1-0 (lecturer & introduction) + energyz

54
Membranes for energ y (CH 4 and H 2 ) and CO 2 capture Hydrogen

Upload: violentv

Post on 07-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 1/54

Membranes for energy (CH4 and H2) and CO2 capture

Hydrogen

Page 2: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 2/54

Global 2030 needs

2x Electricity

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

2008 2010 2015 2020 2025 2030

Emerging

Developed

(Billions of kW hours)

19.9

   U .  S .

0

5

10

15

20

  S  a  u  d   i   A

  r  a   b   i

  a

  A   l  g   e

  r   i  a

   K  o  r  e  a

   F  r  a  n

  c  e  S  p

  a   i  n

   I  n  d   i  a

  J  a  p  a

  n

   R  u  s  s   i  a

  C   h   i  n  a

50.2

62.2

   B  r  a  z   i   l

*at same consumption rate

3x Water (In billion cubic meters)

This slide is borrowed from GE water but the actual numbers on the slides are from “ source unknown”

Page 3: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 3/54

We need Water to produce Energy & Power 

Energy production is water intensive

UnconventionalGasOil Sands Mining

90% for oncethrough cooling

95% water reusetarget

Process Water Challenges

>70% in waterscarce regions

Power production

This slide is borrowed from GE water 

Page 4: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 4/54

Japan earthquake: New fire at Fukushima nuclear plant

Page 5: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 5/54

Energy production 

Water and Energy are co-dependent

Needs Enormous

 Water

1 MM Btu of Energy produced requires:

Power production   Nuclear plant

Bio‐fuel

75000 gallons of water 

Ethanol‐corn

29100 gallons of water 

Requires 185 billion gallons ofwater per day for cooling & ongoing

maintenance

http://www.powerscorecard.org/issue_detail.cfm?issue_id=5 http://www.greeningofoil.com/post/Deep-shale-gas-drilling-uses-least-amount-of-water.aspx

Page 6: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 6/54

What are our next preferred energy sources?

Solar EnergyOcean Energy

Microalgae Fuel CellBatteries Wind Energy

Natural GasHydrogen gas

Palm Oil

Coal

N‐Butanol   EthanolNuclear Energy

Page 7: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 7/54

Energy and prosperity go hand in hand, but stability andsustainability are the key issues!

Natural gas to 

back up

What happens if there is abreakdown in power

generation?

Page 8: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 8/54

Can coal, solar and wind energy, battery and fuel cell provide

the Stability and Sustainability?

Solar Energy

Fuel Cell Batteries

Wind Energy

Coal

Page 9: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 9/54

What are the next? Strongly depend on the natural

resources of the country

Natural Gas

Fuel cell

Bioenergy

Solar energy

Battery

Wind energy 

Ocean energy

Coal

CO2 

capture 

technology 

must also be 

developed

Hydrogen

Nuclear Energy

Page 10: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 10/54

Polymeric Membranes for Energy (Natural Gas)Polymeric Membranes for Energy (Natural Gas)British Gas-NUS-IMRE-ETI collaboration of S$2 millions (1999-2001)

UOP (Universal Oil Products)-NUS collaboration of S$0.65 million (2004-2006)Mitsui Chemical-NUS collaboration (2004-2008)

NRF-CRP grant of about S$10 millions (2008-2013)

Crude oil

Solids, H2O, H2S

Hydrocarbons

CO2 H2S

CH4

CH4

CO2 2-4%

H2S  4 ppm Hollow FiberMembrane Module

CO2 < (10-50%)

Well Fluids• Oil/Gas

 separation

• Phase separation

• Acid gas treating

Ideal Membranes:

High 

flux, 

High 

selectivity, 

No 

ageing, 

Inert 

to 

hydrocarbons, 

No 

plasticization 

to CO2 and H2S

Off-shore platform

Page 11: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 11/54

11

Air Product: PRISM membrane 

http://www.airproducts.com & http://www.medal.airliquide.com/en/co-membrane/co2-membrane-natural-gas-sweetening/natural-gas-sweetening-pipeline-and-offshore.html

Gas separation membranes for natural gas

•  Built by Petreco in 2004

•  Capacity of  8 MMSCFD

•  Reduced CO2 level from 

4.5% to <2%

Medal membrane in a 3‐stage system for 

treatment of  43,000 Nm3/h of  natural gas 

with 19% CO2 ‐ (Argentina). 

Page 12: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 12/54

Page 13: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 13/54

“Just as the 19th century was shaped by coal and the 20th century by oil, people in the energy

industry say, this century will belong to natural gas”, a front page article, New York Times,June 15, 2005.

2007

Page 14: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 14/54

Major Challenge: Plasticization Phenomenon

DENSEMEMBRANE

SORPTION

DESORPTION

DIFFUSION

Permeability

Dual-sorpt ion model

Penetrant inducedPlasticization

Selectivity

CO2/CH4

Pressure

Selectivity lost

Page 15: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 15/54

Identified material strategy to molecularly design polymers and

synthesized several high performance polyimides for naturalgas applications

# Barrer=1 10-10cm3(STP)•cm/cm2 -s-cmHg

28.32 456 16.1C

C

N

O

O

C

C

N

O

O

C

CF3

CF3

H3C

H3C CH3

CH3

n

Polymer Structure PCH4

(Barrer#)PCO2

(Barrer)  CO2/CH4

4.82 126 26.1

6FDA-pPDA b

6FDA-Durenea

6F-[Durene/pPDA

(50:50)]a

n

CF

C

C

N

O

O

C

C

N

O

O

C

3

CF 3

N

O

O

N

O

O

C

CF3

CF3

m

C

C

N

O

O

C

C

N

O

O

C

CF3

CF3

H3C

H3C CH3

CH3

n

3.53 15.3 54.0

Page 16: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 16/54

Developed Patentable Cross-linking Technologies toEnhance Anti-Plasticization

• Identify new room-temperature chemical cross-linking agents different from p-xylene diamine, otheraromatic and aliphatic diamines

• Study if PAMAM (polyamidoamine) dendrimer , generation 0, can be employed as a cross-linking agent atambient temperature.

C C

C

C

C

F3C CF3O

N

O

O

O

N( )n

CH3

H3C CH3

H3CH2NH2C CH2NH2

C C

C

C

C

F3C CF3O

N

O

O

O

N( )

x

CH3

H3C CH3

H3CC C

C

C

C

F3C CF3O

N

O

O

OHN( )

y

CH3

H3C CH3

H3C

C C

C

C

C

F3C CF3O

N

O

O

O

NH( )x

CH3

H3C CH3

H3C

NH

CH2

CH2

HN

Chemical cross‐linking modification induced by 

para and meta xylenediamineLiu et  al.,  J. Membrane Sci., 2001

 Zen,  J. Membrane Sci., 2003

 Jiang et  al,  AIChE J., 2006

Low  et  al., Macromolecules, 2008 

N

N

NH

H2N

HN

H2N

HN

NH2

NH

NH2

O

O

O

O

PAMAM Generation 0 (4 amine groups)

High density of  terminal amine group 

Chung et  al., Langmuir, 2004

 Xiao et  al., Langmuir, 2004

Shao et  al.,  J. Membrane Sci., 2004

 Xiao et  al, IEC  Research, 2005

Page 17: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 17/54

Polymer/Zeolite Mixed Matrix Membranes (MMMs) for GasSeparation and Energy Development

(f)

Scale bar  1μm

UOP (Universal Oil Products-NUS collaboration (2003-2005) S$500,000

Dr. Santi KulprathipanjaThe inventor of MMMs, UOP

Transformed UOP MMM patents from flat sheet membranes to marketable hollowfiber membranes with much enhanced separation performance

Page 18: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 18/54

http://www3.interscience.wiley.com/journal/107061889/home/MostCited.html

The 10 most-cited articles in the AIChE Journal from 2007The data have been compiled from Thomson Reuters Web of Science®.

Fault-tolerant control of nonlinear process systems subject to sensor faultsPrashant Mhaskar, Adiwinata Gani, Charles McFall, Panagiot is D. Christofides, James F. Davis

Volume 53, Issue 3, February 2007, p 654-668

 Abstract | References | Full Text: HTML , PDF (Size: 559K)

Novel Ag+-zeolite/polymer mixed matrix membranes wi th a high CO2/CH4 selectiv ity

Yi Li, Tai-Shung Chung, Santi Kulprathipanja

Volume 53, Issue 3, January 2007, p 610-616 Abstract | References | Full Text: HTML , PDF (Size: 322K)

The effect of CaO sintering on cyclic CO2 capture in energy systemsP. Sun, J. R. Grace, C. J. Lim, E. J. Anthony

Volume 53, Issue 9, September 2007, p 2432-2442

 Abstract | References | Full Text: HTML , PDF (Size: 652K)

Quantitative measurements of liquid holdup and drainage in foam using NMRIPaul Stevenson, Michael D. Mantle, Andrew J. Sederman, Lynn F. Gladden

Volume 53, Issue 2, December 2006, p 290-296

 Abstract | References | Full Text: HTML , PDF (Size: 273K)

Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheresR. Beetstra, M. A. van der Hoef, J. A. M. Kuipers

Volume 53, Issue 2, February 2007, p 489-501

 Abstract | References | Full Text: HTML , PDF (Size: 435K)

Header design for flow equalization in microstructured reactorsEvgeny V. Rebrov, Ilyas Z. Ismagilov, Rahul P. Ekatpure, Mart H.J.M. de Croon, Jaap C. Schouten

Volume 53, Issue 1, January 2007, p 28-38 Abstract | References | Full Text: HTML , PDF (Size: 261K)

Prof. Chung paper 

Page 19: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 19/54

Hydrogen Production

Generally, the most favorite route to produce hydrogen is via steam reforming of hydrocarbons or methanefor the large-scale hydrogen production.

Steam reforming of hydrocarbons

Cn Hn+ n H2O n CO + 1.5 n H2

Steam-methane reforming (SMR)

CH4+H2O↔ CO + 3 H2

Water gas shift (WGS) reaction

CO + H2O ↔ CO2 + H2

The final composition of the gas leaving the reformer is primarily determined by the molar steam andcarbon ratio, temperature and pressure. It contains

H2 (2.89 Å, Tc= 33K), CO2 (3.3 Å, Tc= 304.2K) and CO (3.76 Å, Tc= 133K)

Page 20: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 20/54

Strategies to enhance H2 and CO2 separation

Selectivity = PA/PB= (DA/DB)( SA/SB)

diffusion

selectivitysolubility

selectivity

1. increasing H2,CO2 via an increase in DH2/DCO2 (diffusivity selectivity) and/orSH2/SCO2 (solubility selectivity),

2. increasing  CO2,H2 via an increase in SCO2/SH2 (solubil ity selectivity) and/or DCO2/DH2 (diffusivity selectivity).

Page 21: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 21/54

H2-selective or CO2-selective membranes

FeedH

2

CO2

High Temperatureand Pressure

Feed

H2

CO2

High Temperatureand Pressure

Selectivity = PA/PB= (DA/DB)( SA/SB)

diffusion

selectivity

solubility

selectivity

No need torecompress CO2

for storage

No need torecompress H2 for

storage

Page 22: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 22/54

NUS is one of the World Leaders on PolymericMembranes for H2 and CO2 separation

Mitsui Chemical-NUS collaboration (2004-2009)NRF-CRP grant of about S$10 millions (2008-2010)

0.01 0.1 1 10 100 1000

1

10

100

Traditional

 Polymeric

 Membranes

PDA-5min-Binary

PDA-10min-Binary

PDA-10min

PDA-5min

BuDA-5min

EDA-5min

   H   2

   /   C   O

   2

   I   d  e  a   l    S

  e   l  e  c   t   i  v   i   t  y

H2 Permeability (Barrers)

Trade-off Line

Original 6FDA-durene

PDA-1min

(Pure gas)

40

Chung, Shao, Tin (2006).

pure gas

mixed gas

Low, Xiao, Chung., Liu,

Macromolecules (2008)

Page 23: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 23/54

Lau/Paul/Chung6

Grafted organic‐inorganic 

membranes

Lin/Wagner/Freeman1

PEGMEA/PEGDA

Yave/Car/Peinemann2

PEO‐PBT/PEG‐DBE

Reijerkerk/Wessling/Nijmeijer3

Pebax/PDMS‐PEO

Xia/Liu/Chung5

Blended organic‐

inorganic membranes

1. Lin et al. Science, 20062. Yave et al. Macromolecules, 2010.

3. Reijerkerk et al. JMS, 20104. Shao and Chung, Int. J. of Hydrogen

Energy 2009

Shao/Chung4

organic‐inorganic membranes

5. Xia et al. Macromolecules, 2011

6. Lau et al. Adv. Energy Mat., 20117. Lau and Chung, Macromolecules,2011

Selected permeability/selectivity data for CO2/H2 separation at 35  C

Mixed gas 50/50 CO2/H2:

PCO2 is 1990 Barrer   CO2/H2 is 11

Page 24: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 24/54

1. Smaihi et al. JMS, 161, 157. (1999)2. Guiver et al. U.S. Pat. 20,020,062,737 (2002)

3. Chung et al. Macromol. Rapid Commun., 27, 998 (2006)4. Low et al. Polymer, 50, 3250 (2009).5. Yang et al. Energy Environ. Sci. (2011)

Membranes for H2 Production and CO2 Capture (35C, pure gas)

Guiver et al. 2

(Polysul fone/zeolite MMM)

Chung/Shao/Tin 3

(6FDA/durene/PDA)

Low/Xiao/Chung 4

(6FDA/NDA/PDA)

Yang/Xiao/Chung 5

(PBI/ZIF-7 MMM)

Yang/Xiao/Chung

Li/Xiao/Chung

H2 / CO2

Selectivity

NEW Smaihi et al. 1

(Poly(imidesiloxane) copolymer)

Lee YM et al.

(TR polymer)

High TransparencyProper Flexibility

Page 25: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 25/54

Global warming

* Inventory of U.S. greenhouse gas emissions and sinks: 1990–2008, EPA 430-R-10-006, (2010).

Global warming and CO2 Capture

25/36

Page 26: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 26/54

1. Remove CO2 from Natural Gas

2. Remove CO2 from Synthesis Gas or Hydrogen Product ion

3. Remove CO2 from Flue Gas from Power Plants

CO2 Emission Sources and Capture Strategies

CO2 can be captured before and after combustion

Page 27: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 27/54

CO2 capture and storage

http://www.co2crc.com.au/publications/all_factsheets.html

Page 28: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 28/54

Offshore geological storage involves the CO2 being injected in to a geolog ical formation deep beneath the seabed where it wi ll bestored for thousands of years, isolated from the ocean water.In the case of ocean storage, the CO2 is in jected directly into the water column either at mid-depth (1500 to 3000 metres), where itdissolves in the ocean waters, or at greater depths (below 3000 metres), where it forms a deep CO2 lake.

http://www.co2crc.com.au/publications/all_factsheets.html

Energy, CO2 capture and storage

Page 29: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 29/54

Membranes for Energy Sustainability(Bio-Energy)

Our goal is to sustain Singapore’s leadership on bothpetrochemical-refinery and biofuel-refinery

Page 30: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 30/54

Jurong Island: Singapore’s Petrochemical Hub

ExxonMobil’s Singapore complex is one of the largestintegrated manufacturing sites in the world

Singapore

Page 31: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 31/54

Other limitations, independence for imported energy and

balance R & D are the keys!

Liquid fuelLiquid fuel, Naturalgas, Battery, Fuel

cell

Natural gas,

Solar and Wind energy

Battery

Fuel cellhttp://www.eia.doe.gov/emeu/aer/pdf/pages/sec2_4.pdf 

Page 32: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 32/54

1st generation biofuel 2nd generation biofuel

Feed stocks: grain corn or sugar cane Feed stock: Lignin-cellulosic residuals

The separation and purification stage for either generation biofuel accounts forat least 40% (up to 80%*) of the process cost.

 A Comparison of Process Costs for Biofuel

 A.J. Ragauskas et al., The Path Forward for Biofuels and Biomaterials, Science, 311 (2006), 484.

Separation &Purification

Starch from corn

Milling

Liquification &

Saccharification Fermentation

Corn stover or other agricultural residuals

Milling Enzyme Production &Saccharification

Fermentation Separation &Purification

Pretreatment & Cleanup

Separation &Purification

Page 33: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 33/54

Pervaporation is used to remove a small amount of H2O from an azeotropic liquid

mixture where simple disti llation can’t make the separation.

Hybrid processes (distil lation and pervaporation) will be the

future for the dehydration of biofuels

low alcoholcontent

Pervaporationmembrane

biofuel

Feed fromfermentation

broths

distillation

Page 34: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 34/54

Pervaporation membranes for the dehydration of biofuel (ethanol& butanol) and other alcohols

UOP-NUS (2002-2005), Merck-NUS (2004-2007), A-Star & NUS grants (2008-2012)

Isopropanol (IPA) 1-butanol 2-butanol iso-butanol tert-butanol

 Acetone Acetic acid Ethanol ethylene glycol

Concentrate ethanol, IPA, and biofuel Separate non-aqueous solvent mixtures Facilitate pharmaceutical syntheses

Phenol Tetrafluoro-propanol (TFP)

Flat membranes

Hollow f iber membranesToluene iso-octane

Page 35: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 35/54

* S

O

O

O *n

O S

O

O

* O C

CH3

O

SO O

O

OS

O

O

*O

linear polyethersulfone (LPES)

Identified the effects of structure differences between the traditional PES and new-generation PES on kidney dialysis membranes

hyperbranched polyethersulfone (HPES)

Kidney dialysis membrane module

Membranes for Kidney DialysisBASF-NUS collaboration (2005-2009) S$490,000

Prof. Dr. Volker Warzelhan

Senior Group VP, BASF

Page 36: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 36/54

Rejection(%)

0

20

40

60

80

100

100 1000 10000 100000

KidneyHigh flux

membraneLow flux

membrane

Molecular weight (Dalton)

Creatinine

(113)

Vit B12

(1355)

Inulin

(5200)B2-M

(11,800)Albumin

(68,000)

Year of Dialysis Survival Rate

1 77.8%

2 62.9%

5 31.9%

10 9%

1. Poor biocompatibility and pore size distribution

2. Increasing possibility of bleeding risk in patient with theinjection of anticoagulant during dialysis

3. Possibility of backtransport of pyrogenic and cytokines-inducing materials

http://www.baxter.com/conditions/sub/renal_failure.htmlhttp://www.wrongdiagnosis.com/k/kidney_dialysis/prognosis.htm

Kidney Diseases – Facts and Challenges

Page 37: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 37/54

Dialysisfluid out

Dialysis

fluid in

Nephron tubuleswork asmembranes toremove waste, saltand extra water 

BASF-NUS Collaboration on Kidney Dialysis Membranes (2005-2007)

Page 38: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 38/54

Transdermal applied to skin

Membranes for Medical and Life Science Applications

Transdermal

One of microporousmembranes used for

transdermal

Celgard tm

Page 39: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 39/54

0

0.005

0.010.015

0.02

0.025

0.03

0.035

0.04

0.045

0 10 20 30 40 50 60 70 80

Time (hrs)

   C  u  m  u   l  a   t   i  v  e   d  r  u  g  r  e   l  e  a  s  e   d

   (  m  g   /  m

  g  m  e  m   b  r  a  n  e   )

Scopolamine (for anti-motion sickness)release from cellulose acetate membranesfabricated at different temperatures

40°C

22°C

Drug-Loaded Polymeric Membrane

(Transdermal delivery)

B, fabricated at 22C

A, fabricated at 40C

Page 40: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 40/54

Membranes for Chiral Separation

Importance:

• The majority of the active pharmaceutical ingredients (API)are chiral in nature

• Wrong chirality can result in severe adverseconsequences.

• Enantiomerically pure drug compounds wil l be one of thecri teria for APIs to be accepted by the US Food and Drug

 Administrat ion (FDA)

• The ability to separate optical isomers is important inproducing pharmaceutical drugs.

1. Crystal lizat ion2. Chromatography

3. Distillation

4. Membrane

Current technologies to separate chiral compounds

 A continuous and large scale process

New and emerging research!

Batch process, low scale. slow process. laborintensive. Expensive.

Enantiomers

Page 41: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 41/54

Electrophoretic membrane contactor based on free flowisoelectric focusing (FFIEF)

1. Combine electric force and pH gradient

2. Separation based on protein isoelectric point (pI)

3. Concentrate targeted molecules in specific zones where pH = pI

Protein changes its net charge withsurrounding pH

 A. pH < pI→ positively chargedB. pH > pI→ negatively charged

C. pH = pI→ zero charged

membranes

Page 42: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 42/54

pH~3 pH~4 pH~6 pH~7 pH~8 pH~9pH~5

+ _ 

Mechanisms

• Migration of charged protein molecules by electric fields to specific zoneswhere pH = protein isoelectric point (pI)

• Distribution of protein molecules over a medium that has a pH gradient

Neutral or charged UF membranes

Page 43: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 43/54

Major contributions in 16 years at NUS

1. Contributions to membrane science and technology

i. Energy, bio-Energy and CO2 capture

ii. Water  

iii. Life science

2. Contributions to chemical, polymer, pharmaceutical and environmentalIndustries

i . collaborations

ii. Hyflux

ii i.UOP, Merck, PBI, BASF, Mitsui Chemicals, Eastman Chemicals, GSK

3. Contributions to Singapore’s world status & NUS leadership on global

membrane R & D

Page 44: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 44/54

Search engine:Web of Science

Key Word: Membrane

Location: Asia (Japan, South Korea, China, Taiwan, Singapore, India,

Saudi Arabia and Israel); USA; CanadaDate: Apr 2012

Page 45: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 45/54

 A Comparison of the Number of Membrane Publications in Asia* (AllJournals) (Apr 2012)

* Asia: Japan, South Korea, China, Taiwan, Singapore, India, Saudi Arabia and Israel

China

South Korea

Japan

IsraelTaiwan

Singapore

India

Saudi Arabia

A Comparison of the Number of Membrane Publications in Asia*

Page 46: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 46/54

 A Comparison of the Number of Membrane Publications in Asia*(publications / million people) (Apr 2012)

http://en.wikipedia.org/wiki/List_of_countries_by_population

*Asia: Japan, South Korea, China, Taiwan, Singapore, India, Saudi Arabia and Israel

Israel

South Korea

Taiwan

Japan

Singapore

China, India and Saudi Arabia

Country Population

China 1,347,350,000

India 1,210,193,422

Japan 127,650,000

South Korea 48,580,000

Saudi Arabia 27,136,977

Taiwan 23,234,003

Israel 7,848,800

Singapore 5,183,700

A Comparison of the Number of Membrane Publications in Asia* USA and Canada

Page 47: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 47/54

 A Comparison of the Number of Membrane Publications in Asia , USA and Canada(Publications / million people) (Apr 2012)

http://en.wikipedia.org/wiki/List_of_countries_by_population

*Asia: Japan, South Korea, China, Taiwan, Singapore, India, Saudi Arabia and Israel

Israel

South Korea

TaiwanJapan

Singapore

China, India and Saudi Arabia

USA

Canada

Country Population

China 1,347,350,000

India 1,210,193,422

United States 313,326,000

Japan 127,650,000

South Korea 48,580,000

Canada 34,762,600

Saudi Arabia 27,136,977

Taiwan 23,234,003

Israel 7,848,800

Singapore 5,183,700

Page 48: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 48/54

Importance of Membrane Science and EngineeringImportance of Membrane Science and Engineering

5

The development of membranes is essential to

• water reuses, drinking water 

• Remove toxic species from water• ultra-high purity water (for wafer and pharmaceutical companies)

• enriched oxygen

• high purity nitrogen

• energy: high purity natural gas, H2, fuel cell• valuable chemicals & monomers

• reduce green house effects & capture CO2

• pharmaceutics synthesis (medicines & solvent recovery)

• protein separation

• kidney dialysis and artificial organs

Course Content

Page 49: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 49/54

Course Content

1. Introduction of membrane science, engineering and applications.2. Basic knowledge about water, MF, UF, NF, RO, MD, FO membranes

3. Celgard melt spun hollow fibers

4. Phase inversion mechanisms, material requirements, solubility parameters.

5. Asymmetric phase inversion hollow fiber membranes6. Basic knowledge about solution-diffusion, dual sorption models, resistance models.

7. Composite membranes

8. Dual-layer membranes

9. Mixed matrix membranes

10. Membranes for gas separation

11. Membranes for CO2 capture

12. Membranes for others (if we have time)

Reference Books:

1. Marcel Mulder, Basic principles of membrane technology

2. W. S. W. Ho and K. K. Sirkar, Membrane handbook

3. D. R. Paul and Y. P. Yampol iskii, Polymeric gas separation membranes

4. Read at least 15-20 journal papers

Page 50: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 50/54

Tutorial class

• We will combine tutorial classes with lectures. Inother words, 2-3 tutorial classes will be given in theend of lectures so that more students can getbenefits.

• We will have a lab tour as part of tutorial classessometimes in Feb.

• We will have open question-and-answer sessions inthe end of every class from Feb so that if you havequestions, I can answer to all students so that morestudents get benefits.

Page 51: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 51/54

Potential Term Paper Titles: please choose one.

1. Membranes for bioreactors in water recycle

2. Anti-fouling technologies for MF and UF membranes

3. Membrane distillation (MD) to get water from seawater

4. Membrane contactor or membrane extraction

5. Nanofiltration membranes

6. Forward osmosis (FO) membranes

7. Draw solutions for forward osmosis processes

8. FO-MD or FO-FO integration

9. Ionic exchange membranes

10. Membranes for oil/water separation

11. Membranes using ionic liquids

12. Pervaporation membranes for organics solvent removal or recovery

13. Membranes for H2/CO2 separation

14. Membranes for CO2/CH4 separation

15. CO2 capture

16. Membranes for C3 hydrocarbon separation

Page 52: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 52/54

17. Membranes for biofuel separation

18. Membrane for biomass separation19. Membranes for pharmaceuticals (drugs) separations

20. Membrane for protein separation

21. Membrane for chiral separation

22. Kidney dialysis membranes

23. Membranes for travascular membrane oxygenation

24. Membranes for transdermal applications

25.  Artificial skins26. Membrane for food process

27. Gore-text membrane technology

28. pH sensitive membranes

29. Temperature sensitive membranes30. Bio-mimetic membranes

Term Paper Format

Page 53: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 53/54

Text: Minimum 23 pages, Maximum 28 pages

Format: Power Point with descript ion or explanation

File size: 5 Mb.

First page: Must have1) Your name, 2) dept name, 3) degree studied, 4) Student number 

File name: student name CN????.ppt

 Add module number after your name: 5251 or 6251No special movies and software.

Send by e-mail to me: [email protected]

If you copy from somewhere else, you MUST highlight them in red withreferences and websites (tell me where you copy from)

H d d t th d l d l l t d

Page 54: 1-0 (lecturer & introduction) + energyz

8/21/2019 1-0 (lecturer & introduction) + energyz

http://slidepdf.com/reader/full/1-0-lecturer-introduction-energyz 54/54

How do we conduct the module and calculate your grades

1. Final examination: 60-70% (tentatively)

2. 4210/5251: 1 term paper: 30-40% (23-28 slides)

3. 6251: 2 team papers, total 30-40% (each 23-28 slides)

CN62651 1st term paper deadline (Sept 21, midnight Friday)CN4210/5251 1st term paper and CN6251 2nd term paper deadline (Oct 25, Thursday)

Final exam wil l be in the multiply choice format and/or written questions