1 center for detectors, rochester institute of technology 2 mit lincoln laboratory

30
A photon-counting detector for exoplanet missions Don Figer 1 , Joong Lee 1 , Brandon Hanold 1 , Brian Aull 2 , Jim Gregory 2 , Dan Schuette 2 1 Center for Detectors, Rochester Institute of Technology 2 MIT Lincoln Laboratory CfD

Upload: zorana

Post on 22-Feb-2016

31 views

Category:

Documents


0 download

DESCRIPTION

A photon-counting detector for exoplanet missions Don Figer 1 , Joong Lee 1 , Brandon Hanold 1 , Brian Aull 2 , Jim Gregory 2 , Dan Schuette 2. 1 Center for Detectors, Rochester Institute of Technology 2 MIT Lincoln Laboratory. C f D. Detector Properties and SNR. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

A photon-counting detector for exoplanet missionsDon Figer1, Joong Lee1, Brandon Hanold1, Brian Aull2, Jim Gregory2, Dan Schuette2

1Center for Detectors, Rochester Institute of Technology2MIT Lincoln Laboratory

CfD

Page 2: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

2CfD

Detector Properties and SNR

.2

, NtitQEFh

AtQEFh

A

tQEFh

A

NSSNR

readdarkbackinstinst

inst

.

)(2

)(4)()(

for t.equation SNR Solve SNR. particular areach to timeexposure

0 and 0 and 1

2

222,

4,

2

,

QEN

nN

QEN

SNRNQEnNinQENnQENSNRinQENnQENSNR

pixreadiNSNR

readpixdarkpixbackgroundpixdarkpixbackgroundpix

darkbackground

.1,0,0 Detectors, Limited-Q uantumfor QENi r ea dda rk

Page 3: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

3CfD

• The exposure time required to achieve SNR=1 is much lower for a zero read noise detector.

Exoplanet Imaging Example

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0 6,600 2,300 1,311 900 680 544 453 388 338 300 1 7,159 2,674 1,591 1,123 865 703 591 510 448 400 2 8,486 3,457 2,141 1,547 1,209 992 841 730 645 577 3 10,148 4,363 2,760 2,016 1,587 1,309 1,113 968 857 768 4 11,954 5,312 3,402 2,500 1,976 1,633 1,392 1,212 1,074 964 5 13,830 6,281 4,053 2,990 2,369 1,961 1,673 1,459 1,293 1,161 6 15,745 7,259 4,709 3,484 2,764 2,291 1,956 1,706 1,513 1,359 7 17,684 8,244 5,368 3,979 3,161 2,621 2,239 1,954 1,734 1,558

read

noi

se

mag_star=5, mag_planet=30, R=100, i_dark=0.0010

Exposure Time (seconds) for SNR = 1

FOM Quantum Efficiency

Page 4: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

4CfD

• Photon-counting detectors detect individual photons.• They typically use an amplification process to produce a large

pulse for each absorbed photon.• These types of detectors are useful in low-light and high

dynamic range applications– nighttime surveillance– daytime imaging– faint object astrophysics– high time resolution biophotonics– real-time hyperspectral monitoring of urban/battlefield environments– orbital debris identification and tracking

Photon-Counting Detectors

Page 5: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

5CfD

Current

Voltage

Current

Linearmode

Geigermode

Vbr

on

off

Current

Voltage

Current

Linearmode

Geigermode

Vbr

on

avalanche

off

quench

armVdc + V

Operation of Avalanche Photodiode

Page 6: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

6CfD

Performance Parameters Photon detection

efficiency (PDE)The probability that a

single incident photon initiates a current pulse that registers in a digital counter

Dark count rate (DCR) The probability that a

count is triggered by dark current

timetime

timetime

time

Single photon input

APD output

Discriminatorlevel

Digital comparator output

Successfulsingle photondetection

Photon absorbed but insufficient gain – missed count

Dark count – from dark current

Page 7: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

7CfD

Avalanche Diode Architecture

10 µm

0.5 µm

metal metal

p+ implant (collects holes)

p+ implant

n+ implant (collects electrons)

low E-field

high E-field

-V hν

ROIC

metalbump bond

Quartz substrate

+V

10 µm

0.5 µm

metal metal

p+ implant (collects holes)

p+ implant

n+ implant (collects electrons)

low E-field

high E-field

-V hν

ROIC

metalbump bond

Quartz substrate

+V

Page 8: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

8CfD

Zero Read Noise Detector ROIC

8

2 pixels, 50 m2 pixels, 50 m

metal bump bond pad

core(active quench, discriminator, APD latch)

counter rollover latch

counters (4 pixels)

2 pixels, 50 m2 pixels, 50 m

metal bump bond pad

core(active quench, discriminator, APD latch)

counter rollover latch

counters (4 pixels)

Figure 1. (left) Floorplan of the unit cell (2×2 pixels) for a previously-designed 256×256 pixel CMOS ROIC. (right) Photograph of this ROIC.

Page 9: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

9CfD

• Operational– Photon-counting– Wide dynamic range: flux limit to >108

photons/pixel/s– Time delay and integrate

• Technical– Backside illumination for high fill factor– Moderate-sized pixels (25 m)– Megapixel array

Zero Noise Detector Project Goals

Page 10: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

10CfD

Zero Noise Detector SpecificationsOptical (Silicon) Detector Performance

Parameter Phase 1 Goal

Phase 2 Goal

Format 256x256 1024x1024Pixel Size 25 µm 20 µmRead Noise zero zeroDark Current (@140 K) <10-3 e-/s/pixel <10-3 e-/s/pixel

QEa Silicon (350nm,650nm,1000nm) 30%,50%,25% 55%,70%,35%

Operating Temperature 90 K – 293 K 90 K – 293 KFill Factor 100% 100%aProduct of internal QE and probability of initiating an event. Assumes antireflection coating

match for wavelength region.

Page 11: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

11CfD

Infrared (InGaAs) Detector Performance

Parameter Phase 1 Goal

Phase 2 Goal

Format Single pixel 1024x1024Pixel Size 25 µm 20 µmRead Noise zero zeroDark Current (@140 K) TBD <10-3 e-/s/pixelQEa (1500nm) 50% 60%Operating Temperature 90 K – 293 K 90 K – 293 KFill Factor NA 100% w/o lensaProduct of internal QE and probability of initiating an event. Assumes antireflection coating match for wavelength region.

Zero Noise Detector Specifications

Page 12: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

12CfD

• A 256x256x25m diode array has been bonded to a ROIC.

• An InGaAs array has been hybridized and tested.• Testing is underway.• Depending on results, megapixel silicon or InGaAs

arrays will be developed.

Zero Noise Detector Project Status

Page 13: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

13CfD

Air Force Target Image

Page 14: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

14CfD

Anode Current vs. Vbias and T

Page 15: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

15CfD

Dark Current

Page 16: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

16CfD

GM APD High/Low Fill Factor

Page 17: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

17CfD

GM APD Self-Retriggering

Simulated Histogram of Avalanche Arrival Times

Page 18: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

Radiation Testing Program Overview

Page 19: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

19CfD

• Simulate on-orbit radiation environment– choose relevant mission parameters: launch date, mission length, orbit

type, etc– Determine radiation spectrum (SPENVIS)

• Transport radiation particles through shielding to estimate the radiation dose on the detector (GEANT4)

• Choose beam properties• Design/fab hardware• Obtain baseline data (pre-rad)• Expose to radiation• Obtain data (post-rad)

Building Radiation Testing Program

Page 20: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

20CfD

• 2015 launch date, 5 and 11 year mission durations• Radiation flux depends on relative phasing with respect to solar cycle• Choose representative mission parameters specific to each type of orbit

– L2– Earth Trailing Heliocentric– Distant Retrograde Orbits (DRO)– Low Earth Orbit (LEO) – 600 km altitude (TESS)

• Solar protons– ESP model– Geomagnetic shielding turned on

• Trapped e- and p+ – Inside radiation belt– AP-8 Min (proton) model– AE-8 Max (electron) model– Over-predicts flux at high confidence level setting (from SPENVIS HELP page)

Mission Parameters

Page 21: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

21CfD

Orbits

L2

WMAP

EarthTrailing

SIRTF

Sun-Earth Rotating Frame

Sun

Top View(North Ecliptic View)

Earth

Earth LaunchC3 ~ 0.05 km2/s2

185 km altitude28.5° inclination

Earth DRO700,000 ± ~50,000 km

radius from EarthPropagated ~10 years

DRO Insertion~196 Days + L

Delta-V ~150 m/s

DRO

GIMLI

Page 22: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

22CfD

Integrated Particle Fluence

DRO L2

Earth TrailingLEO

Page 23: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

23CfD

Total Ionizing Dose and Non-Ionizing Dose (at L2)

Page 24: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

24CfD

• Now that we know the radiation dose the detector is likely to see, we need to build a radiation testing program that is going to simulate the radiation exposure on orbit

• We need to choose right beam parameters• Energy, dose rate, particle species• Then, choose radiation facility based on factors above as

well as our hardware setup requirements• Vacuum, cryogenics, electrical• We make measurements of relevant quantities pre-,

during, post-irradiation to characterize change in detector performance

Radiation Testing Program

Page 25: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

25CfD

• We want to expose the device to 50 krad (Si).• Due to practical considerations, we can only irradiate

the device with a mono-energetic beam.• A device subjected to 50 krad would see 1.18e9 MeV/g

of displacement damage dose (DDD) on orbit at L2.• Ideally, a 50 krad exposure to the proton beam should

also yield a DDD of 1.18e9 MeV/g to simulate condition on orbit.

• For 60 MeV proton beam, the corresponding DDD to a 50 krad exposure is 1.26e9 MeV/g.

Beam Parameters

Page 26: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

26CfD

• 60 MeV happens to be where the proportionality between TID and DDD on-orbit is preserved– This depends on thickness of shielding. But if we choose energy

around 60 MeV, the proportionality should be more or less preserved.• Dose Rate

– MIL Std 883 Test Method 1019 recommends 50 to 300 rad/sec, although this is for gamma ray beam

– 50 rad/sec will still allow us to complete a radiation exposure run in reasonable amount time (~17 min.)

– It makes sense to follow this as higher the rate more chance the device breaks and for dosimetry reasons

Beam Parameters

Page 27: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

27CfD

Estimate of Induced Dark Current• KDE = JD/ED =q/(A*)*Kdark= 2.09 nA/cm2/MeV at 300 K

– This gives conversion formula to convert ED to current density

– Kdark=(1.9±0.6)105 carriers/cm3/sec per MeV/g for silicon (Srour 2000)

• This is for one week after exposure– A = 6.25*10-6 cm2

– = 2.33 g/cm3

– q = 1.6*10-19 C• For 50 krad exposure to 60 MeV proton beam is ED is 16.05 MeV• Mean Dark Current = KDE ED = 33.5 nA/cm2 at 300 K• Or, Mean Dark Current = 2.25 fA/pixel = 14000 e-/pixel/sec at -20 °C

(one week after exposure)

fA/pixel25.2)25(/36.0

/36.0/5.33)300

1253

1(/10617.8

63.0exp ,C20-At

22

225

mcmnA

cmnAcmnAKKKeV

eV

Page 28: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

28CfD

Test Hardware

Page 29: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

29CfD

• We have developed, and are testing, a 256x256 photon-counting imaging array detector.

• After lab characterization, we will expose four devices to radiation beam and then re-test.

Conclusions

Page 30: 1 Center  for Detectors,  Rochester Institute of Technology 2 MIT  Lincoln Laboratory

30CfD

• Year-long speaker series dedicated to future advanced detectors

• Talks streamed and archived• Email if interested in being on distribution list:

[email protected]

Detector Virtual Workshop