1 databases on nss 1. atnf. pulsar catalogue 2. magnetar database in mcgill...

66
1 Databases on NSs ATNF. Pulsar catalogue http://www.atnf.csiro.au/research/pulsar/psrcat/ Magnetar database in McGill http://www.physics.mcgill.ca/~pulsar/magnetar/main.html Be/X-ray binaries http://xray.sai.msu.ru/~raguzova/BeXcat/

Upload: barnard-jackson

Post on 28-Dec-2015

222 views

Category:

Documents


3 download

TRANSCRIPT

1

Databases on NSs1. ATNF. Pulsar catalogue

http://www.atnf.csiro.au/research/pulsar/psrcat/2. Magnetar database in McGill

http://www.physics.mcgill.ca/~pulsar/magnetar/main.html3. Be/X-ray binaries http://xray.sai.msu.ru/~raguzova/BeXcat/

Lecture 3Population synthesis

Sergei Popov (SAI MSU)

Dubna “Dense Matter In Heavy Ion Collisions and Astrophysics”, July 2008

3

Population synthesis in astrophysics

A population synthesis is a method of a direct modeling of

relatively large populations of weakly interacting objects with non-trivial evolution.

As a rule, the evolution of the objects is followed from their birth up to the present moment.

see astro-ph/0411792 and

Physics-Uspekhi 50, 1123

(УФН 2007 г., N11; http://www.ufn.ru)

4

Why PS is necessary?

1. No direct experiments computer experiments

2. Long evolutionary time scales

3. Selection effects. We see just a top of an iceberg.

4. Expensive projects for which it is necessary to make predictions

5

Tasks1. To test and/or to determine initial and evolutionary parameters. To do it one has to compare calculated and observed populations. This task is related to the main pecularity of astronomy:

we cannot make direct experiments under controlled conditions.

2. To predict properties of unobserved populations. Population synthesis is actively used to define programs for future

observational projects: satellites, telescopes, etc.

6

Two variants

Evolutionary and Empirical

1. Evolutionary PS.The evolution is followed from some early stage.

Typically, an artificial population is formed(especially, in Monte Carlo simulations)

2. Empirical PS. It is used, for example, to study integral properties

(speсtra) of unresolved populations. A library of spectra is used to predict integral properties.

7

Examples

1. PS of radiopulsars2. PS of gamma-ray pulsars3. PS of close-by cooling NSs4. PS of isolated NSs5. PS of close binary systems

8

Population synthesis of radio pulsars

(following Faucher-Giguere and Kaspi astro-ph/0512585)

The idea was to make an advance population synthesis study of normalradio pulsar to reproduce the data observed in PMBPS and Swinburne.Comparison between actual data and calculations should help to understandbetter the underlying parameteres and evolution laws.

Only normal (non-millisecond, non-binary, etc.) pulsars are considered.Note, however, that the role of pulsars originated in close binaries can be important.

Ingredients• Velocity distribution• Spatial distribution• Galactic model• Initial period distribution• Initial magnetic field distribution• Field evolution (and angle)• Radio luminosity• Dispersion measure model• Modeling of surveys

The observed PSR sample is heavily biased.It is necessary to model the process of detection,i.e. to model the same surveys in the synthetic Galaxy.A synthetic PSR is detected if it appears in thearea covered by on pf the survey, and if itsradio flux exceeds some limit.

2/3 of known PSRs were detected in PBMPSor/and SM (914 and 151).

9

Velocity distributionObservational data for 34 PSRs.Vmax=1340 km/s (PSR B2011+38).

The authors checked different velocity distributions: single maxwellian,double maxwellian, loretzian, paczynski mode, and double-side exponential.The last one was takes for the reference model.Single maxwellian was shown to be inadequate.

10

Spatial distributionInitial spatial ditribution of PSRs was calculated in a complicated realistic way.• exponential dependences (R and Z) were taken into account• Spiral arms were taken into account• Decrease of PSR density close to the Galactic center was used

However, some details are still missing.For example, the pattern is assumed tobe stable during all time of calculations(i.e. corotating with the Sun).

11

Galactic potentialThe potential was taken from Kuijken and Gilmore (1989):• disc-halo• buldge• nuclei

12

Initial spin periods and fieldsSpin periods were randomly taken from a normal distribution.Magnetic fields – also from a normal distribution for log B.

The authors do not treat separately the magnetic field and inclination angle evolution.

Purely magneto-dipole model with n=3 and sin χ=1 is used.RNS=106 cm, I=1045.

The death-line is taken in the usual form:

P~(P20+K t)1/2

13

Radio luminosity and beaming

Average beaming fraction is about 10%2

Lto = 2 mJy kpc2 α1=-19/15 α2=-2Llow= 0.1 mJy kpc2

Model I

Model II

[Shown to be bad]

14

Optimal model and simulations The code is run till the number of “detected”

synthetic PSR becomes equal tothe actual number of detected PSRs in PBMPS and SM.

For each simulation the “observed” distributions of b,l, DM, S1400, P, and B,are compared with the real sample.

It came out to be impossible to to apply only statistical tests.Some human judgement is necessary for interpretation.

15

Results

Solid lines – calculation, hatched diagrams - real observations

16

Discussion of the results1. No significant field decay (or change in the inclination angle) is necessary to

explain the data.2. Results are not very sensitive to braking index distribution3. Birthrate is 2.8+/-0.1 per century.

If between 13% and 25% of core collapse SN produce BHs, thenthere is no necessity to assume a large population of radio quiet NSs.120 000 PSRs in the Galaxy

17

Population synthesis of gamma-ray PSRs

(following Gonthier et al astro-ph/0312565)

Ingredients

1. Geometry of radio and gamma beam2. Period evolution3. Magnetic field evolution4. Initial spatial distribuion5. Initial velocity distribution6. Radio and gamma spectra7. Radio and gamma luminosity8. Properties of gamma detectors9. Radio surveys to comapre with.

Tasks

1. To test models2. To make predictions for GLAST and AGILE

18

Beams1. Radio beam

2. Gamma beam.

Geometry of gamma-ray beam was adapted from the slot gap model (Muslimov, Harding 2003)

19

Other properties• Pulsars are initially distributed in an exponential (in R and z) disc, following Paczynski (1990).• Birthrate is 1.38 per century• Velocity distribution from Arzoumanian, Chernoff and Cordes (2002).• Dispersion measure is calculated with the new model by Cordes and Lazio• Initial period distribution is taken to be flat from 0 to 150 ms.• Magnetic field decays with the time scale 2.8 Myrs (note, that it can be mimiced by the evolution of the inclination angle between spin and magnetic axis).

The code is run till the number of detected (artificially) pulsars is 10 timeslarger than the number of really detected objects.

Results are compared with nine surveys (including PMBPS)

20

P-Pdot diagrams

Detected Simulated

21

Shaded – detected, plain - simulated

22

Distributions on the sky

23Crosses – radio-quietDots – radio-loud

Examples of pulse profiles

24

Predictions for GLAST and AGILE

25

Spatial distribution of gamma sources

26

Population of close-by young NSs

Magnificent seven Geminga and 3EG J1853+5918 Four radio pulsars with thermal emission

(B0833-45; B0656+14; B1055-52; B1929+10)

Seven older radio pulsars, without detected thermal emission.

To understand the origin of these populations and predict future detectionsit is necessary to use population synthesis.

27

Population synthesis: ingredients

Birth rate of NSs Initial spatial distribution Spatial velocity (kick) Mass spectrum Thermal evolution Interstellar absorption Detector properties

To build an artificial model

of a population of some astrophysical sources and

to compare the results ofcalculations with observations.

Task:

28

Gould Belt : 20 NS Myr-1

Gal. Disk (3kpc) : 250 NS Myr-1

Arzoumanian et al. 2002

ROSAT

• Cooling curves by• Blaschke et al. • Mass spectrum

18°Gould BeltGould Belt

Population synthesis – I.

29

Solar vicinity

Solar neighborhood is not a typical region of our Galaxy

Gould Belt R=300-500 pc Age: 30-50 Myrs 20-30 SN per Myr (Grenier 2000) The Local Bubble Up to six SN in a few Myrs

30

The Gould Belt

Poppel (1997) R=300 – 500 pc Age 30-50 Myrs Center at 150 pc from the

Sun Inclined respect to the

galactic plane at 20 degrees 2/3 massive stars in 600 pc

belong to the Belt

31

Mass spectrum of compact objects

(Timmes et al. 1996, astro-ph/9510136)

Results of numerical modeling

32

Comparison with observations

(Timmes et al. 1996, astro-ph/9510136)

33

Mass spectrum of NSs

Mass spectrum of local young NSs can be different from the general one (in the Galaxy)

Hipparcos data on near-by massive stars

Progenitor vs NS mass: Timmes et al. (1996); Woosley et al. (2002)

astro-ph/0305599

34

Woosley et al. 2002

Progenitor mass vs. NS massProgenitor mass vs. NS mass

35

Log N – Log S

Log of flux (or number counts)

Lo

g o

f th

e n

um

ber

of

sou

rces

bri

gh

ter

than

th

e g

iven

flu

x

-3/2 sphere: number ~ r3

flux ~ r-2

-1 disc: number ~ r2

flux ~ r-2

calculations

36

Cooling of NSs

Direct URCA Modified URCA Neutrino bremstrahlung Superfluidity Exotic matter (pions,

quarks, hyperons, etc.)

In our study for illustrative purposeswe use a set of cooling curves calculated by Blaschke, Grigorian and Voskresenski (2004)in the frame of the Nuclear medium cooling model

(see a recent review in astro-ph/0508056)

37

Some results of PS-I:Log N – Log S and spatial distribution

(Popov et al. 2005 Ap&SS 299, 117)

More than ½ are in+/- 12 degrees from the galactic plane.19% outside +/- 30o

12% outside +/- 40o

Log N – Log S for close-by ROSAT NSs can be explained by standard cooling curves taking into account the Gould Belt.

Log N – Log S can be used as an additional

test of cooling curves

38

1. Spatial distribution of progenitor stars

a) Hipparcos stars up to 500 pc[Age: spectral type & cluster age (OB

ass)]b) 49 OB associations: birth rate ~

Nstar

c) Field stars in the disc up to 3 kpc

Population synthesis – II.recent improvements

We use the same normalization for NS formation rate inside 3 kpc: 270 per Myr.

Most of NSs are born inOB associations.

For stars <500 pc we eventry to take into accountif they belong to OB assoc.with known age.

39

Effects of the new spatial distribution on Log N – Log S

Solid – new initial XYZDashed – Rbelt = 500 pcDotted – Rbelt = 300 pc

There are no significanteffects on the Log N – Log Sdistribution due to moreclumpy initial distributionof NSs.

But, as we’ll see below,the effect is strong forsky distribution.

40

3. Spatial distribution of ISM (NH)

instead of :

now :

Population synthesis – II.recent improvements

Hakkila

(see astro-ph/0609275 for details)

Modification of the old one

NH inside 1 kpc

41

b= +90°

b= -90°

Popov et al. 2005

Count rate > 0.05 cts/s

OriSco OB

Cep?Per?

PSRs+

Geminga+

M7

PSRs-

First results: new maps

Clearly several richOB associations startto dominate in thespatial distribution

42

50 000 tracks, new ISM model

AguerosChieregato

Candidates:

radiopulsarsMagn. 7

Predictions for future searches

(Posselt et al. arXiv: 0801.4567)

43

Standard test: temperature vs. age

Kaminker et al. (2001)

44

Log N – Log S as an additional testLog N – Log S as an additional test

Standard test: Age – Temperature Sensitive to ages <105 years Uncertain age and temperature Non-uniform sample

Log N – Log S Sensitive to ages >105 years (when applied to close-by NSs) Definite N (number) and S (flux) Uniform sample

Two test are perfect together!!!

astro-ph/0411618

45

List of models (Blaschke et al. 2004)

Model I. Yes C A Model II. No D B Model III. Yes C B Model IV. No C B Model V. Yes D B Model VI. No E B Model VII. Yes C B’ Model VIII.Yes C B’’ Model IX. No C A

Blaschke et al. used 16 sets of cooling curves.

They were different in three main respects:

1. Absence or presence of pion condensate

2. Different gaps for superfluid protons and neutrons

3. Different Ts-Tin

Pions Crust Gaps

46

Model I

Pions. Gaps from Takatsuka &

Tamagaki (2004) Ts-Tin from Blaschke, Grigorian,

Voskresenky (2004)

Can reproduce observed Log N – Log S (astro-ph/0411618)

47

Model II

No Pions Gaps from Yakovlev et al.

(2004), 3P2 neutron gap suppressed by 0.1

Ts-Tin from Tsuruta (1979)

Cannot reproduce observed Log N – Log S

48

Sensitivity of Log N – Log SSensitivity of Log N – Log S

Log N – Log S is very sensitive to gaps Log N – Log S is not sensitive to the crust if it is applied to

relatively old objects (>104-5 yrs) Log N – Log S is not very sensitive to presence or absence of

pions

We conclude that the two test complement each other

49

Mass constraintMass constraint

• Mass spectrum has to be taken into account when discussing data on cooling• Rare masses should not be used to explain the cooling data• Most of data points on T-t plot should be explained by masses <1.4 Msun

In particular:• Vela and Geminga should not be very massive

Phys. Rev .C (2006)nucl-th/0512098(published as a JINR preprint)

Cooling curves fromKaminker et al.

50

Another attempt to test a set of Another attempt to test a set of models. models. Hybrid stars. Astronomy meets QCDHybrid stars. Astronomy meets QCD

We studied several models for hybrid stars applying all possible tests: - T-t- Log N – Log S- Brightness constraint- Mass constraint

nucl-th/0512098

We also tried to present examples when a model successfully passesthe Log N – Log S test, but fails to pass the standard T-t test or fails tofulfill the mass constraint.

51

Results for HySs applicationResults for HySs application

One model among four was able to pass all tests.

52

Isolated neutron star censusTask.• To calculate distribution of isolated NSs in the Galaxy over evolutionary stages: Ejector, Propeller, Accretor, Georotator• Predict the number of accretors

Ingredients.

• Galactic potential• Initial NS spatial distribution• Kick velocity• ISM distribution• Spin initial distribution, evolution and critical periods• Magnetic field initial distribution and evolution

53

Stages

astro-ph/9910114

Rather conservativeevolutionary schemewas used.

For example,subsonic propellershave not been considered (Ikhsanov 2006).

54

Accreting isolated NSsAt small fluxes <10-13 erg/s/cm2 accretors can become more abundantthan coolers. Accretors are expected to be slightly harder:300-500 eV vs. 50-100 eV. Good targets for eROSITA!

From several hundreds up toseveral thousands objectsat fluxes about few X 10-14, but difficult to identify.

Monitoring is important.

Also isolated accretors canbe found in the Galactic center(Zane et al. 1996, Deegan, Nayakshin 2006).

astro-ph/0009225

55

Population synthesis of binary systemsInteracting binaries are ideal subject for population synthesis studies:

• The are many of them observed• Observed sources are very different• However, they come from the same population of progenitors...• ... who’s evolution is non-trivial, but not too complicated.• There are many uncertainties in evolution ...• ... and in initial parameter• We expect to discover more systems• ... and more types of systems• With new satellites it really happens!

56

Scenario machineThere are several groupsin the world which studyevolution of close binariesusing population synthesis approach.

Examples of topics• Estimates of the rate of coalescence of NSs and BHs• X-ray luminosities of galaxies• Calculation of mass spectra of NSs in binaries• Calculations of SN rates• Calculations of the rate of short GRBs

(Lipunov et al.)

57

Evolution of close binaries

58

(“Scenario Machine” calculations)

http://xray.sai.msu.ru/sciwork/

(«Вокруг света» июль 2008 г. http://vokrugsveta.ru)

59

Looking for new magnetars

(0711.0988)

There are many archival XMM-Newton and Chandra deep observations.Why not to use them to search for new sources?How?Just using the fact that all known magnetars show periodicity in a narrow range!

Muno et al. used 506 Chandra and 441 XMM-Newton observations of theGalactic plane (|b|<5o) to look for sources with 5 s < P < 20 s.

Nothing is found. Tide bounds can be put on the number of active magnetars.Depending on the limiting luminosity and pulse fraction limits are <100 or <500.

By the way, they also can put contraints on M7-like sources.....

L=3 1033 erg/s

60

Looking for new M7-like sourcesM7-like objects are very interesting by themselves and are important for studies of NS physics.

Several campains have been made to look for more sources.

• Agueros et al. (astro-ph/0511659)• Chieregato et al. (astro-ph/0502292)

Looking for blank field soft X-rays sources (extreme fx/fopt ratio).

Chieregato et al. searched for blank field sources with the ROSAT HRI data(only ~1.8% of the sky, mostly at high galactic latitudes).Several candidates have been figured out.

Agueros et al. used ROSAT All-sky Survey and SDSS.Also several candidates have been found.

61

Predictions for future searches and candidates

AguerosChieregato

radiopulsarsMagn. 7

(Posselt et al. arXiv: 0801.4567)

62

Looking for isolated accretorsMany programs aimed to find accreting isolated NSs have been made in 90s(see a review in Treves et al. (2000) PASP 112, 297).Since then researches became a little bit pessimistic about the subject.However, with present day abilities and prospects for near futureit is important to remember about the possibility to detect such interesting sources.

For example, looking for new M7-like NSs one can occasionaly find accretorswhich are expected to be more abundant than coolers (in the framework of anoptimistic scenario) at fluxes <10-13 erg/cm2/s.

Recently, Pires and Motch (0710.5192) reported results of a search for INSsin the 2XMMp catalogue. One interesting candidate is found.Most probably, it is a cooling INS (work in progress).

63

Looking for radio pulsar counterparts for EGRET unidentified sources

Then, Keith et al. (0807.2088) made a search at high frequencies for three cases anddiscovered a new pulsar! Probably, it is important to use high frequencies (~few GHz)

Recently Crawford et al. (astro-ph/0608225) tried to find dim radio pulsars in56 relatively small error boxes of EGRET unidentified sources. Nothing came out.

GLAST is in orbit now and everything is working.Hopefully, soon we’ll have moregamma-ray selected isolated neutron stars(radio pulsars, coolers, ....).More population studies will be necessarywhich take into account all possible types of NSs.

64

Conclusions• Population synthesis is a useful tool in astrophysics• Many theoretical parameters can be tested only via such modeling• Many parameters can be determined only via PS models • Actively used to study NSs• Actively used for predicting future observations and setting on observational programs

65

Dorothea Rockburne

66

Papers to read• Popov, Prokhorov “Population synthesis in Astrophysics” Physics-Uspekhi 50 (11), 1123 (2007)• Faucher-Giguere, Kaspi “Birth and evolution of isolated radio pulsars” astro-ph/0512585 • Postnov, Yungelson “The Evolution of Compact Binary Star Systems ” Living Reviews on Relativity 9, 6 (2006) astro-ph/0701059 • Lipunov et al. “Description of the Scenario Machine” arXiv: 0704/1387• Lipunov, Postnov, Prokhorov “The Scenario Machine: Binary Star Population Synthesis” Astrophysics and Space Science Reviews (1996) http://xray.sai.msu.ru/~mystery/articles/review/