

  • 8/18/2019 1 Fourier Analysis

    59/60

    0 and its magnit"de plot

    | [ ] | X k 

    0 50 100 150 200 2500

    20

    40

    60

    80

    100

    0   38k   = 0 218 N k − =

    The first max corresponds to fre"ency 0 38 2 / 256 0.3ω π π  = × ≅

    !xample

  • 8/18/2019 1 Fourier Analysis

    60/60

    !xample

     Go" take the ..T of a signal and yo" get this magnit"de:

    |][|   k  X 

    There are two peaks corresponding

    to two fre"encies:π  

    π  π  ω 

    π  π  π  

    ω 

    6328.0256

    281

    2

    2109.0256

    227

    2

    22

    11

    ===

    ===

     N k 

     N k 

    0 50 100 150 200 250 3000

    50

    100

    150

    271 =k  2   81k   =