1. code building sciencekenergy.us/files/8613/6787/1652/1.__code_building_science.pdfannual cost of...

64
2009 % 2012 Interna-onal Energy Conserva-on Code Code Basic Energy Transfer Principles

Upload: others

Post on 24-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

2009$%$2012$Interna-onal$Energy$Conserva-on$Code$

Code$Basic$Energy$Transfer$$Principles!

$$

Helpful$Informa-

on$

Find$This$Presenta-on$$hCp://www.kenergy.us/code%page$$$It$will$be$posted$under$Ohio$

$

$$

$$

Helpful$Informa-

on$

Learning$Objec-ves$$1.  List$the$three$methods$of$heat$transfer.$2.  Iden-fy$a$code$requirement$that$addresses$

convec-on.$3.  Iden-fy$a$code$requirement$that$addresses$

conduc-on.$4.  Iden-fy$a$code$requirement$that$addresses$

radia-on.$5.  Iden-fy$3$forces$of$convec-on$in$a$building.$6.  Explain$how$energy$moves$based$on$the$2nd$Law$of$

Thermodynamics.$7.  Explain$why$it$is$cri-cal$for$HVAC$equipment$to$be$

sized$correctly.$

$

$$

$$

Building$Envelope$Principles$Heat$Transfer$In$and$Out$of$the$Building$

Envelope$$$$

Helpful$Informa-

on$

Conduc-on$

Convec-on$(Infiltra-on)$

Conduc-on$

Solar$Radia-on$

$$

Energy$Use$in$Buildings!

$$

Residen-al$Total$Footage$Growth$

$

Helpful$Informa-

on$

$$

Residen-al$Square$Footage$Growth$

$

Helpful$Informa-

on$

$$

Residen-al$Energy$Use$Compared$to$other$Sectors$

$

Helpful$Informa-

on$

$$

Growth$in$Electricity$Sales$in$Buildings$Rela-ve$to$Industry$

$

Helpful$Informa-

on$

$$

Contributors$to$Electricity%Related$CO2$Emissions!

Helpful$Informa-

on$

$$

$$

Building$Envelope$Principles$$Bri-sh$Thermal$Unit$(Btu)$

Heat$required$to$raise$the$temperature$of$one$pound$of$water$one$degree$Fahrenheit.$Approximately$the$heat$given$off$by$a$match.$

$

Helpful$Informa-

on$

$$

$$

Building$Envelope$Principles$$Bri-sh$Thermal$Unit$(Btu)$–$Ques-on$$

$How$many$Btu$will$be$required$to$heat$50$gallons$of$water$(approximately$417$pounds)$if$the$cold$water$inlet$is$55$degrees$Fahrenheit$and$the$water$heater$is$set$at$120$degrees$Fahrenheit?$$The$first$step$is$to$find$the$Delta$T$or$temperature$rise.$$The$Delta$T$is$the$difference$in$temperature$between$55$degrees$and$120$degrees.$$$120$%$55$=$65$degrees$$The$Btu$is$equal$to$the$Delta$T$-mes$pounds$(one$to$one$ra-o).$65$x$417$=$27,105$Btu!

Helpful$Informa-

on$

$$

$$

Building$Envelope$Principles$$Energy$Units$Based$on$a$Btu$

$Ra-ng$for$Air$Condi-oning$

One$ton$of$cooling$=$12,000$Btu$Number$of$Btu$needed$to$melt$one$ton$of$ice$is$288,000$Btu$(12,000$x$24$hours)$

$Ra-ng$for$natural$gas$

One$therm$=$100,000$Btu$$$Ra-ng$for$electric$resistant$hea-ng$

One$kilowaC$hour$=$3413.43$Btu$1$KilowaC$heater$will$give$off$3413.43$Btu$if$leh$on$for$one$hour$$

$

Helpful$Informa-

on$

$$

$$

Building$Envelope$Principles$$Laws$of$Thermodynamics $$

$

1.  Conserva-on$of$Energy$

2.  Movement$of$Energy$–$

Always$from$complex$to$more$simple$state$or$

Higher$temperature$to$lower$temperature.$$$$

Helpful$Informa-

on$

$$

$$

HDD$/$CDD$Defini-ons$Hea-ng$Degree$Days$(HDD)$

$Measure$of$the$hea-ng$severity$of$a$climate$The$colder$the$climate$the$higher$the$HDD$Based$on$65$oF$Daily$HDD$$=$65$oF$%$average$daily$temperature$$ $ $ $ $(if$less$than$65$oF)$

Annual$HDD$$=$Sum$of$Daily$HDD$over$a$ $$ $ $$$$$$calendar$year.$

Example: $Columbus $5,708$HDD$$ $$ $ $Cincinna- $5,248$HDD$

$Helpful$Informa-

on$

$$

$$

HDD$/$CDD$Defini-ons$Cooling$Degree$Days$(CDD)$

$Measure$of$the$cooling$severity$of$a$climate$The$hoCer$the$climate$the$higher$the$CDD$Based$on$65$oF$Daily$CDD$$=$Average$daily$temperature$%$65$oF$$ $ $(if$greater$than$65$oF)$

Annual$CDD$$=$Sum$of$Daily$CDD$over$a$ $$ $ $$$$$$calendar$year.$

Example: $Columbus $797$CDD$$ $ $$$$$$$$$$$$$$ $Cincinna- $996$CDD$

$Helpful$Informa-

on$

Heat Transfer

• Conduction

• Convection

• Radiation

Conduction

Conduction

Building Envelope Principles

•  Conduction •  The transfer of heat through a solid material,

moving from warmer to cooler particles that are in direct physical contact.

700 F 300 F

500 F

300 F

How is R-Value Determined?

Nominal R-Value is the thermal resistance of insulation alone as determined in accordance with the U.S. Federal Trade Commission R-value rule.

www.ftc.gov/bcp/rulemaking/rvalue/index.shtml

Conductive Heat Loss

What is R-value? Resistance

What is U-factor? Conductance

Both are a measurement of a material or building assembly’s heat transfer properties

R=1/U$and$U=1/R$

Reducing Conductive Heat Loss$

U-Factor Comparison

R-21 Batt insulation in 2x6 INT framed wall

(T-111 siding)

U-factor = .056

R-19 Batt insulation in 2x6 STD framed wall

+ R-5 CI

(T-111siding)

U-factor = .046

$

$$

$$

R%Value$Defined$$

The$measure$of$the$thermal$resistance$of$a$material$or$building$component$to$the$passage$of$heat.$

R=$Delta$T/$Btu$High$R$=$Low$energy$transfer$Low$R$=$$High$energy$transfer$$$$

Helpful$Informa-

on$

1$h$

1$h$

1in.$

$$

$$

R%Value$Explained$R%values$can$be$added.$

$$$$

Helpful$Informa-

on$

R1$R2$

R3$R4$

•  RTotal$=$R1$+$R2$+$R3$+$R4$

$

$$

R%Value$Example$$

R%Value$=$21$(Insula-on$in$Framed$2x6$Wall)$

$$$

Helpful$Informa-

on$

$$

$$

$$

Climate%Specific$Requirements$Spray$Foam$Ceiling$Insula-on$

Helpful$Informa-

on$

R-11 Fiberglass Batt 11.00 Insulation 1� Cellular Polyurethane 5.00

2 X 4 @ 16� O.C. 3.46

1/2� Gypsum Board 0.45 Inside Air Film 0.68

7/8� Stucco 0.18 Outside Air Film 0.17

Total R-value = 17.48

List of Components R-value

Inside Air Film 0.68 1/2� Gypsum Board 0.45

1� Cellular Polyurethane 5.00 7/8� Stucco 0.18

Outside Air Film 0.17

List of Components R-value

Calculating the R-value Through the Wall Cavity

Calculating the R-value Through the Wall Framing

Total R-value = 9.94 Weighted R = 17.48 x .85 + 9.94 x .15 = 16.34

•  U%factor$(Btu/h2%oF%hr)$– The$overall$coefficient$of$heat$transmission$and$the$rate$of$heat$flow$through$the$various$materials$of$a$construc-on$assembly.$

– U%factor$=$1/Rtotal$– Used$to$calculate$hea-ng$and$cooling$loads$

Building$Envelope$Principles$

U%factor$Example$Fenestra-on$U%factor$

•  NFRC$Ra-ng$for$all$Manufactured$Fenestra-on;$or$

•  Tables102.5.2(1)$U%factor$Default$Table$for$Windows,$Glazed$Doors$and$Skylights$

$$

$$

Misalignment$$

$

Helpful$Informa-

on$

Insulation is not touching the sheetrock air barrier.

R-0.45

Sketch Courtesy of Advanced Energy Corporation

$$

$$

Standard$Roof$Truss$

Ceiling$insula-on$code$requirements$assume$standard$truss$systems.$

Cold$corners$contribute$to$condensa-on$and$mold$growth$

Possibility$of$ice$dam$forma-ons$

$$

$$

Raised$Heel$Truss$

Excep&on)!  Raised$Heel/Energy$Truss$credit$if$insula-on$is$

full$height$over$exterior$wall$(Prescrip)ve)$$

R%30$instead$of$R%38$R%38$instead$of$R%49$$

33!

Annual Cost of Conductive Heat Loss

Transmission Heat Flow Equation

House with R-21 walls, 2240 CFA

UA x HDD x 24hrs/day

where UA is 336

6835 HDD in Spokane, WA

Annual cost of conductive heat loss in Spokane WA:

55,117,440 BTUs annually

Electric resistance heat = $1,208 ($.083/kWh)

2.64 COP DHP = $458 ($0.083/kWh)

2.2 COP ASHP = $535 ($0.083/kWh)

80 AFUE NG Furnace = $652 ($1.05/therm)

34!

Annual Cost of Conductive Heat Loss House with R-5 Foam

Transmission Heat Flow Equation

House with R-19 + R-5 walls, 2240 CFA

UA x HDD x 24hrs/day

where UA is 306

6835 HDD in Spokane, WA

Annual cost of conductive heat loss in Spokane WA:

50,196,240 BTUs annually

Electric resistance heat = $1,100 ($.083/kWh)

2.64 COP DHP = $417 ($0.083/kWh)

2.2 COP ASHP = $488 ($0.083/kWh)

80 AFUE NG Furnace = $594 ($1.05/therm)

$$

$$

Building$Envelope$Principles$$Convec-on$$

$

Helpful$Informa-

on$

$The$transfer$of$heat$through$a$moving$fluid,$either$gas$or$liquid.$$The$most$common$driving$force$for$convec-ve$heat$transfer$is$the$tendency$of$a$warm$fluid$to$rise$due$to$its$lighter$density.$

Convec-on$(Infiltra-on)$

700$F$

300$F$

500$F$

300$F$

Convec-on$Drivers$

Wind

Fans and Mechanical Systems Stack Effect

Airflow$affects$comfort$

$$

Building$Envelope$Principles$$Vapor$Retarders$–$Basic$Requirements$2009$IRC$R601.3.2$–$2012$IRC$R702.7$$Install$on$�warm%in%winter$side�$of$insula-on$or$

inside$of$frame$wall.$$$

Helpful$Informa-

on$

Siding!!Outside!Sheathing!!Studs!&!Insula1on!!Vapor!Retarder!!Sheetrock!

Vapor!

IRC$VR$Classifica-on$–$R702.7.2$(2012)$$

$$$$

Class$I:$$Sheet$Polyethylene,$unperforated$aluminum$foil$$Class$II:$$Krah%faced$fiberglass$baCs$$Class$III:$$Latex$or$enamel$paint$$$

Building$Envelope$Principles$$Vapor$Pressure$$$

Helpful$Informa-

on$

High$Vapor$

Pressure$

• $cooking$• $showers$• $other$

20oF!

Low$Vapor$Pressure$

February$12$Boise$$Outside$RH$=$82%$OT$=$41degrees$Inside$RH$=$43%$IT$=$65$degrees$$

$$

$$

Building$Envelope$Principles$$Vapor$Retarders$$

Helpful$Informa-

on$

$$

$$

Building$Envelope$Principles$$Vapor$Retarders$–$Latex$paint$may$qualify$$

Helpful$Informa-

on$

IRC$R601.3.1$Latex$or$enamel$paint$are$considered$a$$

Class$III$Vapor$Retarder$

Website:$hCp://www.naima.org$

Building$Envelope$Principles$$NAIMA$Insula-on$Facts$#4$–$Vapor$Retarders$

Helpful$Informa-

on$

The main reason to retard the transmission of water vapor through building envelopes is to prevent it from condensing to liquid water within the structure.

$$

Building$Envelope$Principles$$NAIMA$Insula-on$Facts$#4$–$Vapor$Retarders$

Helpful$Informa-

on$

What Determines How �Tight� a Vapor Retarder is Required in Walls? �In general, the colder the climate, the tighter the vapor retarder should be. Also, the more vapor- tight the building�s outer skin, the tighter the vapor retarder should be.�

$$

Building$Envelope$Principles$$NAIMA$Insula-on$Facts$#4$–$Vapor$Retarders$

Helpful$Informa-

on$

How are Condensation Problems Avoided in Cathedral (Sloped) Ceilings? �Since commonly used asphalt roof shingles have very low vapor permeance, cathedral ceilings can be likened to walls with very low permeance exterior skins. As in walls, the use of very tight, continuous vapor retarders can prevent condensation problems in cathedral ceilings. Problems can occur, however, if a vapor retarder is not continuous.�

$$

Building$Envelope$Principles$$Radia-on$

$$

Helpful$Informa-

on$

Solar$Radia-on$

$The$transfer$of$heat$by$electromagne-c$waves$from$a$warmer$to$a$cooler$surface,$where$the$medium$is$not$affected$by$the$transfer.$$To$transfer$heat$by$radia-on$from$one$surface$to$the$another,$the$surface$temperatures$must$be$different.$

$$

$$

Solar$Spectrum$$$

Helpful$Informa-

on$

Ultraviolet 2%

Visible Light 47%

Infrared 51%

Ultraviolet Visible Light Infrared

Solar$Heat$Gain$Coefficient$Windows$$$

Helpful$Informa-

on$

Solar$Heat$Gain$Coefficient$(SHGC)$

The$ra-o$of$the$solar$heat$gain$entering$the$space$through$the$fenestra-on$area$to$the$incident$solar$radia-on$

$

Incident$Solar$Radia-on$

$$

Reflec-ve$Coa-ngs$Reflects$both$heat$and$light$–$�Solar$Mirror�$$$$

Helpful$Informa-

on$

Reflects Light$Inward Radiation Reduced$

Direct Transmittance Reduced$

Reflects Heat$

$$

Emissivity$(e.g.$Low%E)$The$ability$of$a$material$to$absorb$and$reradiate$

heat$$$

Helpful$Informa-

on$

Reflectance$Inward Radiation Gain$

Direct Transmittance$

Outward Radiation$

Fenestra-on$SHGC$Requirements$

$$$

Helpful$Informa-

on$

SHGC$0.32$

SHGC$Examples$$$$

Helpful$Informa-

on$

SHGC$=$0.33$

HVAC$Systems$

•  Hea-ng$and$cooling$efficiency$terminology$–  (AFUE)$%$Annual$Fuel$U-liza-on$Efficiency$

–  (HSPF)$%$Hea-ng$Seasonal$Performance$Factor$

–  (SEER)$%$Seasonal$Energy$Efficiency$Ra-o$

(MPG) - Miles Per Gallon

Energy$Efficient$Mechanical$Design$

$$$$IECC$and$IRC$accomplishes$by:$$

– Requiring$minimum$equipment$performance$

– Requiring$the$sizing$of$equipment$– Minimizing$distribu-on$losses$– Op-mizing$system$controls$(commercial)$– Taking$advantage$of$free$cooling$(commercial)$

HVAC$Systems$$

•  HVAC$System$Sizing$Based$On$–  Indoor$Design$Temperatures$– Outdoor$Design$Temperatures$– Conduc-ve$losses$and$gains$– Convec-ve$losses$and$gains$– Solar$radia-on$gains$–  Internal$Loads$$– Ven-la-on$(Commercial$Buildings)$

•  Hea-ng$and$Cooling$Design$Temperatures$–  Indoor$design$temperatures$$– Based$on$the$ASHRAE$Comfort$Envelope$

•  Accounts$for$humidity$and$temperature$

– Factor$in$proposed$ac-vity$for$the$space$– Typical$cooling$temperatures$

•  70$oF$$%$$78$oF$– Typical$hea-ng$temperatures$

•  68$oF$%$75$oF$

HVAC$Systems$

•  Hea-ng$and$Cooling$Design$Temperatures$– Outdoor$design$temperatures$

•  Used$for$sizing$hea-ng$and$cooling$systems$• Winter$Design$Dry%Bulb$99%$

–  Temperatures$will$only$drop$below$1%$of$the$-me$between$November$through$February$

HVAC$Systems$

•  Hea-ng$and$Cooling$Design$Temperatures$– Outdoor$design$temperatures$(con�t)$

•  Summer$Design$Dry%Bulb $1%$–  Temperatures$which$have$been$equaled$or$exceeded$1%$of$the$-me$between$June$through$September$

•  Summer$Design$Wet%Bulb$ $1%$–  Average$of$all$the$wet$bulb$temperatures$occurring$at$the$specific$dry%bulb$temperature$

HVAC$Systems$

•  Space$Condi-oning$Through$Forced$Air$Systems$– Duct$system$design$based$on$

• Pressure$difference$• Fric-on$in$the$duct$system$• Velocity$of$the$air$in$the$duct$system$• Diameter$of$the$duct$$• Volume$of$air$flowing$through$the$duct$system$

HVAC$Systems$

Typical Heating and Cooling Systems

FURNACE

A/C UNIT

Ductwork

Heating and Cooling Efficiency

Temperature & Humidity Controls

Duct Installation and Insulation

Pipe Insulation

HVAC$System$%$Residen-al$

•  Refrigera-on$Cycle$HVAC$Systems$

Outdoor Indoor

$$

Impact$of$Installa-on$Factors$on$Heat$Pumps$&$Central$A/C$$

Helpful$Informa-

on$

5!6!7!8!9!

10!11!12!13!

10! 11! 12! 13! 14!Rated SEER!

Typical Installation

Correct Flow 0.5 Proper Charge 1.5

Sized Right .75 Airtight Ducts 2.0

Fiel

d A

djus

ted

SEER

[SEE

RFA

]!

$$

Please take a 15 minute Break . . .