1 cementing drilling engineering. 2 cementing the purposes of this chapter are to present: 1.the...

47
1 Cementing Cementing DRILLING ENGINEERING DRILLING ENGINEERING

Upload: oliver-barton

Post on 23-Dec-2015

273 views

Category:

Documents


17 download

TRANSCRIPT

Page 1: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

1

CementingCementing

DRILLING ENGINEERINGDRILLING ENGINEERING

Page 2: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

2

CEMENTINGCEMENTING

The purposes of this chapter are to present:The purposes of this chapter are to present:

1. The primary objectives of cementing

2. The test procedures used to determine if the cement slurry and set-cement have suitable properties for meeting those objectives.

3. The common additives used to obtain the desirable properties under various well conditions.

4. The techniques used to place the cement at the desired location in the well.

Page 3: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

3

3.13.1 Composition of Portland CementComposition of Portland Cement

Portland cement made by burning limestone and clay.

Oxides of Ca, Al, Fe, Si react at high temperatures in the

Klin (2600 – 2800 oF).

When it cools, it becomes balls of cement clinker.

After aging in the storage, the seasoned clinker is taken to the grinding mills where gypsum is added to (CaSO4.2H2O)

to retard setting time and increase ultimate strength.

It is sold in units of barrels = 376 lbm or four, 94 lbm sacks.

TYPES OF CEMENTTYPES OF CEMENT

Page 4: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

4

Cement is thought to be made up of four crystalline components in the clinker that hydrate to form a rigid structure.

1. Tricalcium silicate (3 CaO.SiO2 or C3S)

2. Dicalcium silicate (2 CaO.SiO2 or C2S)

3. Tricalcium Aluminate (3 CaO.Al2O3 or C3A)

4. Tetracalcium aluminoferrite(4CaO.Al2O3.Fe2O3C4AF)

• The reaction is exothermic and generates a considerable quantity of heat.

• The main cementing compound is 3CaO.2SiO2.3H2O or tobermorite gel = it has extremely fine particle size.

Page 5: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

5

Manufacturing of Portland CementManufacturing of Portland Cement

Page 6: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

6

3.23.2 Cement TestingCement Testing API : Recommended Test procedures Test Equipment

1. Mud balance: to determine slurry density.to determine slurry density.

2. Filter press: to determine filtration rate.to determine filtration rate.

3. Rotational viscometer: to determine rheological propertiesto determine rheological properties.

4. Consistometer: to determine thickening rate characters.to determine thickening rate characters.

5. Cement permeameter: to determine permeability of to determine permeability of the set cement. the set cement.

6. Specimen molds and strength testing machines for determining the tensile and compressive strength.

7. Autoclave : to determine the soundness of cement.to determine the soundness of cement.

8. Turbidimeter : to determine the fineness of cement.to determine the fineness of cement.

Page 7: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

7

3.33.3 Standardization of Drilling CementsStandardization of Drilling Cements

API has defined eight standard classes and three standard types of cement for use in wells.

Classes are designated by letters A to H.Classes are designated by letters A to H. Types are designated by O, MSR, HSRTypes are designated by O, MSR, HSR

To provide uniformity in testing it is necessary to specify the amount of water to be mixed with each type of cement.

Water content ratio, or normal water content or “API water” of the cement class. Table 3.6

Page 8: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

8

Page 9: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

9

Well depth and cementing time relationship used Well depth and cementing time relationship used in definition of API cement classes.in definition of API cement classes.

Page 10: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

10Physical Requirement of API Cement Types. Physical Requirement of API Cement Types.

Page 11: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

11Normal Water Content Of Cement Recommended by APINormal Water Content Of Cement Recommended by API

Page 12: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

12

For each wt% of bentonite added the water content should be increased by 5.3%

For each wt% of barite added 0.2% of water should be added.

For 3.5 : Cement mixing time = 20 cuft/min

Displacement rate = 50 cuft/min

Casing OD = 7.0 in,

Area of Casing = 33.57 sq.in.

Page 13: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

13

Protect and support the casing Prevent movement of the fluid through the annular

space outside the casing Stop the movement of fluid into regular or fractured

formations. Close an abandoned portion of the well.

Cement slurry is made by mixing powdered cement and water.

It is placed by pumping it to the desired location.

The hardened-reacted-cement slurry becomes “set” cement a rigid solid that exhibits strength.

PROPERTIES OF CEMENTPROPERTIES OF CEMENT

Page 14: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

14

At present the cement classes G and H can be modified easily through the use of additives to meet almost any job specifications economically.

Types of cement additives:

(1)Density control additives(1)Density control additives(2)Setting time control additives(2)Setting time control additives(3)Lost circulation additives(3)Lost circulation additives(4)Filtration control additives(4)Filtration control additives(5)Viscosity control additives(5)Viscosity control additives(6)Special additives(6)Special additives

Yield of cement: the volume of slurry obtained per sack of cement used.

Percent mix: Content of water expressed as weight percent.

3.43.4 CEMENT ADDITIVECEMENT ADDITIVE

Page 15: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

15

3.4.13.4.1 Density Control:Density Control:

The density of the cement slurry must be high enough to prevent the higher pressured formation fluids from flowing into the well during cement operation. Yet not so high as to cause fracture of the weaker formations.

Cement density is reduced by using a high water cement ratio, or adding low specific gravity solids, or both.

Page 16: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

16

Low specific gravity solids used to reduce slurry density include:

1. Bentonite2. Diatomaceous earth3. Solid hydrocarbons4. Expanded perlite5. Pozzolan

Slurry density usually is increased by using a lower water content or adding high specific gravity solids. High specific gravity solids used to increase slurry density include:

((a) Hematitea) Hematite(b) Ilmenite(b) Ilmenite(c) Barite(c) Barite(d) Sand(d) Sand

Page 17: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

17

EXAMPLE 3.5 : Use hematite to increase the density of cement Use hematite to increase the density of cement to 17.5 lbm/gal. If the water requirement are 4.5 gal/94 lbm to 17.5 lbm/gal. If the water requirement are 4.5 gal/94 lbm class H cement and 0.36 gal per 100 lbm hematite compute the class H cement and 0.36 gal per 100 lbm hematite compute the amount of hematite that should be blended with each sack.amount of hematite that should be blended with each sack.

SolutionSolution:

Assume X = lbm of hematite / sack of cement Total water requirement of slurry = 4.5 + .0036 X

X = 18.3 lbm hematite / sack of cement

volumetotal

masstotal

)0036.05.4()34.8(02.5)34.8(14.3

94)0036.5.4(34.894

5.17X

XXX

Page 18: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

18

3.4.23.4.2 BentoniteBentonite

• Use for building drilling fluid viscosity.• Also used extensively as an additive for lowering

cement density.• The addition of bentonite lowers the slurry density

because of its lower specific gravity and because its ability to hydrate permits the use of much higher water concentration.

• In addition to lowering slurries density, the addition of bentonite lowers slurry cost.

Page 19: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

19

3.4.33.4.3 DiatomaceousDiatomaceous

• A special grade of diatomaceous earth is used in portland cements to reduce slurry density.

• Lower specific gravity than bentonite.• Permits higher water/cement ratios without

resulting in free water.

Page 20: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

20

3.4.73.4.7 HematiteHematite

• Reddish iron oxide core (Fe2O3) having s specific gravity of approximate 5.02.

• Can be used to increase the density of a cement slurry to as high as 19 lbm/gal.

• The water requirement for the hematite is approximately 0.36gal/100 lbm hematite.

Page 21: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

21

3.4.9 3.4.9 BariteBarite

• Barite or barium sulphate is extensively used for increasing the density of a cement slurry.

• Water requirement for barite is about 2.4 gal/100 lbm of barite.

• The large amount of water required decreases the compressive strength of the cement and dilutes the other chemical additives.

Page 22: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

22

3.4.10 Sand3.4.10 Sand

• Sand having low specific gravity of about 2.63, sometimes used to increase slurry density.

• Sand requires no additional water to be added to the slurry.

• Has little effect on the strength or pumpability of the cement, but causes the cement surface to be relatively hard.

• Also used to form a plug in an open hole as a base for setting a whipstock tool used to change the direction of the hole.

Page 23: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

23

3.4.113.4.11 Setting Time ControlSetting Time Control

The cement must set and develop strength before drilling activities can be resumed.

Compressive strength = 500 psi common

Tensile strength = 40 psi common

For shallow, low temperature wells it may be necessary to accelerate the cement hydration so that the waiting period after cementing is minimized.

Page 24: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

24

Commonly used accelerators:Commonly used accelerators:

1. Calcium chloride (upto 4.0% T < 125oF)*2. Sodium chloride (upto 5%) **3. Hemihydrate form of gypsum (T=low)4. Sodium Silicate (upto 7%)

Cement setting time is also a function of:Cement setting time is also a function of:• Cement composition• Fineness• Water content

Increases compressive strength (generally) at saturations > 5% it acts as retarders used to cement salt and shale formations.

NaCl, CaCl2, MgCl2, at concentrations present in sea water all act as accelerators.

At T > 160oF use retarders when using sea water.

Page 25: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

25

3.4.12 Calcium Chloride3.4.12 Calcium Chloride

• Concentration up to 4% by weight commonly is used as a cement accelerator in wells having bottomhole temp < 125oF.

• Available in regular grade (77% calcium chloride) and an anhydrous grade (96% calcium chloride).

• Anhydrous grade is in more general use because it absorbs moisture less readily and is easier to maintain in storage.

Page 26: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

26

3.4.13 Sodium Chloride3.4.13 Sodium Chloride

• An accelerator used in low concentration.• Max. accelerator occurs at a concentration of

about 5% (by weight of mixing water) for cements containing no bentonite.

• Saturated sodium chloride cements are used primarily for cementing through salt formations and through shale formation that are highly sensitive to fresh water.

Page 27: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

27

3.4.16 Retarders:3.4.16 Retarders:

Deflocculants ( lignosulfonates)

(thinners, dispersants) Halliburton (HR-12) Borax CM HEC

Page 28: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

28

3.4.183.4.18 Filtration Control Additives Filtration Control Additives

Functions:Functions:(1) Minimize hydration of formations containing water-sensitive shales.(2) Prevent increases in slurry viscosity.(3) Prevent formation of annular bridges which can

act as a packer to remove hydrostatic pressure holding back high pressure zones.

(4) Reduce rate of cement dehydration when pumping into abandoned perforated intervals allowing longer plugs.

Commonly used:Commonly used:• Latex• Bentonite with a dispersant • CMHEC• Various organic polymers, such as Halliburton HALAD-9

Page 29: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

29

EXAMPLE 3.6EXAMPLE 3.6 Bil = 17 inBil = 17 in OD = 13.375 in. csgOD = 13.375 in. csg ID = 12.415 in csgID = 12.415 in csg Depth = 2500 ftDepth = 2500 ft high strength cement column at bottom = 500 ft high strength cement column at bottom = 500 ft

composed of class A cement + 2% CaClcomposed of class A cement + 2% CaCl22.. upper 2000 ft low density slurry class A cement + 16% upper 2000 ft low density slurry class A cement + 16%

bentonite + 5% sodium chloride bentonite + 5% sodium chloride Water cement ratio = 13 gal/sackWater cement ratio = 13 gal/sack Excess factor = 1.75Excess factor = 1.75

Compute the slurry volume and number of cement sacks. Annular capacity

sftin

ft 22

222 6006.

4.14)375.1317(

4

SLURRY DESIGNSLURRY DESIGN

Page 30: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

30

Volume of slurry required = 2000 (.6006) (1.75)

= 2102 cu. Ft.

Calculate the yield of cement

=

For Lead (low strength)

= Volume of one sack of cement (A) + Volume of added bentonite per sack (B) + Volume of salt water per sack (C)

cementofsack

slurryofftcu ..

sack

ft

ftlbm

sacklbmwta

wcv

3

34797.0

/)4.62(14.3

/9494)(

sack

ftBentoniteofwtb

bentonite

3

0910.0)4.62(65.2

)94)(16(..)(

Page 31: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

31

(c)=Volume of water = Wt. Of 5% NaCl

= .05 (94) = 4.7 lbm

Water- cement ratio = 13 gal/sack

Water wt. = 13 g.(8.34 ppg)/sack

= 108.4 lbm/sack

Wt. of fraction of NaCl =

From Table 2.3, NaCl = 1.0279 by interpolation Volume of salt water

Yield = 0.4797 + 0.0910 + 1.7633 = 2.334 cuft/sack

No. of sack = 2102 cuft/2.334 cuft/sack = 901 sacks

0415.07.44.108

7.4

sack

ftwaterofwt

salt

2

768.1)4.62(0279.1

7.44.108

)4.62.(

.

Page 32: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

32

High strength tail slurry volumeHigh strength tail slurry volume = (.6006) (500) (1.75) +

= 559.2 cuft

Yield = volume/sackYield = volume/sack

Volume = vol. of cement (one sack) + Vol. of CaCl2

Cement Volume

Wt. of CaCl2 = (0.02) (94) = 1.88 lbm

Wt. Water = (5.2) (8.34) = 43.4 lbm

Wt. Fraction =

144

40)45.12(

42

sackft /4797.0)4.62)(143(

94 3

0415.04.4388.1

88.1

Page 33: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

33

By interpolation from Table 2.4

Volume of salt water (Brine)

Yield = 0.4797 + 0.7025 = 1.182 cuft/sack

No. of sacks of cement sack of cement

Total slurry volume = 2102 + 559.2 = 2661.2 cu.ft.

Total no. of sack of cement = 901 + 473

= 1,374 sacks AnswerAnswer

0329.12CaCl

7025.0)4.62(0329.1

88.14.43

473182.1

2.559

Page 34: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

34

Cement Casing ConventionalCement Casing Conventional

Equipment:Equipment: • guide shoeguide shoe• float collarfloat collar• bottom plugbottom plug• top plugtop plug

Outside casing:Outside casing:• centralizerscentralizers• scratchersscratchers• cement basketcement basket

SUB-SURFACE CASING EQUIPMENTSUB-SURFACE CASING EQUIPMENT

Page 35: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

35

Common Cement Placement Requirements.Common Cement Placement Requirements.

Page 36: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

36

Conventional Placement Technique Conventional Placement Technique used for cementing casingused for cementing casing

Page 37: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

37Guide Shoe Guide Shoe (Courtesy World Oil’s Cementing Handbook)(Courtesy World Oil’s Cementing Handbook)

Page 38: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

38Float collar Float collar (Courtesy World Oil’s Cementing Handbook)(Courtesy World Oil’s Cementing Handbook)

Page 39: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

39

Centralizers: Centralizers: (a) Bow springs welded on end rings (b) centralizer with (a) Bow springs welded on end rings (b) centralizer with

reflector vanes (c) slim-hole centralizerreflector vanes (c) slim-hole centralizer (Halliburton Sales and Service Catalog)(Halliburton Sales and Service Catalog)

Page 40: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

40

(a) Rotating and (b) reciprocating wall scratchers(a) Rotating and (b) reciprocating wall scratchers (Courtesy World Oil’s Cementing Handbook)(Courtesy World Oil’s Cementing Handbook)

Page 41: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

41

Cement baskets Cement baskets (a) in place within the casing and (b) with (a) in place within the casing and (b) with limit rings(Courtesy World Oil’s Cementing Handbook)limit rings(Courtesy World Oil’s Cementing Handbook)

Page 42: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

42

Cementing plugs: Cementing plugs: (a) top and (b)bottom plugs(a) top and (b)bottom plugs (Courtesy World Oil’s Cementing Handbook)(Courtesy World Oil’s Cementing Handbook)

Page 43: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

43

Different cementing placement techniques are used for: Cementing casing strings Cementing liner strings Setting cement plugs Squeeze cementing

3.5.23.5.2 Stage CementingStage Cementing To avoid fracturing formations by reducing cement column

length. To make sure cement is not lost in low-pressure highly

permeable zones.

3.5.33.5.3 Inner-String CementingInner-String Cementing To reduce cementing time and amount of cement left in the

shoe joint of large diameter casing. Performed using drill pipe or tubing.

3.53.5 CEMENT PLACEMENTCEMENT PLACEMENT

Page 44: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

44

3.5.43.5.4 Annular-Cementing through tubing:Annular-Cementing through tubing: It is used to bring cement top of the previously placed

cement to the surface Or to repair casing.

3.5.53.5.5 Multiple String CementingMultiple String Cementing

It is a multiple completion method that involves cementing several strings of tubing in the hold without the use of an outer casing strings.

3.5.63.5.6 Reverse-Circulation CementingReverse-Circulation Cementing

It is used when extremely low-strength formation were present near the bottom of the hole.

The cement is displaced (pumped) down the annulus and the mud is displaced back through the casing.

Page 45: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

45

3.5.73.5.7 Delayed-Setting Cementing Delayed-Setting Cementing

It is used to obtain a more uniform mud displacement. Use retarded cement slurry having good filtration property in

the well bore before running the casing. Cement placement is achieved (accomplished) down the drill

pipe and up the annulus. The drill pipe is then removed and casing is lowered to the

unset cement.

3.5.83.5.8 Cementing linersCementing liners

Latch-down plug separator mud from cement. When it reaches top of liner it actuates a special wiper plug.

Page 46: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

46

When wiper-plug reaches the float collar a pressure increase at the surface signifies the end of the cement displacement.

Liner setting tool are activated by:

1. mechanical device (drill pipe rotated and lowered)

2. hydraulic device : drill pipe rotated or a ball or a plug is dropped and then set by applying pressure.

Tie-back liner = to the top.

Stub-liner = up the liner but not to the top = to repair leak at liner top.

Page 47: 1 Cementing DRILLING ENGINEERING. 2 CEMENTING The purposes of this chapter are to present: 1.The primary objectives of cementing 2.The test procedures

47

3.5.93.5.9 Plug Cementing Plug Cementing

Prevent fluid communications between an abandoned lower portion of the well and the upper part of the well.

Placed using drill pipe or tubing.

Bridge plug is used to assist in forming a good hydraulic seal.