09/09/2011teppei katori, mit1 outline 1. introduction 2. microboone 3. microboone detector 4....

58
09/09/2011 Teppei Katori, MIT 1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6. Conclusion MicroBooNE, Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment at Fermilab Katori for the MicroBooNE collaboration usetts Institute of Technology nd in High Energy Physics, Alushta, Ukraine, Sep. 9, 2011 Cryogenic PMT Test Stand 4 years resident of Ukrainian Village, Chicago Fermilab PAB (proton assembly building)

Upload: edmund-nelson

Post on 16-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 109/09/2011

outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6. Conclusion

MicroBooNE, Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment at Fermilab

Teppei Katori for the MicroBooNE collaboration Massachusetts Institute of TechnologyNew Trend in High Energy Physics, Alushta, Ukraine, Sep. 9, 2011

Cryogenic PMT Test Stand

4 years resident of Ukrainian Village, Chicago

Fermilab PAB (proton assembly building)

Page 2: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

2Teppei Katori, MIT09/09/2011

1. Introduction

2. MicroBooNE

3. MicroBooNE detector

4. MicroBooNE physics

5. Future large LArTPC experiments

6. Conclusion

Page 3: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3

1. What is LArTPC? a modern bubble chamber experiment

The principle of LArTPC - 3D track reconstruction

09/09/2011

Bo Yu (BNL)

Page 4: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 4

1. What is LArTPC? a modern bubble chamber experiment

The principle of LArTPC - 3D track reconstruction

Charged particle tracks ionize Argon atoms

09/09/2011

40Ar

Bo Yu (BNL)

Page 5: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5

1. What is LArTPC? a modern bubble chamber experiment

The principle of LArTPC - 3D track reconstruction

Charged particle tracks ionize Argon atoms

Scintillation light (~ns) is detected by PMTs at same time

09/09/2011

Bo Yu (BNL)

Page 6: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 6

1. What is LArTPC? a modern bubble chamber experiment

The principle of LArTPC - 3D track reconstruction

Then ionized electrons are drifted to anode wires (~ms)

09/09/2011

Bo Yu (BNL)

Page 7: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 7

1. What is LArTPC? a modern bubble chamber experiment

The principle of LArTPC - 3D track reconstruction

Then ionized electrons are drifted to anode wires (~ms)

09/09/2011

Electrons near the wires are collected first, and electrons far from the wires are collected last, so drift coordinate information is converted to electron drift time (time is projected)

Bo Yu (BNL)

Page 8: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 809/09/2011

1. Why LArTPC? A candidate large neutrino detector

LArTPC vs Water Cherenkov detector - 6 times smaller mass LArTPC has same sensitivity with large Water Cherenkov detector for CPV - Using dE/dx and separation of vertex and photon conversion point, essentially no misID between single electron and photon conversion

300kt Water Cherenkov detector

50kt LArTPC detector

Energy loss in the first 24mm of track: 250MeV single electron vs 250MeV photon conversion

Page 9: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 909/09/2011

1. LArTPC all over the world

ICARUST600@Gran Sasso - physics run is ongoing at Gran Sasso

LArTPC@KEK- 250L LArTPC was beam tested

ARGONTUBE@Bern - goal is to demonstrate ~5m electron drift(210 stage Cockcroft-Walton inside of cryostat)

LEM-TPC@Cern- 2 phase TPC, LEM at gas region for X-Y information

Page 10: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 1009/09/2011

1. Where are we? We need to demonstrate!

US path to future large LArTPC

2007 2008 2010 2013 20??

- The 0.7 ton ArgoNeuT was successfully completed. - We are ready for 150 ton MicroBooNE experiment. - future goal is the tenth of kilo ton detector (LAr40).

Material test stand “LUKE” (Fermilab)

Electronics test stand “Bo” (Fermilab)

LArSoft

100%R&D

100%Physics

50%R&D50%Physics

Yale TPC

Membrane 35ton

LAr40

LAr1ArgoNeuT

MicroBooNE

LAPD

Page 11: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 1109/09/2011

1. ArgoNeuT

First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger

Argo-NeuT

MINOS near detector

Neutrinos

MINOS near detector hall

ArgoNeuT

cryostat volume 0.7 ton

TPC volume 0.25 ton

# channel 480

wire pitch 4 mm

electronics style JFET (293K)

max. drift length 0.5m (330ms)

light collection none

ArgoNeuT cryostat

Page 12: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 1209/09/2011

1. ArgoNeuT

First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger

ArgoNeuT demonstrates LArTPC neutrino analysis

ArgoNeuT

cryostat volume 0.7 ton

TPC volume 0.25 ton

# channel 480

wire pitch 4 mm

electronics style JFET (293K)

max. drift length 0.5m (330ms)

light collection none

2 pos decayed to 4 gammas, then converted to 4 e+e- pairs

Page 13: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 1309/09/2011

1. ArgoNeuT

First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger

ArgoNeuT demonstrates LArTPC neutrino analysis - powerful automated reconstruction software, “LArSoft”

ArgoNeuT

cryostat volume 0.7 ton

TPC volume 0.25 ton

# channel 480

wire pitch 4 mm

electronics style JFET (293K)

max. drift length 0.5m (330ms)

light collection none

Hit: location in time on a wire where signal is presentCluster: collection of hits that are near each other in time and spaceProng: collection of clusters that occupy the same time and spaceShower, Track, etc: higher reconstruction objects

Page 14: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 1409/09/2011

1. ArgoNeuT

ArgoNeuT

cryostat volume 0.7 ton

TPC volume 0.25 ton

# channel 480

wire pitch 4 mm

electronics style JFET (293K)

max. drift length 0.5m (330ms)

light collection none

First US LArTPC neutrino experiment - NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger

ArgoNeuT demonstrates LArTPC neutrino analysis - powerful automated reconstruction software, “LArSoft” - the first physics result will be published soon

3D reconstructed CCQE candidate event

Page 15: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

15Teppei Katori, MIT09/09/2011

1. Introduction

2. MicroBooNE

3. MicroBooNE detector

4. MicroBooNE physics

5. Future large LArTPC experiments

6. Conclusion

Page 16: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 1609/09/2011

2. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT

MicroBooNE detector

Booster

TargetHall

Fermilab overview

MicroBooNE

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

Page 17: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 1709/09/2011

2. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT

MicroBooNE detector

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

150 ton

kilo tonscalable technology

Page 18: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 1809/09/2011

2. MicroBooNE

MicroBooNE detector

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

Path to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements

MicroBooNEne appearance candidate

MiniBooNE collaboration,PRL102(2009)101802

Page 19: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

19Teppei Katori, MIT09/09/2011

1. Introduction

2. MicroBooNE

3. MicroBooNE detector

4. MicroBooNE physics

5. Future large LArTPC experiments

6. Conclusion

Page 20: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2009/09/2011

3. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT)

MicroBooNE detector

2.6m

2.3m

10.4m

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

Page 21: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2109/09/2011

3. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr)

MicroBooNE detector

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

Liquid Argon Purity Demonstrator (LAPD)

tank

filters

Page 22: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 22

Liquid Argon Purity Demonstrator (LAPD)

tank

filters

09/09/2011

3. Liquid Argon Purity Demonstrator (LAPD)Goal: Achieve high purity LAr in large vessel (30 ton) without evacuation - Use warm Argon gas to “push out” all impurities. - Recirculation of gas through filters to achieve <50ppm impurities. - 2 Zeolite (water) filters and 2 copper (oxygen) filters - 4 purity monitors in the center and near the wall of the tank. - Vertically movable temperature probes (RTD) to measure temperature gradient.

Page 23: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2309/09/2011

3. Liquid Argon Purity Demonstrator (LAPD)Goal: Achieve high purity LAr in large vessel (30 ton) without evacuation - Use warm Argon gas to “push out” all impurities. - Recirculation of gas through filters to achieve <50ppm impurities. - 2 Zeolite (water) filters and 2 copper (oxygen) filters - 4 purity monitors in the center and near the wall of the tank. - Vertically movable temperature probes (RTD) to measure temperature gradient.

Zeolite (molecular sieve), water filter (600-1000m2/g!)

Copper (activated copper coated alumina granule), oxygen filter

molecular sieve molecule structure

Page 24: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2409/09/2011

3. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr)

MicroBooNE detector

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

Liquid Argon Purity Demonstrator (LAPD)

tank

filters

material test cryostat “Luke”

Page 25: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2509/09/2011

3. Material test cryostat “LUKE”Goal: Test all components will be used inside of MicroBooNE cryostat - 250L cryostat is filled with high purity (<30 ppt) LAr, by Zeolite (water) and copper (oxygen) filter. - Airlock region can be accessed without opening cryostat, to insert test material. Then shaft goes down and impurity of test material is measured in air (gas analyzers) and liquid Argon region (purity monitor).

material test cryostat “Luke”

Page 26: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2609/09/2011

3. Material test cryostat “LUKE”

09/03/10 Teppei Katori, MIT

electron life time

Example of data, acrylic plate exposed to Ar gas

test sample in

impurity concentration

Goal: Test all components will be used inside of MicroBooNE cryostat - 250L cryostat is filled with high purity (<30 ppt) LAr, by Zeolite (water) and copper (oxygen) filter. - Airlock region can be accessed without opening cryostat, to insert test material. Then shaft goes down and impurity of test material is measured in air (gas analyzers) and liquid Argon region (purity monitor).

Page 27: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2709/09/2011

3. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr)

MicroBooNE detector

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

Cryogenic CMOS front end prototype (87K)

Page 28: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2809/09/2011

3. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr)

MicroBooNE detector

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

Wire planeprototype

Page 29: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 2909/09/2011

3. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) - light collection system behind the wire planes (it can trigger 40 MeV proton)

MicroBooNE detector

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 90 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~9000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

MicroBooNE PMT test stand

PMT unit

TPB coated acrylic plate

128nm

450nm

Page 30: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3009/09/2011

TPB plate

PMT

Base

PMT unit

3. MicroBooNE PMT system

128nm scintillation light - Lquid Argon produce ~24,000 photon/MeV for MIP (500V/cm) - Vacuum UV light, Rayleigh scattering length l~70-90cm! (visible light l~1km!) - TPB (tetra-phenyl butadiene) can shift 128 nm vacuum UV to blue 420nm (130% efficiency!)

9.7eV 3.0eV

Page 31: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3109/09/2011

TPB plate

PMT

Base

PMT unit

3. MicroBooNE PMT system

vacuum evaporation50% TPB brush plates33% TPB brush platesTPB embedded

PM

T s

ign

al (

mV

)

wave length (nm)

Vacuum spectrometer result

Deuterium lamp sample

PMT

grating vacuum areaVacuum spectrometer

128nm scintillation light - Lquid Argon produce ~24,000 photon/MeV for MIP (500V/cm) - Vacuum UV light, Rayleigh scattering length l~70-90cm! (visible light l~1km!) - TPB (tetra-phenyl butadiene) can shift 128 nm vacuum UV to blue 420nm (130% efficiency!) - 50%TPB+50%polystyrene mixture is brushed on acrylic place

Page 32: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3209/09/2011

TPB plate

PMT

Base

PMT unit

3. MicroBooNE PMT system

Hamamatsu R5912-02mod - 8” hemi-sphere 14 stages PMT (5E7 gain with ~1300V) - bi-alkali photo-cathode with Platinum undercoating to operate < 150 K

Meyer, NIMA621(2010)437

Pt-undercoating PMTnon coating PMT

Page 33: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3309/09/2011

3. MicroBooNEPath to large scale LArTPC experiment - Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) - light collection system behind the wire planes (it can trigger 40 MeV proton)

In a nutshell… MicroBooNE is a large volume high resolution active target neutrino detector MicroBooNE

detector

ArgoNeuT MicroBooNE

cryostat volume 0.7 ton 150 ton

TPC volume 0.25 ton 86 ton

max. drift length 0.5m (330ms) 2.5m (1.5ms)

electronics style JFET (293K) CMOS (87K)

# channel 480 ~8,000

wire pitch 4 mm 3 mm

# wire plane 2 3

light collection none 30 of 8” PMT

Page 34: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

34Teppei Katori, MIT09/09/2011

1. Introduction

2. MicroBooNE

3. MicroBooNE detector

4. MicroBooNE physics

5. Future large LArTPC experiments

6. Conclusion

Page 35: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3509/09/2011

4. MicroBooNE physicsEvent rate (BNB, 60 ton LAr volume, 6E20POT)- High statistics neutrino cross section measurement with the high resolution detector - Precise CC channel measurements - Ds measurement through NC elastic interaction - Coherent pion production measurement - etc...

reaction #event fraction

CCQE CC nm+n−>m-+p 66319 45.0

NCEL NC nm+N−>nm+N 21395 14.5

resonancepion production

CC nm+p−>m-+p+p+ 20359 13.8

CC nm+n−>m-+p+po 7710 5.2

CC nm+n−>m-+n+p+ 7365 5.0

NC nm+p−>nm+p+po 3634 2.5

NC nm+p−>nm+n+p+ 2297 1.6

NC nm+n−>nm+n+po 4510 3.1

NC nm+n−>nm+p+p- 2990 2.0

coherentpion production

CC nm+A−>m-+A+p+ 2895 2.0

NC nm+A−>nm+A+po 1867 1.3

total 143277 100.0

Page 36: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3609/09/2011

4. MicroBooNE physics, n2NSRC

2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated. JLab Hall A collabo.

PRL99(2007)072501

JLab Hall A collabo.Science320(2008)1476

Cartoon of inside of nucleus

JLab Hall A “big bite” correlated proton pair measurement

Page 37: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3709/09/2011

4. MicroBooNE physics, n2NSRC

2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated.

neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering - Unique place to study the role of 2NSRC on nuclear transition - Responsible for MiniBooNE absolute xs measurements?

JLab Hall A collabo.PRL99(2007)072501

Berge et al.(FNAL15ft),PRD18(1978)1367

JLab Hall A collabo.Science320(2008)1476

Cartoon of inside of nucleus

MiniBooNE collaboration,PRD81(2010)092005

Martini et al.,PRC80(2009)065501

contribution of pure CCQE

CCQE with muti-nucleon emission (MiniBooNE cannot tag each nucleons)

Page 38: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 3809/09/2011

4. MicroBooNE physics, n2NSRC

JLab Hall A collabo.PRL99(2007)072501

JLab Hall A collabo.Science320(2008)1476

Cartoon of inside of nucleus

ArgoNeuT 2 tracks CCQE candidate in 3D (data)

2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated.

neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering - Unique place to study the role of 2NSRC on nuclear transition - Responsible for MiniBooNE absolute xs measurements?

n2NSRC at MicroBooNE - Very distinct event topology“muon + 2 correlated protons emission”

- High resolution LArTPC can measure 2 short proton tracks - Vertex activity might reveal the first time the role of 2NSRC on nuclear transition

MiniBooNE collaboration,PRD81(2010)092005

Berge et al.(FNAL15ft),PRD18(1978)1367

Page 39: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

39Teppei Katori, MIT09/09/2011

1. Introduction

2. MicroBooNE

3. MicroBooNE detector

4. MicroBooNE physics

5. Future large LArTPC experiments

6. Conclusion

Page 40: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 40

anode

cathode

09/09/2011

5. Long Baseline Neutrino Experiment (LBNE)

LBNE, theta 13 and leptonic CPV measurement - LBNE will be located ~1300km from Fermilab - 750kW Main Injector is used - Large LArTPC is a candidate detector for LBNE

ArgoNeuT MicroBooNE LAr40

cryostat volume 0.7 ton 150 ton 40k ton

TPC volume 0.25 ton 86 ton 33k ton

max. drift length 0.5m (330ms) 2.5m (1.5ms) 3.7m (2.3ms)

electronics style JFET (293K) CMOS (87K) CMOS (87K)

# channel 480 ~8,000 ~266,000

wire pitch 4 mm 3 mm 5 mm

# wire plane 2 3 3

light collection none 30 of 8” PMT TBD

Page 41: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 4109/09/2011

5. Long Baseline Neutrino Experiment (LBNE) - Decline Tunnel - Air supply

- Ventilation - Air exhaust

143m

33m

ArgoNeuT MicroBooNE LAr40

cryostat volume 0.7 ton 150 ton 40k ton

TPC volume 0.25 ton 86 ton 33k ton

max. drift length 0.5m (330ms) 2.5m (1.5ms) 3.7m (2.3ms)

electronics style JFET (293K) CMOS (87K) CMOS (87K)

# channel 480 ~8,000 ~266,000

wire pitch 4 mm 3 mm 5 mm

# wire plane 2 3 3

light collection none 30 of 8” PMT TBD

LBNE, theta 13 and leptonic CPV measurement - LBNE will be located ~1300km from Fermilab - 750kW Main Injector is used - Large LArTPC is a candidate detector for LBNE

- 2 large LArTPC can fit in one gigantic cryostat ® Membrane cryostat LAr40

Page 42: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 4209/09/2011

5. Membrane cryostatUltra large cryostat - Future large LArTPC, such as LAr40 of LBNE, will use membrane cryostat - Known technology to carry liquid natural gas by tanker.

Stainless steel primary membrane

Plywood board

Reinforced polyurethane foam

Secondary barrier

Reinforced polyurethane foam

Plywood board

Bearing mastic

Concrete covered with moisture barrier

Insulation space #1Purge, test gas, vacuum

Detector volumePurge, vacuum, LAr

Insulation space #2Purge, test gas, vacuum

Concrete bathtubUfer ground, heating

Page 43: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 4309/09/2011

5. Membrane cryostatUltra large cryostat - Future large LArTPC, such as LAr40 of LBNE, will use membrane cryostat - Known technology to carry liquid natural gas by tanker.

worker

216,000m3 LNG tanker (~300 kt of LAr)

Page 44: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 4409/09/2011

5. Membrane cryostatUltra large cryostat - Future large LArTPC, such as LAr40 of LBNE, will use membrane cryostat - Known technology to carry liquid natural gas by tanker.

Fermilab Lab F - Membrane cryostat wall section - Helium test shows no leak >10-8 cc/s

LAPD

LBNE 35ton

Fermilab PC-4 - LAPD facility - LBNE35ton locates in a tunnel

Page 45: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

09/09/2011 Teppei Katori, MIT 45

LArTPC is a feasible candidate large detector for future long baseline neutrino oscillation experiment, such as LBNE

ArgoNeuT is the first US LArTPC neutrino experiment, and successfully completed its data taking.

MicroBooNE passed CD-2 review by Department of Energy. 150ton MicroBooNE is planned to take data from 2013. MicroBooNE is the necessary path for future large LArTPC and it has a rich physics program.

Future large LArTPC cryostat R&D is started.

6. Conclusion

Page 46: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

09/09/2011 Teppei Katori, MIT 46

MicroBooNE collaboration

Дякую, Спасибо, Рахмат!

Brookhaven National LaboratoryColumbia UniversityUniversity of CincinnatiFermi National Accelerator Laboratory Kansas State University Los Alamos National Laboratory

Massachusetts Institute of Technology Michigan State UniversityPrinceton University Saint Mary's University of MinnesotaSyracuse University University of Texas, AustinYale University

Page 47: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

09/09/2011 Teppei Katori, MIT 47

back up

Page 48: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 4809/09/2011

3. MicroBooNE cryostatNon vacuum insulated cryostat - MicroBooNE cryostat is not vacuum insulated (large scale vacuum insulation is expensive) - 16” of sprayed polyurethane insulation - keep dT<1.4K to avoid boiling of LAr at the wall

Heat Flux in Liquid Argon

1

10

100

1000

10000

0.1 1.0 10.0

dT - K

q/A

- W

/m2

Nat. Con.

Boiling

Page 49: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT

Did God(s) create CMOS to work in LAr?!

49

0.0 0.3 0.6 0.9 1.2 1.5 1.810-5

10-4

10-3

10-2

10-1

100

101

CMOS018

MEASURED

ID

gm

LN RT

I D [m

A],

gm [m

S]

VGS

[V]

NMOS, L=0.18µm, W=10µm

~ 30 300

~116 77m

D B

at T Kg q

at T KI nk T

10-6 10-5 10-4 10-3 10-2 10-1 100 101 1020

20

40

60

80

100

120 MEASURED

NMOS PMOS T=300K L=360nm L=270nm L=180nm

NMOS PMOS T=77K L=360nm L=270nm L=180nm

gm/I D

[V-1]

Drain Current Density [mA/mm]

CMOS018

gm/ID

At 77-89K, charge carrier mobility in silicon increases, thermal fluctuations decrease with kT/e, resulting in a higher gain, higher gm /I, higher speed and lower noise.

Transconductance//drain current

Veljko RadekaGLA2011

09/09/2011

3. MicroBooNE

Page 50: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5009/09/2011

4. Why Argon?

Noble gas comparison - lower boiling point is easier to handle - higher density has more energy deposit - longer wavelength is easier to detect - Xe>Kr>Ar>Ne>He but Xe and Kr are expensive

Page 51: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5109/09/2011

4. MicroBooNE physics, Ds

Neutral Current Elastic (NCE) event (23k in TPC volume, 6E20POT) - MiniBooNE: no proton-neutron separation below 350 MeV (proton Cherenkov threshold).

- SciBooNE: hard to understand low energy protons (>200 MeV for analysis) .

- LArTPC can measure low energy protons (~40MeV protons corresponds to Q2 ~0.08 GeV2).

ICARUS collaborationPRD74(2006)112001

MiniBooNE collaboration,PRD82(2010)092005H. Takei,Fermilab-Thesis-2009-19

Ds, strange quark spin components in nucleon - Ds is Q2=0 limit of the isoscalar part of axial vector form factor of NCE events. - previous experiments (BNLE734, MiniBooNE) are limited Q2 > 0.4 GeV2.

ICARUS proton dQ/dx - lowest reconstructable proton is ~50 MeV

Ahrens et al,PRD35(1987)785

MicroBooNE projected data points

unmeasured

BNL734 data

Page 52: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5209/09/2011

4. MicroBooNE physics, coherent pion production

Recent data of coherent pion productions - No charged current coherent pion production is observed.

- Neutral current coherent pion production is observed.

Vertex activity - SciBooNE uses energy deposit around vertex (called vertex activity) to distinguish coherent and resonance pion production. - 3mm coordinate resolution of MicroBooNE allows fine pion measurement and vertex activity.

K2K collaboration,PRL95(2005)252301

SciBooNE collaboration,PRD78(2008)112004

SciBooNE collaboration,PRD81(2009)033004;PRD81(2010)111102

MiniBooNE collaboration,PLB664(2008)41;PRD82(2010)092005

events

nCCQE 72k

nCCp+ (resonance) 30k

nCCp+ (coherent) 3k

nNCpo (resonance) 14k

nNCpo (coherent) 2k

MicroBooNE expected events in TPC volume (6E20POT)

SciBooNE nCCp+ sample vertex activity

Page 53: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5309/09/2011

4. MicroBooNE physics, NuMI neutrinos

MicroBooNE receives neutrinos both from Booster Neutrino beam (BNB) and NuMI! - upgrade 700kW NuMI will have 6E20POT/yr. - 40k nCC event and 7.7k anti-nCC event from NuMI, 6E20POT.

MicroBooNE detector

MicroBooNE detector

Page 54: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5409/09/2011

4. MicroBooNE physics, hyperon production

MicroBooNE receives neutrinos both from Booster Neutrino beam (BNB) and NuMI! - upgrade 700kW NuMI will have 6E20POT/yr. - 40k nCC event and 7.7k anti-nCC event from NuMI, 6E20POT.

Neutrino-Nucleon hyperon productions - High resolution detector allows hyperon measurements - Very low statistics (26 events) from ’70 bubble chambers

L production measurements - Uniquely sensitive to anti-neutrino - No Pauli blocking - L polarization?

MicroBooNE capability - We expect few 100s of Los in TPC volume, from NuMI, 6E20POT.

Neutrino78(1978)37,PRL33(1975)1446

ArgoNeuT Lo production (MC)

Page 55: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5509/09/2011

4. MicroBooNE physics, n2NSRC

JLab Hall A collabo.PRL99(2007)072501

JLab Hall A collabo.Science320(2008)1476

Cartoon of inside of nucleus

2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated.

neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!?

Particle Zoo©

neutrinos charged leptons

coolness

Page 56: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5609/09/2011

4. MicroBooNE physics, n2NSRC

2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated.

neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering

JLab Hall A collabo.PRL99(2007)072501

Berge et al.(FNAL15ft),PRD18(1978)1367

JLab Hall A collabo.Science320(2008)1476

Cartoon of inside of nucleus

Fermilab 15ft bubble chamber

average number of tracks - anti-nm CC event

® 6.20 ± 0.11 - anti-nm CC event with backward protons

® 7.42 ± 0.64

Page 57: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5709/09/2011

4. MicroBooNE physics, n2NSRC

2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated.

neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering - Unique place to study the role of 2NSRC on nuclear transition

JLab Hall A collabo.PRL99(2007)072501

Berge et al.(FNAL15ft),PRD18(1978)1367

JLab Hall A collabo.Science320(2008)1476

Cartoon of inside of nucleus

electron scattering - long arm spectrometers

neutrino scattering - active target, vertex detector

target

detectorstarget and detector

? vertex activity

Page 58: 09/09/2011Teppei Katori, MIT1 outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6

Teppei Katori, MIT 5809/09/2011

4. MicroBooNE physics, n2NSRC

2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated.

neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering - Unique place to study the role of 2NSRC on nuclear transition - Responsible for MiniBooNE absolute xs measurements?

JLab Hall A collabo.PRL99(2007)072501

Berge et al.(FNAL15ft),PRD18(1978)1367

JLab Hall A collabo.Science320(2008)1476

Cartoon of inside of nucleus

MiniBooNE collaboration,PRD81(2010)092005

Recent CCQE results