1 atomic resolution imaging of carbon nanotubes from diffraction intensities j.m. zuo 1, i.a....

18
1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1 , I.A. Vartanyants 2 , M. Gao 1 , R. Zhang 3 , L.A.Nagahara 3 1 Department of Materials Science and Engineering, UIUC 2 Department of Physics, UIUC 3 Physical Sciences Research Lab., Motorola Labs Science 300, 1419 (2003)

Upload: mervin-edwards

Post on 17-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

1

Atomic Resolution Imaging of Carbon Nanotubes from

Diffraction Intensities

J.M. Zuo1, I.A. Vartanyants2, M. Gao1,

R. Zhang3, L.A.Nagahara3

1Department of Materials Science and Engineering, UIUC2Department of Physics, UIUC

3Physical Sciences Research Lab., Motorola Labs

Science 300, 1419 (2003)

Page 2: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

2

Carbon Nanotubes (atomic structure)

c=na1+ma2,

c – wrapping vector,

a1, a2 – unit vectors

• n=m – ‘armchair’

• m=0 – ‘zigzag’

STM images of single-walled

nanotubes

J. Wildoer, et al,

Science, 391, 59 (1998).

Page 3: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

3

Carbon Nanotubes (imaging)

• Structure:A – armchair

B - zigzag

C – chiral

• Imaging:D – STM image of 1.3 nm SWNT (J.

Wildoer et al., Science 391, 59 (1998))

E – TEM image of MWNT

F – TEM micrograph of 1.4 nm SWNTs in a bundle (A. Thess et al., Science 273, 483 (1996)

G – SEM image of MWNTs grown as a nanotube forest

Page 4: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

4

Coherent Nano-Area Electron Diffraction

Schematic ray diagram

CL – condenser lens

CA – condenser aperture

FP – front focal plane

OL – objective lens

D – imaging plates

Page 5: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

5

Electron Scattering on Carbon Nanotubes

Weak phase object – kinematic scattering

Transmission function

)U(i1)U(iexp)T( rrr Diffracted intensity: 2

2

)iexp()T()()I( rkrrk

For constant illumination: (r)=const

rkrk

kkk

iexp)U()F(

)F()()()I(

2

22

Page 6: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

6

Electron wavefront on the sample 10 m aperture

20 nm20 nm

||||2||

22||

2|| 2exp

2exp)()( dkrikfk

CkikA s

r

k

Cs and f – spherical aberration and defocus of electron lens

Page 7: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

7

Electron Diffraction pattern from SWNT

Scattering amplitude for SWNT:

j

n

/cπlz2nφiexp

R)πr(2J2π/Φinexpl)Φ,F(R,

jj

0n

Simulated diffraction pattern(n1, n2)=(14, 6)d=1.39 nm, =17.0º

M. Gao, J.M. Zuo et al., Appl. Phys. Lett (2003)

Experiment diffraction patternd=1.40±0.02 nm, =17.0º(±0.2º)

Page 8: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

8

Iterative phase retrieval algorithm

sk(x) Ak(q)

Reciprocal Space Constraints

A'k(q)s'k(x)

Real Space Constraints

FFT

FFT-1

Real space constraints:•finite support•real, positive

Reciprocal space constraint:

)(I)(A expk qq

R.W.Gerchberg & W.O. Saxton, Optic (1972) 35, 237J.R. Fienup, Appl Opt. (1982). 21, 2758R.P. Millane & W.J. Stroud, J. Opt. Soc. Am. (1997) A14, 568

Page 9: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

9

Reconstruction of SWNT from simulated data

Simulated diffraction pattern

Reconstructed Image

Page 10: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

10

Model for SWNT (d=1.39 nm, =17º)

Page 11: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

11

Reconstruction of SWNT

Experimental Diffraction Pattern Reconstructed Diffraction Pattern

Page 12: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

12

Reconstructed Image of SWNT

Page 13: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

13

Far-field diffraction pattern from DWNT

Pixel resolution 0.025 1/nm

Page 14: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

14

1d reconstruction from DWNT

Equatorial data Reconstructed electron density

Page 15: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

15

Electron Diffraction Pattern from DWNT

Experiment

Reconstruction

Page 16: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

16

Reconstructed Image of DWNT

Page 17: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

17

Reconstructed Image and model of DWNT

Model

Outer tube:(n1,n2)=(35,25)d1=4.09 nm

Inner tube:(n1,n2)=(26,24)d2=3.39 nm

Page 18: 1 Atomic Resolution Imaging of Carbon Nanotubes from Diffraction Intensities J.M. Zuo 1, I.A. Vartanyants 2, M. Gao 1, R. Zhang 3, L.A.Nagahara 3 1 Department

18

Possible Applications

I. Imaging of biological molecules

• ferritine,

• actines,

• radiation damage

II. Imaging of nanostructures

• nanowires

• nanoclusters