1 borehole instabilities as bifurcation

12
8/8/2019 1 Borehole Instabilities as Bifurcation http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 1/12 Int. J, Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 25, No. 3, pp. 159-170, 1988 0148-9062/88 $3.00 + 0.00 Printed in Great Britain Pergamon Press pic Borehole Instabilities as Bifurcation Phenomena I. VARDOULAKIS* J. SULEMI" A. GUENOT~ In this paper a bifurcation analysis o f a deep borehole under uniform stress at infinity is presented in order to determine the critical rupture load and to predict the failure mechanism. It demonstrates the fact that failure is not a strict material property but depends on the stress path and boundary conditions of the system. Rock is described by the constitutive equations of a deformation theory of plasticity for rigid-plastic pressure sensitive material with dilatancy. The application of the model to real cases shows that this bifurcation analysis is in good agreement with experimental and field observations. 1. INTRODUCTION Borehole breakouts and exfoliations are important phenomena that influence the engineering design of drilling hardware and can become critical for the progress of the drilling process. Breakouts lead in general to progressive deterioration of the borehole. Wellbore breakouts are attributed to the existence of significant deviatoric stresses that act in the horizontal plane at great depth and to the stress concentration around the borehole [1]. Most of the existing work devoted to the prediction of borehole instability is based on elastoplastic models that are usually calibrated on test data from conventional triaxial compression experiments. Most frequently it is assumed that rupture occurs when the stress state is beyond the elastic limit that is usually corresponding to the peak of the stress-strain experimental curve; e.g. Cbeatham [2]. However this procedure presents two major drawbacks: (a) uncertainty up to 800% in pre- dicting the rupture load of well-instrumented, hollow cylinder tests [3]; (b) inadequacy to describe some surface rupture modes usually referred to as "axial cleavage fracture" [4] or "extension rupture" [5]. The first drawback is mainly due to the assumption of linear elastic behaviour up to failure. It should be understood that the full stress concentration at the borehole wall (a factor 2 in the isotropic case) is never reached in practice. Recently, Santarelli et al. [6] have derived the stress field around the borehole in case of a hypoelastic law with Young's modulus depending on the minor principal stress. In this case, the stress concen- tration factor was indeed found less than 2. Both * Department of Civil and Mineral Engineering, University of Minnesota, Minneapolis, MN 55455-0220, U.S.A. f Centre d'Enseignement et de Rechercheen M6caniquedes Sols, Ecole Nationale des Ponts et Chaus6es,Paris, France. ~: La Soci6t6 Nati6nale Elf Aquitaine (Production), Pau, France. R.M.M.S. 25/3---E drawbacks are also related to the ad hoc assumption that rupture should naturally be associated to the elastic- plastic limit. The concept of bifurcation used in this paper provides an alternative to describe rupture. It allows to differ- entiate the rheological behaviour of the material and the rupture phenomenon. Furthermore it is used to explain and predict the occurrence of the various observed failure modes. In this paper a bifurcation analysis of the borehole problem for a rigid-plastic pressure sensitive material with dilatancy is proposed. First the material behaviour is described and the constitutive equations are presented. Then, a solution for the stress field around the borehole is derived. Finally, a complete bifurcation analysis of the borehole problem is proposed in order to predict the failure mode and the critical value of the stress at infinity at failure. 2. PROBLEM STATEMENT AND MATERIAL BEHAVIOUR 2.1. Problem statement We consider here a borehole in a deep rock layer, as illustrated in Fig. 1. Furthermore, we are interested in a deep section of the borehole. Under these conditions we may assume that any deformation of the rock is taking place in a plane normal to the borehole axis. We are dealing thus with a plane-strain problem and all kinematical and statical quantities will be described with respect to a fixed-in-space polar co-ordinate system (r, 0, z) with the z-axis coinciding with the borehole axis. Let (%) denote the Cauchy stress tensor: (~ij) = (~0 ' (l) 0 and let (%) denote the infinitesimal strain tensor with 159

Upload: li-yawei

Post on 10-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 1/12

I n t . J , R o c k M e c h . M i n . S c i . & G e o m e c h . A b s t r . Vol. 25, No. 3, pp. 159-170, 1988 0148-9062/88 $3.00 + 0.00Prin ted in Grea t Bri t a in Perga mon Press p i c

B o r e h o l e I n s t a b i l i t i e s a s B i f u r c a t i o n

P h e n o m e n a

I. VARDOULAKIS*J. SULEMI"

A. GUENOT~

In this pap er a bifurcation analysis o f a deep borehole un der uniform str ess at

infinity is pre se nte d in order to determ ine the critical rupture load and to

predic t the failure mechanism. I t demonstrates the fac t th at failure is not a

stric t materia l prope rty but depends on the stress path a nd boundary conditions

o f the system. R oc k is described b y the constitutive equations o f a deformation

theory o f plastic i ty fo r r igid-plastic pressure sensitive m aterial w ith dilatancy.

The application o f the mod el to real cases shows that this bifurcation analysis

is in goo d agreement with ex perim enta l and f ie ld observations.

1. INTRODUCTION

Borehole breakouts and exfoliations are important

phenomena that influence the engineering design of

drilling hardware and can become critical for the

progress of the drilling process. Breakouts lead in

general to progressive deterioration of the borehole.

Wellbore breakouts are attributed to the existence of

significant deviatoric stresses that act in the horizontal

plane at great depth and to the stress concentration

around the borehole [1].Most of the existing work devoted to the prediction o f

borehole instabi lity is based on elastoplastic models that

are usually calibrated on test data from conventional

triaxial compression experiments. Most frequently it is

assumed that rupture occurs when the stress state is

beyond the elastic limit that is usually corresponding to

the peak of the stress-strain experimental curve; e.g.

Cbeatham [2]. However this procedure presents two

major drawbacks: (a) uncertainty up to 800% in pre-

dicting the rupture load of well-instrumented, hollow

cylinder tests [3]; (b) inadequacy to describe some

surface rupture modes usually referred to as "axial

cleavage fracture" [4] or "extension rupture" [5].

The first drawback is mainly due to the assumption of

linear elastic behaviour up to failure. It should be

understood that the full stress concentration at the

borehole wall (a factor 2 in the isotropic case) is never

reached in practice. Recently, Santarelli et al. [6] have

derived the stress field around the borehole in case of a

hypoelastic law with Young's modulus depending on the

minor principal stress. In this case, the stress concen-

tration factor was indeed found less than 2. Both

* Department of Civil and Mineral Engineering, University ofMinnesota, Minneapolis, MN 55455-0220, U.S.A.f Centre d'Enseignementet de Recherche en M6canique des Sols,

Ecole Nationale des Ponts et Chaus6es, Paris, France.~: La Soci6t6 Nati6nale Elf Aquitaine (Production), Pau, France.

R . M . M . S . 2 5 / 3- - - E

drawbacks are also related to the ad hoc assumption that

rupture should naturally be associated to the elastic-

plastic limit.

The concept of bifurcation used in this paper provides

an alternative to describe rupture. It allows to differ-

entiate the rheological behaviour of the material and the

rupture phenomenon. Furthermore it is used to explain

and predict the occurrence of the various observed

failure modes.

In this paper a bifurcation analysis of the borehole

problem for a rigid-plastic pressure sensitive material

with dilatancy is proposed. First the material behaviour

is described and the constitutive equations are presented.

Then, a solution for the stress field around the borehole

is derived. Final ly, a complete bifurcation analysis of the

borehole problem is proposed in order to predict the

failure mode and the critical value of the stress at infinity

at failure.

2 . P R O B L E M S T A T E M E N T A N D M A T E R I A L

B E H A V I O U R

2 .1 . Problem s ta tementWe consider here a borehole in a deep rock layer, as

illustrated in Fig. 1. Furthermore, we are interested in a

deep section of the borehole. Under these conditions we

may assume that any deformation of the rock is taking

place in a plane normal to the borehole axis. We

are dealing thus with a plane-strain problem and all

kinemat ical and statical quantities will be described with

respect to a fixed-in-space polar co-ordinate system

(r, 0, z) with the z-axis coinciding with the borehole axis.

Let (%) denote the Cauchy stress tensor:

( ~ i j ) = ( ~ 0 ' ( l )

0

and let (%) denote the infinitesimal strain tensor with

159

Page 2: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 2/12

1 6 0 V A R D O U L A K I S e t a l . : B O R E H O L E I N S T A B I L I T I E S

I-: ' . / l t ~ ' l l l / " i ~ ' " / t ~ l l l t l l

/

, . . , r o . - .

• z > > r o

E : z = 0 ' , .

f/

/ •

// •

/ • ,

I •

II .

I .

I .I

, -.

\

\\ .

\ •

\: . . . . \

• ( r • , \

. i / . ]

• I

. //

/• • f

/

J

Fig. 1 . Geom etr ic layout o f a deep boreho le .

( a )

( b )

r e s p e c t t o a n i s o t r o p i c r e f e r e n c e c o n f i g u r a t i o n o f t h e

b o r e h o l e :

(E~ ) = E0 (2 )

0

L e t o0 a n d o ~ d e n o t e t h e i n t e r n a l b o r e h o l e p r e s s u r e a n d

t h e i s o t r o p i c s t re s s a t i n f i n it e d i s t a n c e f r o m t h e b o r e h o l e ,

r e s p e c t i v e l y :

0 < 0 0 < 0"~ .

T h e u n s u p p o r t e d b o r e h o l e i s c h a r a c t e r i z e d b y t h e

c o n d i t i o n :

0 0 = 0 ( 3 )

B y a s s u m i n g c o m p r e s s i o n n e g a t i v e w e h a v e :

a r ( r o ) = - a o , a r ( o o ) = - o ~ . (4 )

F o r a n e q u i l i b r i u m s t r e s s f i e l d :

_ _ 1

dar + _ ( a t - 0 0 ) = 0 , ( 5)d r r

a n d c o n s e q u e n t l y f o r

r o < r < c o t he n a 0 < a , < 0 . (6)

W h e n 0 ~ i s s m a l l a s c o m p a r e d t o t h e u n i a x i a l c o m -

p r e s s s t r e n g t h 0 ¢ o f t h e r o c k , t h e d e f o r m a t i o n o f t h e

b o r e h o l e c o r r e s p o n d s t o a u n i f o r m r e d u c t i o n o f t h e

b o r e h o l e r a d i u s , u n i q u e l y d e t e r m i n e d b y t h e b o u n d a r y

s t re s s es ( F i g . 2a ) . T h e d e f o r m a t i o n o f th e b o r e h o l e a t a

c o n s i d e r e d c o n f i g u r a t i o n C , is d e s c r i b e d b y t h e " t r i v i a l "

a x i s y m m e t r i c d i s p l a c e m e n t v e c t o r f i e l d :

= o , 0 } T . ( 7 )

T h e b o r e h o l e i s a s s u m e d t o b e u n s t a b l e a t C a s s o o na s in a d d i t i o n t o t h e a b o v e " t r i v i a l " s o l u t i o n 6i a n o t h e r

n o n - t r i v i a l s o l u t i o n 6 i e x i st t h a t f u lf il h o m o g e n e o u s

b o u n d a r y c o n d i t i o n s . I n t h i s c a s e a n e q u i l i b r i u m b i f u r -

c a t i o n i s s a i d t o b e t a k i n g p l a c e a t C . T h e c o r r e s p o n d i n g

b i f u r c a t i o n m o d e i s t h e n a l i n e a r c o m b i n a t i o n o f t h e

t r iv i a l a n d o f th e n o n - t r i v ia l m o d e :

u~ = clfi~ + c26~ (8)

A p o s s i bl e b i f u r c a t i o n m o d e is w a r p i n g o f t h e b o r e -

h o l e w a l l ( F i g . 2 b ) . A c c o r d i n g t o V a r d o u l a k i s a n d

M f i h l h a u s [ 7] , t h e w a r p i n g m o d e m u s t b e a c c o u n t e d f o r

f o r m a t i o n o f s h e a r b a n d s ( F i g . 3 b ) o r e x f o t i a t i o n a t t h eb o r e h o l e w a l l d u e t o a c t i v a t i o n a n d s u b s e q u e n t u n s t a b l e

p r o p a g a t i o n o f p r e - e x is t i n g l a t e n t s u r fa c e p a r a ll e l c r a c k s

( F i g . 3 a ) . S u r f a c e p a r a l l e l c r a c k i n g a n d s h e a r b a n d i n g

a r e t h u s t h e d o m i n a n t f a i l u r e m o d e s a t t h e b o r e h o l e

wall

2.2• Material behaviour

A s w e h a v e s e e n a b o v e , t h e l i n e a r e l a s ti c t h e o r y i s n o t

s u f fi c ie n t to d e s c r ib e t h e r e a l b e h a v i o u r o f r o c k s . V a r i o u s

p h e n o m e n a l i k e p r e s u r e s e n s i t i v i t y , s t r a i n h a r d e n i n g ,

n o n - l i n e a r v o l u m e t r i c s t r a i n s e v e n i n t h e s o - c a l l e d

" l i n e a r " p a r t o f t h e s t re s s - s t r a i n l a w , m u s t b e t a k e n

i n t o a c c o u n t . T h i s i s p o s s ib l e w i t h a t h e o r y o f p l a s t ic i t y

f o r s t r a i n h a r d e n i n g , p r e s s u r e s e n s it i v e a n d d i l a t a n t

m a t e r i a l

( a )

Fig . 2 . Deformat ion modes : ( a ) ax isymmetr ic d isp lacement , (b)warp ing .

Page 3: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 3/12

V A R D O U L A K I S e t a l . : B O R E H O L E I N S T A B I L I T I E S 161

ExfoLiation

i i i ! i ( a )

Shear- banding

• • . • , " . •

. . . ~ •

•' . " • " / ~ " . . '.

• " " ~ " " • " " " . " % 1 • " •

( b )

Fig . 3 . Fa i lu re m ode s : (a ) e x fo l ia t ion , (b ) s h e a r -b a nd ing .

T h r o u g h o u t , t h is p a p e r w e w i ll r e f e r t o e x p e r i m e n t a l

d a t a o f a l im e s t o n e ( C a l c a i r e d ' A n s t r u d e ) . A n e x p e r i -

m e n t a l p r o g r a m o f u n ia x i a l a n d t r i a x ia l t e s t s h a s b e e np e r f o r m e d b y F a b r e a n d O r e n g o [8 ] a n d o f t hi c k w a ll

c y l i n d e r s t es t s b y G u e n o t [3 , 9 ]. F o r t h e u n i a x i a l a n d

t r ia x i a l t e s t it is o b s e r v e d t h a t t h e s l o p e o f t h e u n l o a d i n gcu rves i s a lmos t ve r t i ca l P la s t i c s t ra ins a re l a rge ly

p r e p o n d e r a n t o n e l a s t ic s t ra i n s s o t h a t r i g i d -p l a s ti c i ty i s

i n t h i s c a s e a n a c c e p t a b l e a s s u m p t i o n . A v e r y s i m i l a r

a n a l y s i s c a n b e e a s i l y d e v e l o p e d w i t h a n e l a s t o - p l a s t i c

m o d e l

F o r t h e s a k e o f s i m p l i c i t y w e a d o p t h e r e s m a l l s t r a i n

d e f o r m a t i o n t h e o r y . T h e C a u c h y s t r e s s a n d t h e

i n f in i te s im a l s t r a in a r e d e c o m p o s e d i n t o t h e i r d e v i a t o r i c

and sphe r i ca l pa r t s a s fo l lows :cri j = s i j + p r o ; p = akk / 3 , (9 )

¢~j= e 0 + G6o /3; G = Ekk, (10)

w h e r e p i s t h e m e a n p r e s s u r e a n d G i s t h e v o l u m e t r i c

s t ra in . In th i s pape r , we wi l l d i s cus s the fo l lowing f in i t e

c o n s t it u ti v e e q u a t io n s o f a d e f o r m a t i o n t h e o r y f o r

c o h e s i v e - f r i c t i o n a l , s t r a i n h a r d e n i n g a n d d i l a t a n t

ma te r i a l [ 7] :

1 s 0 ( 1 1 )e~j = 2hs q - p '

G = D(g), ( 1 2 )

where g i s t he shea r ing s t ra in in t ens i ty

g = ~ . . (1 3)

In the cons t i tu t ive equ a t io n (11) q i s a con s tan t

p a r a m e t e r , r e l a te d t o t h e t e n s i le s t r e n g t h o f th e m a t e r i a l ,

and h~ i s a ha rde ning func t ion o f the shea r ing s t ra in

i n t e n s i t y . E q u a t i o n ( 1 2 ) c o n s t i t u t e s a c o n s t r a i n t f o r t h e

s t ra i n s , a n d c o n s e q u e n t l y t h e m e a n p r e s s u r e p i s a

k i n e m a t i c a l l y i n d e t e r m i n a t e q u a n t i t y .

I n o r d e r t o i ll u s tr a t e t h e m e a n i n g o f t h e a b o v e

equa t ions (11) and (12) a s e t o f s tre s s inva r i an t s i si n t r o d u c e d a s f o l l o w s :

Shea r s t re s s in t ens i ty :

Iz = ~ 2 s q s o , (14)

S t re s s ob l iqu i ty :

= - - . ( 1 5 )t a n O ~ q - - P

F r o m t h e c o n s t i t u t i v e e q u a t i o n ( 1 1 ) a n d t h e d e f i n i t i o n s

(14) and (15) we f ind tha t :

tan Ipog - h s ( 1 6 )

B y a d o p t i n g t h e u n i q u e c u r v e h y p o t h e s i s o f th e d e f o r -m a t i o n t h e o r y [ 1 0 ] :

t a n ~ = F ( g ) . (17)

hs in equa t io n (11) can be iden t i f i ed a s a s ecan t mod u lus

o f t h e a p p r o p r i a t e s t r e s s - s t r a in c u r v e t a n @ ~ = F ( g ) :

hs = tan @~ _ F (g ) (18)g g

F i g u r e s 4 a a n d b i l lu s t r a te t h e m e a n i n g o f t h e s tr e s s

o b l i q u i t y a n g l e 4 o a n d o f t h e s e c a n t m o d u l u s h s,

q( a )

tan~u

h s

g

(b )

Fig . 4 . S t r e s s ob l iq u i ty : (a ) de f in i t ion , (b ) s t r e s s ob l iq u i ty s t r a ind ia g ra m , h , = s e ca n t m odu lu s , h t = t a nge n t m o du lu s .

Page 4: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 4/12

1 6 2 V A R D O U L A K 1 S et al.: B O R E H O L E I N S T A B I L I T I E S

3 . C A L I B R A T I O N O F T H E C O N S T I T U T I V E M O D E L

I n o r d e r t o i d e n t i f y t h e f u n c t i o n s F ( g ) a n d D ( g ) t h a t

e n t e r i n t h e d e s c r i p t i o n o f t h e m a t e r i a l, v i a e q u a t i o n s

(11, 12 and 17) on e shou ld ana ly se the p l ane s t ra in

c o m p r e s s i o n t e st . D u e t o t h e l a c k o f e x p e r i m e n t a l d a t a

o n p l a n e - s t r a i n t e s ts w e h a v e t o c a l i b r a te t h e c o n s t i t u t iv e

m o d e l o n t h e u n i a x i a l c o m p r e s s i o n t e s t ( F ig . 5 ) w h i c h is

a c o m m o n l a b o r a t o r y e x p e r i m e n t f o r w h i c h d a t a f o rv a r i o u s r o c k t y p e s a r e r e a d i l y a v a i l a b l e .

3.1 . Stra in-s tre ss law and dilatancy constraint

I n c a s e o f u n ia x i a l c o m p r e s s i o n , t h e C a u c h y s t r e s s

t e n s o r i s g i v e n b y t h e f o l l o w i n g m a t r i x :( 0 0 )( a , j ) = 0 0 , ( 1 9 )

0 (~::

w h e r e

FG z z = - - o ' < 0 ; 0 " =

x R 2 '

i s t he ax ia l s t re s s . In equa t ion (20) F i s t he ax ia l fo rce an d

R i s th e c u r r e n t r a d i u s o f th e s p e c i m e n .

S ta r t ing f rom a s t re s s f ree i so t rop ic in i t i a l conf igu r -

a t i o n C o f th e r o c k s p e c i m e n , t h e d e f o r m a t i o n C o ~ C

t h a t y i e l d s t o t h e c u r r e n t c o n f i g u r a t i o n C is m e a s u r e d b y

the in f in i t e s ima l s t ra in t ensor :

0 .

w h e r e

E z : < E rr = EO 0 ,

a n d

H- no R - RoE:: = ~ < 0; E,~ = ~ (2 3)

H0 R0

I n e q u a t i o n ( 2 3 ) H o ( H ) a n d R 0 ( R ) a r e t h e h e i g h t a n d

rad iu s o f the spec im en in C0(C) , r e spec t ive ly .

IF

H

Z T - rI , , ,

i l l l i i • • n i t

J r - O

ab a

2 R

Fig . 5 . A x i s ymmet r i c un iax ia l c ompr es s ion t es t .

(3 "S

Cm

%

Fig. 6. Mohr 's plane of s t resses .

I n t h e c o n s i d e r e d c a s e w e o b t a i n t h e f o l l o w i n g e x p r e s-

s ions for the va r ious s t re s s inva r i an t s :

(2 0 ) p = -o r / 3 ; ~ = ~ r / v '~ , (24)

t a n $ ~ a / x / ~+ a / 3 " (25)

B e t w e e n th e m o b i li z e d M o h r - C o u l o m b f r ic t io n a n g l e

~bm of the ma te r i a l (F ig . 6 ) and the s t re s s ob l iqu i ty an gle

~k~ the fo l low ing re l a t ionsh ip i s ho ld ing:

s in ~bm = (x/~ /2) tan ~o1 + tan ~bo/(2x/~ ' (26)

w h e r e t h e m o b i l i z e d c o h e s i o n C m i s g i v e n b y :

Cm = q ta n ~bm. (27)T h e e x p e r im e n t a l r e s u l ts m a y b e p l o t t e d i n t e r m s o f

(22) shea r ing s t re s s in t ens i ty vs shea f ing s t ra in in t ens i ty g :

= T ( g ) . ( 2 8 )

I n t h e c o n s i d e r e d c a s e o f a u n i a x i a l c o m p r e s s i o n , w e

have :

g = 2 (E , - E=) /x /f3 . ( 29)

F i g u r e 7 s h o w s t h e s t r e s s - s t r a i n d a t a f r o m a u n i a x i a l

c o m p r e s s i o n t e s t o n t h e l im e s t o n e ( C a l e a i r e d ' A n s t r u d e ) .

T h e s e d a t a h a v e b e e n f i t t e d b y t h e f o l l o w i n g c u r v e :

T = C,g + C2Ln(1 + C3g) , ( 30)

0 ~ 0

O0 1 5 O /r n o /

, ,. 4 D o t

~ e ~ F i t

6 / •

J . J . . "5

I I I

O 0 . 1 0 . 2 O . ~

S hear s t r o i n , g ( % )

F i g . 7. S t re s s - s t ra i n c u r v e ¢ = T ( g ) , e x p e r i m e n t a l d a t a a n d f i t t in g f o rt he l imes tone (Ca lc a i r e d 'A ns t r ude) .

Page 5: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 5/12

V A R D O U L A K I S e t a l . : B O R E H O L E I N S T A B I L I T I E S 1 63

w h e r e

C~ = 1.11390 x I (P M Pa;

C 2 = 11 .8504 M Pa;

C3 = - 242,08 (31)

T h e e x p e r i m e n t a l r e s u l t s w i t h r e s p e c t t o v o l u m e

c h a n g e s c a n b e a p p r o x i m a t e d b y a n a p p r o p r i a t e f u n c -t i o n D ( g ) a s i n d i c a t e d b y e q u a t i o n ( 12 ). I n t h e c o n -

s i d e r e d c a s e ( C a l c a i r e d ' A n s t r u d e ; F i g . 8 ) i t w a s f o u n d

tha t :

D = C 4 g + CsL n (1 + C 6 g ) , (32)

w h e r e

C4 = 24.25;

C5 = - 1.0;

C6 = 24.823. (33)

3.1. I. D iscussion on the volumetric flow rule. F o r t h eg i v e n s et o f d a t a , e q u a t i o n s ( 3 2 ) a n d ( 33 ), t h e c o m p u t e d

di l a t ancy func t ion i s found to y i e ld unrea l i s t i ca l ly h igh

v a l u e s f o r t h e r a t e o f v o l u m e i n c r e a s e . T h i s i s c e r ta i n l y

d u e t o t h e f a c t t h a t u s u a l l y (a s in t h i s c a s e w a s a c t u a l l y

d o n e ) , r a d i a l s t r a i n s a r e m e a s u r e d l o c a l l y b y t h e p l a c e -

m e n t o f s t r a in g a u g e s o n t h e sp e c i m e n s s u r f a ce . L o c a l

r a d i a l s t r a i n m e a s u r e m e n t s a r e t h e n p r o v i d i n g e r r o n e o u s

v o l u m e t r i c s t r a i n s d u e t o t h e e f f e c t o f b u l g i n g o f t h e

s p e c i m e n .

T h e e x p e r i m e n t a l r e s u l t s , h o w e v e r , i n d i c a t e a s t r o n g

t e n d e n c y t o w a r d s d i l a t a t i o n . I t i s a s s u m e d t h a t t h e

expe r ime nta l da t a a re re l i ab le for g < g t --- 1 .9 x 10-3 ;

f o r g > g~ w e a s s u m e t h a t t h e r a t e o f v o l u m e i n c r e a s e

d D / d g i s cons tan t and equa l t o i t s va lue a t g = g~.

I n o r d e r t o d e t e rm i n e t h e m a g n i t u d e o f p a r a m e t e r q

a d d i t i o n a l i n f o r m a t i o n o n y i e l d c o n d i t i o n s i s n e e d e d .

W e w i l l s h o w i n t h e n e x t s e c t i o n h o w a b i f u r c a t i o n

a n a l y s i s o f t h e t r ia x i a l c o m p r e s s i o n t e s t a ll o w s t o p r e d i c t

t h e v a l u e o f th e u n i a x i al c o m p r e s s i o n s t r e n g t h a ¢ a n d o f

the m ob i l i zed f r i c t ion angle a t fa i lu re ~b~. q i s r e l a t ed to

a~ and ~b~ th rou gh the fo l lowing eq ua t ion :

q = ~- co t ~b~ co t [v~ + -~ - ) . (34 )

F i r s t w e a s s u m e a v a l u e q 0 f o r p a r a m e t e r q . W ed e v e l o p a b i f u r c a t i o n a n a l y s i s t o d e t e r m i n e a ~ a n d ~ b ~ .

0 . 1 2

,<0 . 0 9

._=o 0 . 0 6

• ~ 0 .O3

• D a t a

F it

I ,, I0 ' . , , 0 . t 0 / 0 - 0 .2 0 . 3

• s e ~

- - 0 . 0 3 * ~ e e ' e ' l ~ e " e ' J l '° '°

S h e a r s t r a i n , g ( % )

Fig . 8 . Volumetr ic s t ra in -she ar curve ~ v : D (g) , exper imenta l da ta a ndfitting for the l imes tone (Ca ica i re d 'Ans t ru de) .

q l i s t hen g iven by equa t io n (34) . We i t e ra t e the p roces s

unt i l con verge nce o f the s e r ie s q~ to the l imi t q .

3.2. Bifurcation analysis of the axisymmetric uniaxialcompression test

F r o m e x p e r i m e n t a l o b s e r v a t i o n s , i t a p p e a r s t h a t s h e a r

b a n d f o r m a t i o n i s t h e m a j o r f a i l u r e m o d e f o r t h e

c o n s i d e r e d l i m e s t o n e ( C a l c a i r e d ' A n s t r u d e ) . U s i n g t h ed a t a o f t h e s t r e s s- s t r a i n c u r v e a n d o f t h e v o l u m e t r i c

cu rve i t i s pos s ib l e to deve lop a b i fu rca t ion ana ly s i s t o

pred ic t t he va lue of ax ia l s t re s s aB for wh ich shea r

b a n d f o r m a t i o n i s p o s s i b l e u n d e r a x i s y m m e t r i c u n ia x i a lc o m p r e s s i o n .

3.2.1. Incremental constitutive equations. T h e g e n e r a l

f o r m o f t h e i n c r e m e n t a l c o n s t i t u t i v e e q u a t i o n s c a n b e

de r ived f rom the i r f in i t e fo rm, equa t ions (11) and (12) ,

t h r o u g h f o r m a l d i f f e r e n t i a t i o n w i t h r e s p e c t t o t i m e ( s e e

[11 , 12] ) . Le t ~u and o3 /j be the s t ra in ra t e and sp intensor , r e spec t ive ly :

g i j = ( V i . j "1 - V j , / ) / 2 ; f . b ij = ( V i . j - - V j . i ) 1 2 ( 3 5 )

w h e r e v / i s t h e v e l o c i ty a n d ( . )j = O/Ox~.

I n c r e m e n t a l c o n s t i t u t i v e e q u a t i o n s a r e w r i t t e n i nt e r e m s o f o b j e c t i v e J a u m a n n s t re s s r a te v / :

vor~~ dis ~ a , j + a ~ 6 J k s . ( 3 6 )

T h e r a t e f o r m o f t h e c o n s t it u t iv e e q u a t i o n s f o r th e

d e v i a t o r i c s t r e s s i s:

V s ~ j = _ [ : + 2 ( q _ p ) ( h _ h t ) S ,,~ , ,1q - P sin,S,m_]

X S/j + 2(q -- p )h ,~ u . (37)I n t h e a b o v e c o n s t i t u t iv e e q u a t i o n ( 37 ), t h e r a t e p o f

t h e m e a n p r e s s u r e is k in e m a t i c a l l y i n d e t e r m i n a t e . T h i s i s

a c o n s e q u e n c e o f th e a s s u m e d d i l a t a n c y c o n s t r a i n t ( 12 ).

S t a r ti n g f r o m a c o n s t ra i n t o f th e f o r m o f e q u a t i o n

( 1 2 ) , a n e x p r e s s i o n f o r t h e s t r a i n r a t e s c a n b e o b t a i n e dby t ime d i f fe ren t i a t ion :

w h e r e

iv =/~g, (38)

dD. 2eu~ij (39)f l= d g " ~ = g

T h e a b o v e i n c r e m e n t a l e q u a t i o n s ( 3 8 ) a n d ( 3 9 ) c a n b e

e v a l u a t e d f o r v a r i o u s s t a t e s o f i n it ia l s t r e s s in o r d e r t ob e u s e d i n a s h e a r b a n d a n a l y s i s .

I n t h e c a s e o f a x i sy m m e t r ic u n i a x i a l c o m p r e s s i o n a s i t

i s desc r ibed by equa t ions (19) and (21) (of . F ig . 5 ) the

cons t i tu t ive equa t ions (37) and (38) become ( s ee [13] ) :

~r,, = (1 - ta n ~k¢/3v/3)/~

+ # , ( ~ , , - ~ 0 0) - / a t e =

~r:. (I + 2 ta n ik=Iv/ 3)/~ 211t~,:

V •

o r ,, - a o o = 2 / ~ , ( e , , - ~ )

Vo ' , : : 2 p s G =

(40 )

Page 6: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 6/12

1 6 4 V A R D O U L A K I S e t a l . : B O R E H O L E I N S T A B I L I T I E S

w h e r e #~ a n d # , a r e a p p r o p r i a t e s e c a n t a n d t a n g e n t s h e a r

m o d u l i :

# s = ( q - p ) h ~ ; IA = ( q - p ) h ~ , (41)

a n d

6 2 = x ' / '5 + 2 , b ' ( 4 2 )

3.2.2. S h e a r b a n d a n a l y s i s . S h e a r - b a n d a n a l y s i s h a s

b e e n e x p l a i n e d i n m a n y r e c e n t p a p e r s [ 1 1 , 1 3 -1 5 ]. A b r i e f

o u t l i n e o f t h i s t y p e o f a n a l y s i s w i l l b e p r o v i d e d h e r e .

T h e c o n d i t i o n f o r t h e l o c a li z a t io n o f t h e d e f o r m a t i o n

i n t o a s h e a r - b a n d c a n b e d e r i v e d f r o m t h e r e q u i r e m e n t

t h a t t h e i n t e r n a l a n d e x t e r n a l s t r e s s v e c t o r s a c r o s s a

s h e a r - b a n d b o u n d a r y a r e i n e q u i l i b r i u m . G e n e r a l l y , t h e

s t a t i c a l c o m p a t i b i l i t y c o n d i t i o n s r e a d :

[•,j]nj = 0, (43 )

w h e r e I l k ;j ] d e n o t e t h e j u m p o f t h e r a t e o f t h e 1 .

P i o l a - K i r c h h o f f s t r e s s t e n s o r a c r o s s t h e s h e a r - b a n d

b o u n d a r y w i t h t h e u n i t o u t w a r d n o r m a l v e c t o r ( n ; ) .

~ 0 c a n b e e x p r e s s e d i n t e r m s o f t h e c o n s t i t u t i v e s t r e s s

ra t e ~r ;j acco rd ing to the fo l low ing equa t ion :

l~;j = ~r;j + oS;k ~j - a ;~ kj + %~kk. (44 )

T h e s h e a r - b a n d b o u n d a r i e s a r e a s s u m e d t o b e s t a t i o n -

a r y d i s c o n t i n u i t y s u r f a c e s o f t h e v e l o c i t y g r a d i e n t .

A c r o s s s u c h a s h e a r - b a n d b o u n d a r y , t h e f o l l o w i n g g e o -

m e t r i c a l c o m p a t i b i l i t y c o n d i t i o n h o l d :

[v/j] = Vin j . (45)

a x i s y m m e t r i c c o n d i t i o n s e q u a t i o n ( 4 3 )n d e r

b e c o m e s :

[~',r]nr + (~',: + 2t [¢h])n: = 0v

([a=,] + 2 t [ t h ] ) n , + [V=]n: = 0 (46)

where t i s t he s t re s s d i f fe rence :

t = ( a , - a : ) /2 (47)

an d cb is the spin:

69 = (v: . , - v , . : ) /2 . (48)

D u e t o t h e a s s u m e d a x i s y m m e t r i c s t a t e o f in i ti a l

s t re s s th e s o l u t i o n c o r r e s p o n d s t o a f a m i l y o f sh e a r -b a n d s e q u a l l y i n c l in e d w i t h r e s p e c t t o t h e z - a x i s o f t h e

spec imen:

Vo = no = 0. (49)

S u b t i t u t i n g t h e g e o m e t r i c a l c o m p a t i b i l i t y c o n d i t i o n s

( 4 5 ) i n t o t h e s t a t i c a l c o m p a t i b i l i t y e q u a t i o n s ( 4 6 ) a n d

u s i n g c o n s t i t u t iv e e q u a t i o n s ( 4 0) , t w o j u m p c o n d i t i o n s

f o r [ p ] c a n b e d e r i v e d . E l i m i n a t i n g f r o m t h e s e e q u a t i o n s

t h e j u m p [ p ] o f t h e m e a n p r e s s u r e y i e l d s fi n a ll y th e w e l lk n o w n f o r m o f th e l o c a l i z a ti o n c o n d i t i o n s [ 13 ]:

an ~ + b n~n Z : + c n ~ = 0, (50)

w h e r e

a = # s + t

b = (2 + 2 :)( 2 + 62 )#t/3 + ,~262].2s

- - 2 2 ( # s + t ) - - g 2 ( # s _ t ) .

c = , ~ , 26 2 ( # ~ - t )

2 2 = ( 1 + s i n 4 ~ m ) / ( l- s i n q S , ~ ) = t a n ~ + (5 1)

T h e o r i e n t a t i o n a n g l e 0 B ( F ig . 9 ) o f t h e s h e a r b a n d a x i s

wi th re spec t t o the rad ia l d i rec t ion i s t hen g iven by :

0B = arc tan ( - n r / n : ) (52)

D e p e n d i n g o n t h e s t a t e o f s t ra i n , t h e c h a r a c t e r i s ti c

e q u a t i o n ( 5 0 ) w il l p r o v i d e c o m p l e x o r r e a l c h a r a c t e r i s ti c

d i r e c ti o n s . L o c a l i z a t i o n i s a s s u m e d t o o c c u r a t t h e s t a te

C B ( B f o r b a n d ) w h e r e t h e c h a r a c t e r i s ti c e q u a t i o n

chan ges type ( see [14 , 16]) . Th i s c on di t ion i s fi r st ly me t

a t t h e s t a t e C s :

C B ( b / 2 a ) < O a n d d = b 2 - 4 a c = 0 . (53)

A t C s o n l y t w o s y m m e t r i c s h e a r - b a n d d i r e c t io n s e x i st ,

g iven by :

0 s = + a r c ta n ( L _ \ # - ~ J | j . (5 4 )

F o r a n y s t a t e b e y o n d t h e s t a t e C a , t h e r e a r e f o u r r e a l

s o l u t i o n s f o r t h e s h e a r - b a n d o r i e n t a t i o n . A c c o r d i n g t o

t h e e x p e r i m e n t a l e v i d e n c e , h o w e v e r , th e o b s e r v e d s h e a r -

b a n d s u s u a l l y b e l o n g t o a s in g le f a m i l y o f s y m m e t r i c

so lu t ions ; s ee F ig . 9 . Th i s obse rva t ion ju s t i f i e s the s e l ec -

t i o n o f C a a s t h e c r i ti c a l b i f u r c a t i o n s t a t e f o r s h e a r - b a n df o r m a t i o n . E q u a t i o n ( 5 3 ) i s t h u s c a ll e d t h e " l o c a l i z a t io n

c o n d i t i o n " .I n t h e c a s e o f t h e c o n s i d e r e d l i m e s t o n e ( C a l c a i r e

d ' A n s t r u d e ) t h e c o m p u t e d c r i t i c a s l v a l u e g s f o r s h e a r -

b a n d f o r m a t i o n i s :

gs = 2.46 x 10 -3, (55)

O"

F i g . 9. S h e a r - b a n d b i f u r c a t i o n m o d e .

Page 7: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 7/12

V A R D O U L A K IS et al.: BOREHOLE INSTABILITIES 165

a n d c o n s e q u e n t l y :

$ s = 3 6 . 2 ° ; a s = 2 8.9 M P a ; q = 1 0 M P a . (5 6)

T h e c o m p u t e d s h e a r - b a n d i n c l i n a t i o n 0B w i t h re s p e c t

t o t h e r a d i a l d i r e c t i o n i s :

0 s = 60 ° . (57)

T h e e x p e r i m e n t a l v a l u e o f t h e u n i a x ia l c o m p r e s s i o ns t r e n g t h ( p e a k o f t h e s t r e s s - s t ra i n c u r v e ) is 31 M P a a n d

t h e e x p e r i m e n t a l v a l u e o f t h e f r i c t i o n a n g l e $ ~ d e t e r -

m i n e d f r o m a s e ri e s o f t r i a x i a l c o m p r e s s i o n t e s ts i s 3 7 ° .

I t i s a l s o o b s e r v e d e x p e r i m e n t a l l y t h a t t h e d o m i n a n t

f a i l u r e m o d e i s a c t u a l l y s h e a r - b a n d i n g . T h e p r e s e n t

b i f u r c a t i o n a n a l y s i s i s i n g o o d a g r e e m e n t w i t h e x p e r i -

m e n t a l o b s e r v a t i o n s . T h e f a i l u re o f t h e s a m p l e a n d t h e

m o d e o f f a i l u r e i s p r e d i c t e d f r o m o n l y t h e d a t a o f

s t r e s s - s t r a i n a n d v o l u m e t r i c s t r a i n c u r v e s .

3 . 3 . G enera l i za t i on t o p lane s t ra i n condi t ions

D u e t o l a c k o f ex p e r i m e n t a l d a t a o n p l a n e s t r a i nu n i a x i a l c o m p r e s s i o n t e s t s w e h a v e t o i n t r o d u c e a d -

d i t i o n a l a s s u m p t i o n s i n o r d e r t o g e n e r a l i z e t h e a b o v e

m o d e l t o p l a n e s t r a in c o n d i t i o n s . T h e a s s u m p t i o n m a d e

i s t h a t t h e h a r d e n i n g l a w ~b~ = ~ b = ( g ) a n d t h a t t h e

v o l u m e t r i c s t r a i n l a w E~ = e ~ (g ) a r e t h e s a m e i n t h e

a x i s y m m e t r i c u n i a x i a l c o m p r e s s i o n t e s t a n d i n th e p l a n e

s t r a i n t e s t .

4 . S T R E S S F I E L D A R O U N D T H E B O R E H O L E

I n t h i s s e c t i o n w e w i ll d e ri v e a n u m e r i c a l s o l u t i o n f o r

t h e s t r e s s f i e l d a r o u n d t h e b o r e h o l e . A s a l r e a d y m e n -

t i o n e d i n S e c t i o n 2 . 1 . w e a r e d e a l i n g h e r e w i t h a p l a n e

s t r a i n p r o b l e m .

4 .1 . P lane s t ra i n analys i s

F o r p l a n e s t r a i n d e f o r m a t i o n s t h e s t r e s s a n d s t r a i n

t e n s o r s a r e g i v e n b y e q u a t i o n s ( 1 ) a n d ( 2 ) . I n t h i s c a s e ,

t h e s h e a r i n g s t r a i n i n t e n s i t y is g i v e n b y t h e f o l l o w i n g

e x p r e s s i o n :

= ~ 2 / £ 2g , + ( 5 8 )

L e t

"1,, = E r - - E0 ,

f r o m e q u a t i o n ( 5 8 ) w e o b t a i n :

r x / ~ 1 2 (6 0)= -- ~;v.

I n t h e c a s e o f a n i n c o m p r e s s i b le m a t e r i a l :

g = y = £, -- e0. (61)

L e t a , a n d a s b e t h e o r i e n t a t i o n a n g l e s o f t h e d e v i a t o r i c

s t r a i n v e c t o r i n s t r a in s p a c e a n d o f t h e d e v i a t o r i c s t r e ss

v e c t o r i n s t r e s s s p a c e , d e f i n e d a s f o l l o w s ( F i g . 1 0 ) :

c o s 3 a , = - x / ~ eqe#ekt(e , ,~ e , . ) 3 /2

co s 3=~ = - x / ~ s q s j i s , i (62)312

(59)

slQ $

f~ . . "/ / /

I// \ ~ .. ~t " /

° 2 \ . . .

/ / ¢>, , , . .~

/)-"

J

Fig. I0. Deviatoric stress space---orientation of the deviatoric stress

vector "s.

D u e t o t h e c o n s t i t u t i v e e q u a t i o n (1 1 ) th e d e v i a t o r i c

s t r a i n t e n s o r i s p r o p o r t i o n a l t o t h e d e v i a t o r i c s t r e s s

t e n s o r a n d c o n s e q u e n t l y t h e s t r a in v e c t o r a n d t h e s t re s s

v e c t o r a r e a s s u m e d t o b e a l w a y s c o a x i a l in t h e d e v i a t o r i c

p l a n e :

e i j = k s q ~ ct~ = *q = ~. (6 3)

B y s e t t i n g :

W e f i n d t h a t :

A = - -~r /~O. (64 )

(A -- l ) (A + l /2 ) (A + 2)co s 3ct~ = - - (A 2 + A + 03/2 (65)

F r o m t h e a b o v e d e f i n i t i o n s w e c a n d e r i v e e x p r e s s io n s

f o r t h e p r i n c i p a l d e v i a t o r i c s t r e s s e s i n t e r m s o f t h e

s h e a r i n g s t r e s s i n t e n s i t y x a n d o f t h e a n g l e c o :

2S I= ~' c COStX

'v -

s : = - ~ T c o s 5 - a , (6 6)

S 3 = - ~ "C COS + ~X

# 3w h e r e

an d

0 ~< a ~ -~, (67)

s2 < s3 < sl . (68)

B y u s i n g t h e a b o v e d e f i n i t i o n s e x p r e s s io n s f o r t h e

m o b i l i z e d f r i c t i o n a n g l e (])., a n d t h e m o b i l i z e d c o h e s i o n

Page 8: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 8/12

1 6 6 V A R D O U L A K I S t a l . : B O R E H O L E N S T A B I L IT I E S

C m c a n b e d e r iv e d f r o m M o h r ' s d i a g ra m :

c os ( 6 - c ~ ) t a n q/o

t o ( a )

O. 8

13oo

sin ~bm = , (69 ) xb

1 _ _ s in ( 6 _ c t ) ta n ~ / ` / ~ - ~ i ! f " l ° 'e I /~ ' c - -I 0 "O *Cm = q ta n q~m" (7 0) -,~ 4',~

b4 .2 . Equa t ions o f the problem

The s t r e s s f i e l d a r o un d t he bo r e ho l e i s o b t a in e d

thro ug h the in teg ra t ion of the fo l lowing d i f fe ren t ia l t J I J I I I oosystem : °I z 3 4 5 ~ r a

Eq u a t i o n o f s t r a i n c o mp a t ib i li t y : P

des = C - - Eo (71) ~.o tb)d r r /

E q u a t i o n o f e q u i li b ri u m :

da , a , - aod r + r = O, (72)

l a e l / ~ 00.5 }with bo un da ry cond i t ions : *'o (o)

a r ( r o ) = - a o ; a ,( o o ) = - a ~ . (7 3)

By us in g t he d i l a t a n c y c o n s t r a in t ( 1 2 ) a n d a l s o

e q ua t i o n s ( 20 ) a n d ( 59 ), t he e q ua t i o n o f s t r a in c o m p a t i -b i l i ty (71) r e sul t s to the fo l lowing d i f fe ren t ia l equ a t ion t

o 0.5 1.o

fo r the she ar-st ra in inten sity g: I r~l/tr=

d g 2 L (g ), (74) Fig. 11. (a) Stress field aroun d the borehole, (b) stress-path underd r r u n i f o rm s tr e s s a t i n f in i ty r ~ = a d z

w h e r e

L ( g ) = [ g 2 - ½ D 2 ( g ) ] / [ ~ g x / g 2 - ½ D 2 ( g ) s e n t s t he r e l a t i o n s h ip be tw e e n t he r a d i a l a n d t he ho o p

s t re s s ho ld in g a t v a r i o us r a d i a l d i s t a n c e s f r o m the b o r e -

~ g l ho l e c e n t e r i s s ho w n o n F ig . l i b . F r o m th i s f i g u re i t

- g + ½D(g) ( 75 ) f o l lo w s t ha t t he ho o p s t r e s s a t t he bo r e ho l e w a l l i s l o w e r

tha n t he o n e p r e d i c t e d by l i n e a r e la s t ic i ty . Th i s r e s u l t is

By us in g e q ua t i o n s ( 15 ) a n d ( 66 ) t he e q ua t i o n j u s ti f ie d by t he f a c t t ha t a p r e s s u r e s e n s it iv e ma te r i a l i s

o f e q u i l i b r ium ( 72 ) r e s u lt s f i n al l y t o t he f o l l o w in g s t if f er a n d c o n s e q ue n t ly m o r e s t a b l e t ha n a l i n e a r e l a st i c

d i f f e re n t i a l e q ua t i o n f o r t he r a d i a l s t re s s a , : o n e . I t i s o bv io us t ha t t he mo b i l i z ed f r i c ti o n a n g l e i s

d tr r 2 d e c r e a s in g v e r y r a p id ly w i th i n c r e a s in g d i s t a n c e f r o m the= - - ( q - a r ) M ( g ) , (76) bore hole wa l l. Fa i lu re i s then expec ted to occur in the

d r r imm e d ia t e v i c in it y o f t he bo r e ho l e w a ll .

w he r e As a l r e a d y me n t io n e d i n S e c t i o n 2 .1 . t he r e a r e ba s ic -

( 7 ~ ) ( 6 ) a ll y t w o t y p e s o f f a il u re m o d e s : s h e a r b a n d i n g ( F ig . 3 b)t a n ¢ , c o s ~ - ~ F ( g ) c o s - c t a n d " e x t e n s io n r u p t u r e " o r s u r fa c e b u c k li n g a s i t h a s

M ( g ) = 2 = 2 ( 77 ) be e n o bs e r v e d i n ha r d a n d b r i t t le r o c k s ( F ig . 3 a ). The s e

1 - - - - ~ _ co s ta n ~k, 1 7=_-cos , t F ( g ) tw o typ e s o f fa i l u r e m o d e s w il l be a n a lys e d in t he n e x t,/3 ,/3 p a r t by a l i n e a r b i f u r c a t i o n t he o r y .

The d i f f er e n t ia l s y s t e m ( 7 4) a n d ( 77 ) w i th b o u n d a r y

c o n d i t i o n s (7 3 ) c a n be t he n s o lv e d n ume r i c a l l y by us in ga 2 r i d o r d e r R un g e - - Ku t t a i n t e g r a t i o n s c he me .

4 .3 . A numer ica l example

F ig u r e 1 a i l lu s t r a te s t he v a r i a t i o n o f t he s t re s s e s a n d

o f t h e m o b i l i z ed f r i ct i o n a n g le i n t h e n e i g h b o u r h o o d o fthe bo r e ho l e f o r t he c a s e o f t he l ime s to n e " Ca lc a i r ed 'A n s t r ud e " ( s ee S e c t i o n 3 ) w i th t r~ = ac /2 = 1 5 . 5 M P aa n d % = 0 . The c o r r e s p o n d in g s t r e s s p a th w h ic h r e p r e -

5 . B I F U R C A T I O N A N A L Y S I S O F T H E B O R F ,H O L E

I n t h e p r e s e n t s e c t i o n th e m a g n i t u d e o f t h e h o o p s tr es sa t t h e b o r e h o l e w a l l i s d e t e r m i n e d f o r w h i c h f o r m a t i o no f s he a r ba n d a t t h i s l o c a t i o n o r s u r f a c e i n s t a b i l i t y i sp o s s ib l e . V a r d o u l a k i s a n d P a p a n a s t a s io u [ 1 7 ] ha v e r e -

c e n t l y p r o v e d by a n ume r i c a l a n a lys i s t ha t t he c r i t i c a lb i f u r c a t i o n s t r e s s i s n o t a f f e c t e d by t he g r a d i e n t o f t he

s t r e s s a t t he bo r e ho l e . Th i s o bs e r v a t i o n y i e ld s t o as ig n i f i c a n t s imp l i f i c a t i o n i n t he c o mp u ta t i o n a l p r o -

Page 9: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 9/12

167

ClOo

cedure . By neglec t ing the s t ress gradient we may s imu-la te a smal l domain (d) of the borehole wal l by aninf inite ly long s t r ip loa ded unde r 0.0 and a ° in plan e

s t ra in condi t ions as shown on Fig. 12.

5.1 . I ncremen t a l cons t i t u t i ve equat i ons

Under plane s t ra in condi t ions , the ra te form of the

consti tut ive equations (31) and (38) is the following (seealso [18]):

v = (1 --f~ )p +C,1~1," 1 1

v = (1 - f 2 ) P + C21~1," 2 2

v = (1 -f 3 )P +C31E,1.33

V0.12 = 2gs~ 12

~11 "4- 62(~22 = 0

w h e r e

2fl = ---= cos ~ tan ~o

, / 3

f 2 = 2 - ~ cos ( ; - ~ ) t a n ~b,, /3

-F CI2~22

-F C22 ~22

+ C32~22

f3 = ~2~ cos ( ; + ~ ) tan ~bo,

CI, = 2{2 #s - 2(#, - #t) co s2 ~}/3

C22 = 2{2 , , - 2 (#, - , , ) cos2 ( 3 - ~ )} /3

C:31 = 2 { - # , + 2 ( # , - # ,) c o s ( ; + ~ ) c o s ~ } / 3

(78)

(79)

C32 = 2 { - # , - 2 (# s - # t) c o s ( 3 + ~ ) co s ( ; - a ) } / 3

( 8 0 )

In the above express ions # t and # , a re appropr ia tetangent and shear modul i g iven by equa t ion (41) .

The di la tancy parameter 62 in equa t io n (78) is r e la tedto f l th roug h the fol lowing express ion:

1 + - - - t a c o s - ~ fl

t~2 ----=~" x /3 (81)

1 - - - F c o s = / ~

4 35.2 . Shear band analys i s o f t he suppor t ed boreho le

U n d e r plane s t ra in condi t ions the k inemat ica l andsta t ica l compat ib i l i ty equa t ions ( 4 3 ) a n d ( 4 5 ) a c r o s s a

shear -band boundary become (see [16]) :

[ v , , s ] = ~ , n j

[ ~ , , ] n , + f i g ' , : ] + 2 t [ o ) ] ) n 2 = 0

([~2,] + 2t [o~])n, + [v~a]n = O, (82)

V A R D O U L A K I S e t a l . : B O R E H O L E I N S T A B I L I T I E S

( a )

/ ~ ' ~ ~ (~ro

( b )

F i g . 1 2 , S i mu l a t i o n o f t h e behav i o u r o f a sma l l d o m a i n d a t t hebo reho l e wa l l : ( a ) su r f ace i n s t ab i l i t y , ( b ) shea r -ban d i n g .

where t is the stress difference in the plane of defor-mation, and cb is the spin:

t = (0., -- 0.2)/2

= ( v ~ . , - v , . ~ ) / 2 . ( 8 3 )

Du e to the assumed plane s t ra in condi t ion s the shear-band plane i s perpend icu la r to the plane of deformat ion :

(3 = n 3 = O . (8 4 )

Fr om th e a b ove gove r n ing e qu a t i ons a nd t h e co r r e -sponding const i tu t ive equa t ions (78) , the charac te r i s t icequa t ion for shear -band format ion under plane s t ra incondi t ions becomes [18] :

a n 4 + b n ~ n~ + c n~ = 0, (85)where

a = # s + t

b = C22 + 22c52C,~ - 22(C t2 + #~ + t ) - 62 (C2, + #~ - t )

c = ; t2 , 52 ( # , - t )

1 - f j = t an 2 + " ( 8 6 )

The or ienta t ion angle 0a (Fig . 12b) of the shear -bandaxis with respect to the radial direction is then given by:

0a = arctan ( - n l / n 2 ) . (87)

Depending aga in on the s ta te of s t r a in , the char -acter ist ic equation (85) wil l provide complex or realcharac ter i s t ic d i rec t ions . As m ent io ned in Sect ion 3 .2 .2 . ,loca l iza t ion i s assumed to occur a t a s ta te CB wherecharacter ist ic equation changes type, i .e . a t :

C n : ( b / 2 a ) < O a n d d = b 2 - 4 a c = O . (88)

Page 10: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 10/12

168 V A R D O U L A K I S e t a l . : B O R E H O L E I N S T A B I L I T I E S

At Ca o n ly tw o s y mm e t r i c s he a r - ba n d d i r e c t io n s e x is t ,

g iven by:

0 8 = +_ a r c t a n { E 2 2 ~ z ( ~ t ~ - t ~ ] ~ / 4 ~ (89)

I t was obta ined tha t the c r i t ica l s t r a in gB a t CB does

no t dep end on the conf in in g pressure 0"0 and con-

sequ ent ly th e m obi l ized f r ic t ion q~B a t CB is inde pen den tof 0"0 . Th e c r i t ica l hoo p s t r e ss a °~ for which s hea r -b and

form a t io n i s poss ib le wil l o f course de pen d on 0"0.

D i f f e r e n t ia t i n g a n d c o m bin in g e q ua t i o n s ( 92 ) s o a s t oe l imin a t e /5 y i eld s t he f o l l o w in g e q ua t i o n f o r t he s t r e a mf un c t i o n :

a~k.,,,, + b l / / 1 2 2 2 --1--C ~ / / 2 2 2 2 - f " 7~ ( ff .,~ + ) - 2 6 2 1 / / . 2 2 ) = 0. (94)

wh ere a , b , c , 2 2 a re g iven b y equ a t ions (86).

Fol lo wing Bio t [19] p lane s t r a in su r face ins tabi l i tie s

c a n be a n a lys e d by s e t t i n g :

~ , = - - H f ( x ) s i n ymlz

5 .3 . S ur fac e i n s tab i l i t y

O n e p o s si b il it y f o r i n h o m o g e n e o u s d e f o r m a t i o n i s t h ef o r ma t io n o f n a r r o w z o n e s o f l o c a l i z e d s he a r , t he s o -

c a l l e d s he a r - ba n d s a s i t i s p r e s e n t e d a bo v e . An o the r

p o s s ib i li t y i s a s u r f a c e buc k l i n g m o d e t ha t w i l l c a us e t he

o p e n in g o f l a t e n t a x i a l c r a c k s a n d w i l l p o s s ib ly l e a d t o

s l a bb in g f a i l u r e mo d e s .As a l r e a d y m e n t io n e d t he c r i t i ca l b i f u r c a t i o n s t r e ss i s

n o t a f f e c te d by t he g r a d i e n t o f t he s t re s s a t t he bo r e ho l ew a l l . W e ma y the n s imu la t e a s ma l l d o ma in ( d ) o f t he

bo r e ho l e w a l l by a n i n f i n i t ely l o n g s t r i p l o a d e d un d e r a 0a n d a ° ( F ig. 1 2 a) . Ac c o r d in g t o t h i s mo d e l , t he " s ho r t

w a v e l e n g th l i m i t " m o d e o r s u r fa c e b u c kl i n g m o d e c o u l dbe a p p l i e d t o p r o v id e t he c r i t i c a l b i f u r c a t i o n s t r e s s f o r

s l a bb in g o f t he bo r e ho l e w a l l ( s ee a l so [ 12 ]) . To s tud y t he

s t a b i l it y o f c o n t i n u e d e q u i l i b r i um in C the e x i s t en c e o f

a s p e c i a l t yp e o f n o n ho mo g e n e o us i n f i n i t e s ima l t r a n -s i ti o n , C~ C ' , i s i n v e s t i g a te d w i th C s e rv in g a s t he

r e f e r e n c e c o n f ig u r a t i o n . Th e v e lo c i t y fi el d f o r s uc h a

m o t i o n h a s t h e f o r m :

Vk = Vk(Xt , x2)e / ' , (90)

w h e r e t d e n o t e s ti m e . I f a n u n b o u n d e d n o n - p e r i o d i cs o lu t i o n e x i st s ( f > 0 ) , t he n t he e q u i l ib r i um in C , un d e r

d e a d l o a d in g c o n d i t i o n s , i s i n he r e n t l y un s t a b l e . Thecr i t ica l s ta te wi th f = 0 i s the b i furc a t ion s ta te .

The f ie l d e q ua t i o n s a r e e x p r e s s e d in t e r m s o f t he r a t e

o f t he 1. P io l a - K i r c hh o f f s t re s s t e n s o r , w i th C be in g t he

r e f e r e n c e c o n f ig u r a t i o n :

~ j , j = X r ~ (91)

w h e r e ( : ) = d / d t ; Z is t he d e n s i t y o f t he m a te r i a l.

Us in g t he c o n s t i t u t i v e e q ua t i o n s ( 1) t he e q ua t i o n ( 1 4 )be c o me s :

(1 --f l)P .I + Cllvl. , j + (Ct2 + O ' I ) / 3 2 . 2 1

= ' ~ e ' ( j [ 'I s 0'' "OI-.2)/3''212

/ 0", - 0"='~+ +- - g- ) / 3= . , , +(1 +A):.=

+ ( C 2 ~ + 0 " 2 ) v , . 1 2 + C 2 2 v 2 , 2 2 = Z 6 2 ( 9 2 )

In o rde r to fu lf il the d i la tan cy con di t ion g,~ + 62d22 = 0a s t r e a m f un c t i o n ~ , ( x ~ , x 2 ) i s i n t r o d uc e d , s uc h t ha t :

61 = 62q/.2; ~2 = --~k.1. (9 3)

X I X 2x = ~ , y = m n ~ ( m = l , 2 . . . ) , (95)

w he r e 2 n i l p l a ys t he r o l e o f a w a v e l e n g th . W i th t h i s

a s s ump t io n e q ua t i o n ( 9 4 ) be c o me s :

a f " - ( m n ) 2( b + k ) f " + ( m n ) 4 ( c + ) , 2 ~ 2 k ) f = 0 , ( 8 6 )

with

k = Z ( f H / m x ) 2 . (97)

The s o lu t i o n o f ( 96 ) i s o f t he f o r m:

4

6(x ) = ~ Cjexp (mrr ~jx) , (98)j = l

where Cj a re in tegra t ion cons tan ts and ~j sa t i s f ie s thec ha r a c t e r i s t i c e q ua t i o n :

a~4 - (b + k) ~] + (c + 2262k) = 0. (99)

The bo un d a r y c o n d i t i o n s e x p re s s t ha t t he c o n f in in g

p r e s s u r e ao r e m a i n s c o n s t a n t a n d a c t s n o r m a l l y o n t h e

s u r f a c e o f t he l a ye r a t x = 0 . M a the m a t i c a l l y t he s ec o n d i t i o n s r e a d :

£~jn: = o ° (nk g, - n ,a~ ) v~ . ,. ( !0 )

Us in g e q ua t i o n s ( 4 4 ) a n d ( 7 8 ) t he bo un d a r y c o n -

d i t i o n s c a n be e x p r e s s e d i n t e r ms o f 6 :

f o r x = 0

" + ( m n ) 2 6 = 0

a f " - (m n)2 (P + k )z3 ' = 0 (101)

w h e r e

P = C z2 - 62(C21 + / 4 - t) + , ~ 2 ( C i 1 ~ 2 - C 1 2 . (102)

Sur face ins tabi l i t ie s a re on ly poss ib le in the e l l ip t ic

reg ime of the cha rac te r i s t ic equa t ion (85) ( see [12] ) :

( EC) E l l i p ti c c o mp le x r eg ime :

d = b 2 - 4ac < 0. (103)

( EI ) E l l i p t ic im a g in a r y r e g ime :

d = b 2 - 4 a c > 0 ; b / a > O ; c / a > O . (104)

The i n t e g r a t i o n c o n s t a n t s C j a r e c a l c u l a t e d by w r i t in gthe bo u n d a r y c o n d i t i o n s ( 1 01 ) a n d a s k in g f o r n o n - t r i v ia l

s o lu t i o n s ( ( 2 :. = 0 ) . A t t h e b i f u r c a t i o n p o i n t ( k = 0) thef o l l o w in g e q ua t i o n i s o b t a in e d :

P ( , , / 7 - ~ - 6 2 )1 a + , 5 2 ( . , / ~ + b / a ) + c l a = O . (105)

Page 11: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 11/12

V A R D O U L A K I S et aL: B O R E H O L E I N S T A B I L I T I E S 1 69

40

~m

j l O 0 1

JIOrl

30

20

10m

I I I I I I I I I I I I I

2 3 4 5 6 7 B

P

Fig. 13, Cr i t ical s t ress f ield around the borehole at fai lure.

J

4 0

30

( ' P m2 O

1 0

Th e c r i t i ca l s t r a in gs fo r wh ich su r f ace ins tab i l i ty i s

p o s s i b l e i s t h e s o l u t i o n in the elliptic regime (d < 0 o r

d > 0 with b /a > O, c /a > 0 ) o f t h e g o v e r n i n g e q u a t i o n

(105) .

5.4 . I l lustrative example

F o r t h e c a s e o f t h e c o n s i d e r e d l i m e s t o n e ( C a l c a i r e

d ' A n s t r u d e ) , i t w a s f o u n d t h a t t h e r e is n o s o l u t i o n f o r

equ a t ion (105) in th e e l l ip t i c r eg ime . Su r f ace ins tab i l i t i e s

a r e no t pos s ib le fo r th i s ma te r ia l and sh ea r f a i lu r e i s th e

d o m i n a n t f a i l u r e m o d e . I t w a s a c t u a l l y o b t a i n e d t h a t

e q u a t i o n ( 8 8 ) h a s a s o l u t i o n . T h e c o m p u t e d c r i t i c a l s h e a r

s t r a i n g B f o r w h i c h s h e a r f o r m a t i o n i s p o s s i b l e i s:

gB = 3.35 x 10 -3. (106)

T h e c o r r e s p o n d i n g m o b i l i z e d f r ic t i o n a n g l e ~bB a n d

s h e a r - b a n d i n c l i n a ti o n a n g l e 0 3 a r e:

q~3 = 37.1 °; 03 = 62.1 °. (10 7)

Wi th th ese va lu es , i t i s th en poss ib le , a s sh own in

S e c t i o n 4 , t o c o m p u t e t h e c o r r e s p o n d i n g s t r e s s f i e l d

a r o u n d t h e b o r e h o l e w a l l a t t h e s t a t e o f f a il u r e.

I n p a r t i c u la r f o r a n u n s u p p o r t e d b o r e h o l e t h e c o m -

p u t e d c r i t i c a l h o o p s t r e s s i s :

e°03 = 30.5 M Pa , (108)

and th e cor r esponding c r i t i ca l s t r e s s a t in f in i ty i s ( s ee

Fig. 13) :

3 4 3 M P a . ( 1 0 9 )

A n e x p e r i m e n t a l p r o g r a m f o r te s ti n g t he b e h a v i o u r a t

f a i lu r e o f t h i c k - w a l l c y l i n d e r s w i t h t h e s a m e l i m e s t o n e

h a s b e e n p e r f o r m e d b y G u e n o t [3 , 9 ]. T h e e x p e r i m e n t a l

v a l u e f o r t h e c r i t i c a l e x t e r n a l s t r e s s t h a t c o r r e s p o n d s t o

E = 4 0 M P a . T h e o b -n t e r n a l f a i l u r e w a s f o u n d a s a ~ c r

s e r v e d f a i l u r e m o d e w a s s h e a r b a n d i n g ( F i g . 1 4 ) . T h e

c r i ti c a l v a l u e a n d t h e f a i l u re m o d e o b t a i n e d w i t h i n

t h e f r a m e o f t h e p r e s e n t t h e o r y i s i n g o o d a g r e e m e n t

w i t h t h e e x p e r i m e n t a l o b s e r v a t i o n s . I t s h o u l d b e

e m p h a s i z e d t h a t t h e l in e a r e l a s t ic t h e o r y w o u l d g i v e

a ® c r = a ° r / 2 = 1 5 . 2 M P a . A s a l re a dy m e n ti o n ed in

S e c t i o n 4 t h e h o o p s t r e s s a t t h e b o r e h o l e w a l l i s l o w e r

t h a n t h e o n e p r e d i c t e d b y l i n e a r e l a s t i c i t y .

~:~i~ ~ !iii

Fig . 14 . Ex per imen ta l obs er v a t ion o f t h i c k wal l c y l inder f a i lu r e fo r t he l imes tone (Ca lc a i r e d 'A ns t r ude) .

Page 12: 1 Borehole Instabilities as Bifurcation

8/8/2019 1 Borehole Instabilities as Bifurcation

http://slidepdf.com/reader/full/1-borehole-instabilities-as-bifurcation 12/12

1 7 0 V A R D O U L A K I S e t a / . : B O R E H O L E I N S T A B I L I T I E S

R e m a r k - - I t s h o u l d b e n o ti c e d t ha t f o r o t h e r m a t er i al s

s u r f a c e i n s t a b i l i t y w a s f o u n d t o b e t h e d o m i n a n t f a i l u r e

m o d e .

A c k n o w l e d g e m e n t s - - T h e author s wi s h to thank La Soc i r t6 Nat iona leE l f A q ui t a ine (P r od uc t ion) fo r s uppor t ing th i s r es ear c h

6 . C O N C L U S I O N

E x p e r i m e n t s o n h o l l o w c y l i n d e r s a n d a c t u a l o b s e r -

v a t i o n s i n u n d e r g r o u n d e x c a v a t i o n s s e e m t o i n d i c a t e

t h a t t h e r e a r e b a s i c a ll y t w o t y p e s o f f a i lu r e m o d e s : s h e a rb a n d i n g a s it is s h o w n i n F i g . 1 4 a n d " e x t e n s i o n

r u p t u r e " o r s u r f a c e b u c k l i n g a s i t h a s b e e n o b s e r v e d f o r

e x a m p l e i n h a r d a n d b r i t tl e r o c k s a s i n t h e S o u t h A f r i c a n

d e e p m i n e s ( q u a r t z i t e ) .

T h e a b o v e b i f u r c a t i o n a n a l y s is is c o n s i s t e n t w i t h t h e s e

o b s e r v a t i o n s . A l t h o u g h i t i s b a s e d o n s e v e r a l s im p l i f y i n g

a s s u m p t i o n s , t h i s a n a l y s i s a l l o w s t o d e t e r m i n e t h e c r i t i -

c a l b i f u r c a t i o n s t r a i n s a n d s t r e s s e s a n d t o p r e d i c t t h e

f a i l u r e m o d e . I t d e m o n s t r a t e s t h e f a c t t h a t f a i l u r e i s n o t

a s tr i c t m a t e r i a l p r o p e r t y b u t d e p e n d s o n s t r e s s -p a t h a n d

b o u n d a r y c o n d i t i o n s o f t he s y s te m .

T h e a p p l i c a t i o n o f t h e m o d e l t o r e a l c a s e s h a sp r o v i d e d a s a t i s f a c t o r y e x p l a n a t i o n o f e x p e r im e n t a l

o b s e r v a t i o n s .

D u e t o t h e l ac k o f e x p e r im e n t a l d a t a o n p l a n e s t r a i n

t e s t s w e h a d t o c a l i b r a t e t h e c o n s t i t u t i v e m o d e l o n t h e

u n i a x i a l a x i s y m m e t r i c c o m p r e s s i o n t e st . A c o r r e c t e v a l u -

a t i o n o f th e s t r e s s - s t r a in l a w f o r th e b o r e h o l e p r o b l e m

w o u l d a c t u a l l y r e q u i r e a n a p p r o p r i a t e e x p e r i m e n t a l a n d

t h e o r e t i c a l p r o c e s s a s f o l l o w s : t h e s t r e s s - s t r a i n c u r v e

f r o m u n i a x i a l p l a n e s t r a in c o m p r e s s i o n t e s t m u s t b e f ir s t

k n o w n . T h e n t h e p r e se n t t h e o r y c a n b e a p p l ie d i n o r d e r

t o p r e d i c t a s t r e s s - p a t h f o r t h e b o r e h o l e p r o b l e m ( s e e

Sec t ion 4 , F ig . 1 b ) . Wi th th i s s t re s s -pa th a s a f i r s t

a p p r o x i m a t i o n a p l a n e s t r a i n b i a x i a l t e s t s h o u l d b e

p e r f o r m e d a n d e v e n t u a l l y a c o r r e c t i o n t o t h e c u r v e f i t s ,

e q u a t i o n s ( 3 0 ) a n d ( 32 ), s h o u l d b e d o n e . T h i s m e a n s t h a t

t h e c o r r e c t e v a l u a t i o n o f t h e s t r e s s - s tr a i n l a w s h o u l d

f o l l o w a n i t e ra t i ve p r o c e s s o f th e o r e t i c a l p r e d i c t i o n a n d

e x p e r i m e n t a ti o n . T h i s i s o f p r i m a r y i m p o r t a n c e f o r

m o d e l l i n g t h e co n v e r g e n c e o f u n d e r g r o u n d o p e n i ng s . I t

i s t hen pos s ib l e a s i t i s p roposed in th i s pape r ( s ee

S e c t i o n 5 ) t o d e v e l o p a b i f u r c a t i o n a n a l y s i s to d e t e r m i n e

t h e f a il u r e c o n d i t i o n s o f th e b o r e h o l e c o r r e s p o n d i n g t o

t h e r e a l s t r e s s- p a t h o f t h e s y s t e m .

R E F E R E N C E S

1. B e l l J . S . and G ough D . I . Nor theas t - s ou thwes t c ompr es s iv e st res sin Alber ta: evidence f rom oi l wel ls . Earth Planet. Sci. Lett. 45,

475--482 (1979).2. Ch eat ham J . B. Wellbore s tabi li ty. J. Petrol. Technol. June,

889-896 (1984).3 . Gueno t A . Con t r a in t es e t r up tur es au tour de fo r ages p r t r o l i e r s .

Pr oc . 6 th Cong r . I SR M, M ont r r a l (1987) .4 . Gr amber g J . and Roes t J . P . A . Ca tac l as t i c e f f ec t s i n r oc k s a l t

l a b o r a t o r y a n d in-situ meas ur ement s . CEC, Nuc lear Sc ienc e andT e c h n o l o g y , R a p p o r t E U R 9 2 5 8 E N ( 1 9 8 4 ) .

5 . M aur y V. O bs er v a t ions , r ec her c hes e t r r s u l t a t s r c c en t s s ur l esmr c an i s m es de r up tur e au tour de ga i e t i es i so l res . R epo r t o f t heC o m m i s s i o n o n R o c k F a i l u r e M e c h a n i s m s . Proc. 6th Congr.1 S R M , M ont r ea l (1987) .

6 . S an ta r e l l i F . J . , Br own E . T . and M au r y V. A na lys i s o f bor eho les tresses us ing pressure-dependent l inear elas t ic i ty. Int . J . Rock

Mech. Min. Sci . & Geomech. Abs tr . 23(6), 445--449 (1986).7 . Var doulak i s I . and M uhlhaus H . B. Loc a l r oc k s ur f ac e ins t a -

bilities, lnt . J . Rock M ech. Min. Sci . & Geomech. Abs tr . 23(5),379-383 (1986).

8 . Fa br e D . and O r en go Y . Iden t i f i c a t ion phys iq ue e t mr c a n iq ue duCalc a i r e d 'A ns t r ude , Repo r t t o E l f A q ui t a ine , Pau (1985).

9 . Gur no t A . Es a i de fo r age e t de t enue de par o i s ous fo r t esc on t r a in t es . Ra ppo r t i n t e r ne E l f A q ui t a ine , Pau (1985) .

10 . K ac hanov L . M . Fundamentals of the Theory o f Plast ici ty. M ir ,M os c ow (1974) .

11 . Var do ulak i s I . Bi fur c a t ion ana lys is i n the p l ane r ec t i l i near defo r -mat ion on d r y s and s amples . Int. J. Solids Struct. 17, 1085-1101(1981).

12 . V ar doulak i s I . Roc k bur s t ing as a s ur fac e ins t ab i l it y pbenom enon .Int . J . Ro ck M ech. M in. Sci . & Geomech. Abs tr . 21(3) , 137- t44(1984),

13 . Var douiak i s I . R ig id g r anula r p l as t i c i ty mode l and b i fur c a t ion inthe t r iaxial tes t . A cta Mech . 49 , 57-79 (1983).

14 . H i l t R , and H utc h ins on J . W. Bi fur c a t ion pheno men a in the p l anetens ion tes t . Y. Mech. Phys . Solids 23, 239-264 (1975).15 . D a r v e F . Rup tur e d ' a r g i l es na tur e l l es par s ur f ac es de c is a i l l ement

~i l 'essai triaxial. R evu efr . Gio tech . 2 3 , 27-38 (1983).16. R udn ic k i J . W. and R ic e J . R . Cond i t ions fo r t he loc a l i za tion o f

defo r m at ion in p r es sur e s ens i t iv e d i l a t an t mate r i a l s . J . Mech . Phys .Solids 23, 371-394.

17 . Var doulak i s I . and Papanas t as iou P . C . Bi fur c a t ion ana lys i s o fd e e p b o ~ h o l e s . Int . J . Numer . Analyt . Meth. Geomech; S u b m i t t e dfo r publ i c a t ion (1987) .

18 . Var d oulak i s I . R ig id g r anula r c ons t i t u t iv e mo del fo r s an d and thein f luenc e o f t he dev ia to r i c f l ow r u l e . Mech . R es . Commu n. 8(5),275-281 (1981).

19. Biot M. A. Mechanics of Incremental Deformations . W i l e y , N e wY or k (1965) .