089 ' # '6& *#0 & 7pressure monitoring system. this function is performed by the...

21
3,350+ OPEN ACCESS BOOKS 108,000+ INTERNATIONAL AUTHORS AND EDITORS 114+ MILLION DOWNLOADS BOOKS DELIVERED TO 151 COUNTRIES AUTHORS AMONG TOP 1% MOST CITED SCIENTIST 12.2% AUTHORS AND EDITORS FROM TOP 500 UNIVERSITIES Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Chapter from the book Internal Combustion Engines Downloaded from: http://www.intechopen.com/books/internal-combustion-engines PUBLISHED BY World's largest Science, Technology & Medicine Open Access book publisher Interested in publishing with IntechOpen? Contact us at [email protected]

Upload: others

Post on 30-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

3,350+OPEN ACCESS BOOKS

108,000+INTERNATIONAL

AUTHORS AND EDITORS114+ MILLION

DOWNLOADS

BOOKSDELIVERED TO

151 COUNTRIES

AUTHORS AMONG

TOP 1%MOST CITED SCIENTIST

12.2%AUTHORS AND EDITORS

FROM TOP 500 UNIVERSITIES

Selection of our books indexed in theBook Citation Index in Web of Science™

Core Collection (BKCI)

Chapter from the book Internal Combustion EnginesDownloaded from: http://www.intechopen.com/books/internal-combustion-engines

PUBLISHED BY

World's largest Science,Technology & Medicine

Open Access book publisher

Interested in publishing with IntechOpen?Contact us at [email protected]

Page 2: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Chapter 5

© 2012 Lejda et al., licensee InTech. This is an open access chapter distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase

Artur Jaworski, Hubert Kuszewski, Kazimierz Lejda and Adam Ustrzycki

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/54604

1. Introduction Gaseous fuels are widely used in internal combustion engines because of their properties and benefits. This is mainly due to their smaller burden on the environment and lower prices. They are used not only to power the traction engine in passenger cars or buses, but also in other applications, for example, to power the engines driven electric generators. Ever-expanding chain of filling stations increases the availability of these fuels, which also affects the development of such fuelling systems. Because of their advantages fuel injection systems with their own drivers are used increasingly. It provides a non-collision work of mentioned drivers with a gasoline engine drivers of the vehicles, providing the performance of an engine running on gas fuel comparable to one running on gasoline.

The use of LPG injection in the liquid phase makes it possible to have more precise fuel delivery, and even more limits amount of pollution emitted by the engine to the environment. The fuelling for internal combustion engines with LPG in liquid phase using injection system into the intake manifold is a solution very similar to conventional fuel systems (Hyun et al., 2002; Lee et al., 2003). This kind of fuelling to the cylinders allows to obtain performances of engine comparable to the performances obtained using petrol and diesel fuel system.

2. Adaptation of engine to fuelling with lpg in liquid phase at sequence injection

The gas fuel system allowed the gas injection in the liquid phase was adapted to the engine, which in the original version was a compression ignition engine with symbol MD-111. This engine is a 6-cylinder Diesel engine with direct injection. The combustion chamber is made in the piston bowl and has a toroidal shape. By reducing the compression ratio and ignition

Page 3: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 112

system implementation, in the first stage, the engine to gas fuelling in the volatile phase has been adapted. The combustion chamber has been redesigned, gaining “cup” shape, whereby the compression ratio was also reduced from 16.5 to 9. The cylinder head was changed enabling to implementation a spark plug. To control the engine load, in the inlet system the throttle valve was installed.

The construction and operational parameters of modernized engine are summarized in Table 1. Next, the engine was further modernized in order to adapt gas fuel system enabling to sequence injection in the liquid phase.

As a gas system, the Vialle system was used (Fig. 1). The installation consists of:

Electronic Control Unit (ECU) of LPG fuel system, tank with fuel pump, LPG injectors, fuel pipes.

The system was developed for mating with the ECU of petrol engine in the system MASTER-SLAVE. In this system, ECU of LPG fuel system uses injection duration determined by ECU of petrol engine for calculating the opening duration of gas injectors. Since the MD-111E engine did not have the electronic control unit, the primary issue was to develop a control unit, generating suitable values of the injection duration for the ECU of LPG fuel system.

The main components of a LPG, i.e. propane and butane, have low boiling points. These temperatures are respectively 231 K and 272.5 K, and are lower than the average ambient temperatures encountered during engine operation. Especially high temperatures are in the engine compartment of the vehicle (hot zone), where temperatures reach about 350 K. This causes the temperature rise in the fuel system, which leads to evaporation of fuel in the fuel pipes and formation of vapour-locks (Cipollone & Villante, 2000, 2001; Dutczak et al., 2003). Keeping gas in the liquid phase in such difficult conditions requires its compression. To obtain a stable injection of LPG in the liquid phase, the system was equipped with a pressure monitoring system. This function is performed by the pump (Fig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator maintains the pressure in the supply system higher than the pressure in the tank. It allows to delivery fuel to injectors in liquid phase at every conditions of engine operation.

The liquid gas is pumped through a suitably shaped diaphragm pump. The pump has 5 chambers, which are integrated with the suction valves and power valve. The pump motor is a brushless alternating-current motor with permanent magnets. It is powered by DC, which is transformed into AC with a frequency controlled by an electronic control unit located in the assembly lid. The motor can be rotated with five different speeds 500, 1000, 1500, 2000, 2800 rpm. Speed control is realized by the ECU of LPG fuel system, depending on engine speed and load (injection duration). The pressure regulator is located between tank and gas injectors.

Page 4: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 113

No. Name Value1 Producer WS Mielec 2 Trademark MD-111E 3 Company name „PZL Mielec” 4 Type MD-111E 5 Work cycle 4-stroke 6 Cylinder diameter 127 mm 7 Piston stroke 146 mm 8 Engine capacity 11097 cm3

9 Number and basic engine design

6-cylinder, in-line

10 Firing order 1-5-3-6-2-4 11 Type of combustion system spark ignition 12 LPG fuel system mixer, electronic control of injection process 13 Compression ratio 9 : 1

14 Minimum cross section area: - inlet port - exhaust port

1250 mm2 950 mm2

15 Cooling system liquid 16 Type of cooling liquid Ethylene/Propylene Glycol Heat-Transfer Fluid 17 Cooling pump impeller

18 Radiator and fan pipe cooler, downcast ventilator with viscose clutch (EATON type)

19 Maximum outlet temperature at radiator

95C

20 Inlet and fuel system maximum limit of negative pressure inside inlet manifold at reference point 4.5 kPa

21 Supercharging system not installed

22

Mixer fuel system: reducer-evaporator mixer type gas dosing system

Tartarini GP-150 MS-1 WS-Mielec electronic actuator in closed system with oxygen sensor

23 Cold start unit Direct starting with electrical starter motor powered by battery, power 4.4 kW, voltage 24 V, type R 22

24 Maximum lift of valves 13,3 mm

Page 5: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 114

No. Name Value

25

Inlet valve timing: - opening - closing Exhaust valve timing: - opening - closing

8 deg. before TDC 52 deg. after BDC 46 deg. before BDC 20 deg. after TDC

Table 1. Technical and operational data of MD-111E engine

1 2

3

4 5

7

611

9

8

1213

10

14

Figure 1. Scheme of VIALLE fuelling system (Vialle, 2001): 1 – LPG tank, 2 – LPG pump, 3 – fuel pressure regulator, 4 – petrol ECU, 5 – LPG ECU, 6 – LPG injector, 7 – first oxygen sensor, 8 – second oxygen sensor, 9 – engine speed sensor, 10 – camshaft position sensor, 11 – coolant temperature sensor, 12 – air filter, 13 – exhaust gas catalyst, 14 – fuel type switch

Page 6: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 115

Figure 2. Unit of LPG pump (Vialle, 2001)

Figure 3. Scheme of tank with fuel pump (Vialle, 2001): 1 – pump body, 2 – inlet of body, 3 – tank wall, 4 – distance sleeve, 5 – inlet pipe, 6 – pump holder, 7 – pump, 8 – float, 9 – magnet

Page 7: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 116

1

5

7

8

2

3

4

6

Figure 4. Scheme of LPG liquid phase injector (Vialle, 2001): 1 –electrical connection, 2 – injector body, 3 – ring fixing the injector to body, 4 – o-ring, 5 – fuel inlet socket, 6 – injector housing, 7 – adapter, 8 – outlet pipe

The pressure regulator includes solenoid valve opened and closed when the output valve of the tank is turned on. The pressure regulator is also a pressure control module and the pressure sensor. The liquid gas flows through the valve to the injectors and the excess returns via a pressure regulator to the tank. The pressure is keeping by the controller by 5 bars higher than the pressure in the tank and can be 7-30 bars (Cipollone & Villante, 2000; Vialle, 2001). For the injection of gas in liquid phase there were used the low-pass injectors which distinct from top-pass injectors commonly used in petrol fuel systems, the fuel is delivered below the injector coil. This causes less heating of the gas from the coil, which favors keeping the liquid phase in the injector. To prevent coarse pollutions the filter was placed before the inlet of gas into the injector (Fig. 4). Due to the low resistance of the injector coil, the pulse control was applied to reduce the currents flowing during operation of the injector. The gas is fed to the injectors with synthetic pipes which are fixed with reinforced plates to each other and are locked with screws. Because the exhaust manifold is located above the intake manifold, the injectors were mounted into the intake manifold from below near to the cylinder head. It allows to lead the gas almost directly onto the inlet valve.

Page 8: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 117

3. Test stand and research method

The goal of realized study was to determine the effect of injection timing on ecological parameters of the engine. The test stand with dynamometer has been equipped with the following functional units and measurement systems:

hydraulic dynamometer Schenck D 630 with the control system, exhaust gas analysis system consisting of the following elements:

- Chemiluminescent NOx analyzer of the type Pierburg CLD PM 2000, - Flame ionization hydrocarbon analyzer FID HC type of PIERBURG PM 2000, - four-gas exhaust gas analyzer (CO, CO2, HC, O2) of the type Bosch BEA 350

equipped with function for calculating the ratio of actual AFR to stoichiometry (Lambda) for the various fuels,

LPG fuel consumption measuring system with Coriolis sensors, flow measurement system of the intake air, temperature measurement system, pressure measurement system.

The engine mounted to the test stand (Fig. 5) is shown in figure 6.

Figure 5. Schema of test stand: 1 - engine, 2 – air flow meter, 3 – combustion gases analyzers, 4 – computer with data acquisition system, 5 - brake, 6 – measuring sensors, 7 – measuring amplifiers, 8 – container of LPG, 9 – fuel flow measurement, 10 – separator of signal

During tests the measurements of following exhaust ingredients were made: oxides of nitrogen (NOx), hydrocarbons (HC) and carbon monoxide (CO). Additionally, engine noise level was determined. Primarily the measurements was conducted for engine speed of n = 1500 rpm, required for co-operation with a power generator and with different loads.

Page 9: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 118

An important parameter that affects both the operating parameters and the exhaust toxicity for sequential injection is the start of fuel injection (Hyun et al., 2002; Oh et al., 2002). For this reason a large part of the measurements was the analysis of the impact of the start of injection on obtained engine parameters and the emission of toxic ingredients in exhaust gases. The tests were performed with single and double injection. The start of injection was changed within the range shown in figure 7 and 8.

Figure 6. MDE-11 engine with sequence LPG injection system (for liquid phase) during test on stand

Page 10: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 119

Start of injection with respect to TDC – single injection

-200 -130 -70 0 40 100

Exhaust TDC TDC* Intake Compression

a)

Start of injection with respect to TDC – double injection

-200 -140+ TPD*

Exhaust TDC TDC* Inlet Compression

b) Pilot dose

Main dose -80 + TPD*

-20 + TPD*

40 + TPD*

TPD* - angle of pilot dose injection

Figure 7. Tested injection starts with first signal disk sensor position: a) for single injection, b) for dual injection

Start of injection with respect to TDC – single injection

-20 20 60 100 140

Exhaust TDC TDC* Inlet Compression

a)

180 220

Start of injection with respect to TDC – double injection

-20

Exhaust TDC TDC* Inlet Compression

b) Pilot dose

Main dose 60 + TPD*

100+TPD*

140+TPD*

180+TPD*

220+TPD*

TPD* - angle of pilot dose injection

Figure 8. Tested injection starts with second signal disk sensor position: a) for single injection, b) for dual injection

Page 11: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 120

The measurement of noise level was realized with AS-120 meter located at a height of 1 m and 1 m from the engine on the side of electrical starter motor. The sound level was measured using a filter correction LA [dB] and without correction L [dB]. The microphone for sound recording was placed in the axis of the engine, between 3 and 4 cylinder, at distance of 1 m from the valve cover. There was used microphone AKG C1000S (Shure Beta-58) for sound recording cooperating with amplifier Behringer MX1804X and octave filter RFT OF 101-01000. The recording was performed with 16-bit sound card.

4. Test results

Fig. 9 and 10 presents the performance of the engine, and fig. 11-14 shows the contour map (generalized performance map) for specific fuel consumption and the concentration of carbon monoxides, oxides of nitrogen and hydrocarbons. As we can see the maximum brake torque of the engine is larger than 770 Nm at an engine speed of 900 rpm and the maximum brake power of the engine is 125 kW at an engine speed of 1700 rpm.

Specific fuel consumption for an engine speed of 1500 rpm which is relevant to power generator is lowest at the maximum load and amounts to approximately 265 g/kWh. For this engine speed, the maximum CO concentration is approximately 0.3% and is higher at large loads. The concentration of NOx for mentioned engine speed ranges is from 40-550 ppm, reaching 160 -250 ppm for the large and medium loads. Hydrocarbon concentration amounts to from 15 ppm at small loads, up to 75 ppm at loads close to maximum.

The relationship between the injection starts of the LPG in liquid phase into a inlet manifold pipes and the concentration of CO2, CO, HC and NOx in the exhaust is shown on figures 15 and 16. At the starts of injection carried out at the opening of the intake valve, an increase in the concentration of NOx and hydrocarbons HC was observed versus the injection starts realized before opening the intake valve (fig. 15). The concentrations of CO and CO2 were undergone a slight changes in this case. At the injection starts carried out at the opening of the inlet valve is visible increase in the concentration of NOx at injection starts carried out from about 60 to 100 CA deg. after TDC during the intake stroke. Moreover an increase in the concentration of hydrocarbon HC and carbon monoxide CO at the injection starts carried out in the phase of closing the inlet valve from about 140 to 180 CA deg. after TDC at inlet stroke was observed (fig. 16). The injection realized at closing the inlet valve is also connected with the reduction of CO2 concentration.

Basing on the results for engine parameters and concentrations of hydrocarbons HC, oxides of nitrogen NOx, carbon monoxide CO in exhaust gas a right specific emissions were calculated. The calculation course of the specific emission was determined based on a set of International Standards ISO 8178 (ISO, 1999-2001). The calculation results are shown in figures 17-22.

The injection starts realized at closing the inlet valve (fig. 17 and 20) cause the increase in specific hydrocarbons emissions. Specific hydrocarbons emission decreases with increasing the injection duration (fuel quantity). Moreover we can see that specific NOX emission

Page 12: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 121

increases with long injection durations (higher load) and the injection starts realized at the opening of the inlet valve (fig. 18 and 21).

700 900 1100 1300 1500 1700 1900Rotational speed, n [rpm]

550

600

650

700

750

800

Mo[Nm]

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

Ne[kW]

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

Gh[kg/h]

200

220

240

260

280

300

320

340

360

ge [g/kWh]

ge

Gh

Mo

Ne

Figure 9. MD-111E engine WOT diagram for double injection: Ne – engine power, Mo – torque, Ge – fuel consumption, ge – specific fuel consumption

900 1100 1300 1500 1700 1900Rotational speed, n [rpm]

460

480

500

520

540

560

580

600

620

640

660

680

700

720

740

760

780

800

820

Ts

[oC]

50

100

150

200

250

300

350

400

450

500

550

600

HC[ppm]

85

90

95

100

105

110

115

120

125

130

Bm[mg/inj.]

0

50

100

150

200

250

300

350

400

450

500

550

600

NOx [ppm]

Bm

NOx

Ts

HC

Figure 10. MD-111E engine parameters for WOT operation: Ts – exhaust temperature, Bm – fuel amount HC – hydrocarbons, NOx – nitric oxides

Page 13: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 122

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

100

200

300

400

500

600

700

800

Prędkość obrotowa, n [obr/min]

Mom

ent

obro

tow

y, M

o [N

m]

252

254

256

258

278

276

274

272

270

268

266

254

260

274

276

278

280

285

290295

264266268

270272

274

276

278

260

262264

266268270

272 274

276

278

280

285

290

295300

305

310

315

320325 330

340

350360

370380390410 420

450475 500

550600700

800900 1000

380

420

295

325

450

800

264

266

10kW

20kW

30kW

40kW

50kW

60kW

70kW

80kW

90kW

100kW

110kW

120kW

Rotational speed, n [rpm]

Tor

que,

Mo

[Nm

]

Figure 11. Generalized performance map of MDE-111E LPG engine equipped with sequential injection system and catalytic converter

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

100

200

300

400

500

600

700

800

Prędkość obrotowa, n [obr/min]

Mom

ent

obro

tow

y, M

o [N

m]

0.002

0.002

0.020.02

0.018

0.0140.01 0.006

0.002

0.6

0.55

0.5

0.450.4

0.350.3

0.250.2

0.150.1

0.080.06

0.040.02

0.018

0.014

0.01

0.0060.040.02

0.018

0.2

0.15

0.1

0.08

0.06

0.04 0.06

0.006

0.060.08

0.1

0.150.2

0.4

0.550.8

11.2

1.41.8

0.6 0.3 0.0020.04

0.018

0.01 0.002

0.2

0.25

0.15

10kW

20kW

30kW

40kW

50kW

60kW

70kW

80kW

90kW

100kW

110kW

120kW

Rotational speed, n [rpm]

Tor

que,

Mo

[Nm

]

Figure 12. Contour map for concentration of monoxide carbon for MDE-111E LPG engine equipped with sequential injection system and catalytic converter

Page 14: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 123

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

100

200

300

400

500

600

700

800

Prędkość obrotowa, n [obr/min]

Mom

ent

obro

tow

y, M

o [N

m]

450400

350300250

200

160

120

801

10 4080

120160

200

250

300

350

400

450

500

600700800

9001000

11001200

80160

350500

600900

350

350

16080

10

110

10

80 160300

400

500

600

300400

250

40 80

160

400

10kW

20kW

30kW

40kW

50kW

60kW

70kW

80kW

90kW

100kW

110kW

120kW

Rotational speed, n [rpm]

Tor

que,

Mo

[Nm

]

Figure 13. Contour map for concentration of oxides of nitrogen for MDE-111E LPG engine equipped with sequential injection system and catalytic converter

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

100

200

300

400

500

600

700

800

Prędkość obrotowa, n [obr/min]

Mom

ent

obro

tow

y, M

o [N

m]

180

160

140

20

25

30

35

40

45

50

55

60 65

70

7580

8590

95

100

105 110

120

60

7560

55

50

60

65

70

75

80

80

9095

100

105120

140

160180

220300

500

900

1200

2000

5

1015

20

25

30

35

4045

5055

657560

15

15

20

25

30

35

40

45

6555

85 75

90

65

50

80

3060

200 10kW

20kW

30kW

40kW

50kW

60kW

70kW

80kW

90kW

100kW

110kW

120kW

Rotational speed, n [rpm]

Tor

que,

Mo

[Nm

]

Figure 14. Contour map for concentration of hydrocarbons for MDE-111E LPG engine equipped with sequential injection system and catalytic converter

Page 15: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 124

-200 -160 -120 -80 -40 0 40 80 120Pocz¹ tek wtrysku [° OWK]

80

100

120

140

160

HC

[ppm

]

320

340

360

380

400

420

NOx [

ppm

]

0.5

0.6

0.7

0.8

CO

[%]

13.32

13.36

13.40

13.44

13.48C

O2

[%]

HC

NOx

CO

CO2

GMP

n=1500 obr/minwtrysk pojedynczyczas wtrysku 4,6 ms

Przebieg wzniosu zaworu dolotowego

n=1500 rpmsingle injection

injetcion time 4,6 ms

Intake valve lift

Start of injection [CA deg]

Figure 15. The effect of injection start on the concentration of CO, CO2, HC, NOx in the exhaust gas (single injection, n=1500 rpm, injection duration 4.6 ms) – for LPG in liquid phase

-40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240Pocz¹ tek wtrysku [OWK]

250300350400450500550

HC [p

pm]

240

280

320

360

400

NOx [

ppm

]

1.2

1.6

2.0

2.4

2.8

CO

[%

]

Wtrysk pojedynczyn=900 obr/minczas wtrysku 5,5 ms

HC

NOx

CO

CO2

11.211.612.012.412.8

CO2

[%]

GMP

Przebieg wzniosu zaworu dolotowego

n=1500 rpmsingle injection

injetcion time 4,6 ms

Intake valve lift

Start of injection [CA deg]

Figure 16. The effect of injection start on the concentration of CO, CO2, HC and NOx in the exhaust gas (single injection, n=900 rpm, injection time 5,5 ms) – for LPG in liquid phase

Page 16: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 125

5,56,6

8,4

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

-2020

60100

140180

220

Injection duration [ms]

HC [g/kWh]

6-6,5 5,5-6 5-5,5 4,5-5 4-4,5 3,5-4 3-3,5 2,5-3 2-2,5 1,5-2 1-1,5 0,5-1 0-0,5

Start of injection[CA deg]

Figure 17. Specific HC emission for the selected injection parameters (single injection, n=900 rpm)

5,5

6,68,4

01234567891011

12

13

-2020

60100

140180

220

Injection duration [ms]

NOx [g/kWh]

12-13 11-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1

Start of injection[CA deg]

Figure 18. Specific NOx emission for the selected injection parameters (single injection, n=900 rpm)

Page 17: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 126

5,56,6

8,4

020406080100120140160180200220240

-2020

60100

140180

220 Injection duration [ms]

CO [g/kWh]

220-240 200-220 180-200 160-180 140-160 120-140 100-120 80-100 60-80 40-60 20-40 0-20

Start of injection[CA deg]

Figure 19. Specific CO emission for the selected injection parameters (single injection, n=900 rpm)

4,46,6

8,4

00,511,522,533,544,555,566,577,588,599,51010,5

-2020

60100

140180

220

Injection duration [ms]

HC [g/kWh]

10-10,5 9,5-10 9-9,5 8,5-9 8-8,5 7,5-8 7-7,5 6,5-7 6-6,5 5,5-6 5-5,5

4,5-5 4-4,5 3,5-4 3-3,5 2,5-3 2-2,5 1,5-2 1-1,5 0,5-1 0-0,5

Start of injection[CA deg]

Figure 20. Specific HC emission for the selected injection parameters (single injection, n=1500 rpm)

Page 18: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 127

4,4

6,6

8,4012345678910111213141516

-2020

60

100140

180

220

Injection duration [ms]

NOx [g/kWh]

15-16 14-15 13-14 12-13 11-12 10-11 9-10 8-9 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1

Start of injection[CA deg]

Figure 21. Specific NOx emission for the selected injection parameters (single injection, n=1500 rpm)

4,46,6

8,4

0

50

100

150

200

250

300

350

400

450

500

-2020

60100

140180

220Injection duration [ms]

CO [g/kWh]

450-500 400-450 350-400 300-350 250-300 200-250 150-200 100-150 50-100 0-50

Start of injection[CA deg]

Figure 22. Specific CO emission for the selected injection parameters (single injection, n=1500 rpm)

Page 19: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 128

At injection starts realized at closing the inlet valve the increase in specific CO emission is observed (fig. 19 and 22). The investigations show that specific CO emission decreases with injection duration (low load).

Table 2 presents the results of investigations on the effect of pilot and main injection on noise level generated by the engine. The study was conducted for an engine speed of n = 1500 rpm and three different loads – maximum, close to half of the maximum and not more than 10% of the maximum load. There was changed pilot injection advance pp relative to TDC (in the intake stroke), and the distance between pilot and main injection Δpz. The study was conducted at a fixed value of ignition advance wz = 20 CA deg.

n [rpm]

Mo [Nm]

tinj [ms]

pp

[CA deg] pz

[CA deg] wz

[CA deg] LA

[dB] L

[dB] 1499 10,7 4,4 285 100 20 98 102 1491 6,6 4,6 285 30 20 98 102 1498 7,7 4,4 285 160 20 98 102 1500 45,4 4,6 225 100 20 97 101 1501 336,0 10,2 285 100 20 98 102 1501 337,5 10,4 285 30 20 98 102 1500 329,2 10,4 285 160 20 97 101 1501 349,3 10,8 225 100 20 97 100 1500 735,0 18,0 285 100 20 97 100 1501 714,9 18,2 285 30 20 97 100 1501 713,8 18,2 285 160 20 97 101 1500 728,2 17,2 225 100 20 97 101

Table 2. The effect of pilot and main injection timing on nosie level of the engine

Sou

ndle

vel[

dB]

Figure 23. Frequency spectrum of sound level at various injection timing

Page 20: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

The Effect of Injection Timing on the Environmental Performances of the Engine Fueled by LPG in the Liquid Phase 129

From table 2 and fig. 23 we can see that at an engine speed of 1500 rpm, regardless of the load, both the start injection of pilot fuel quantity pp and the start injection of main fuel quantity (characterized by the value of Δpz) do not have significant effect on the sound level and its frequency.

5. Conclusions

The tested engine MD-111E reaches more than 125 kW at maximum tested speed, but at a speed of 1500 rpm, when cooperates with a power generator has a power output of 115 kW, what allows to cooperate with a power generator with a capacity of 125 kVA providing a sufficient surplus of power.

The researches show, that injection timing has a significant relationship with the emission of toxic ingredients in exhaust gases of the engine. LPG fuel injection carried out at closing of intake valve causes an increase in specific HC emission and specific CO emission. For the injection starts realized at opening of the intake valve an increase in the specific NOx emission is observed. Realized researches show, that at an engine speed of 1500 rpm, regardless of the load, both the start injection of pilot fuel quantity and the start injection of main fuel quantity do not have significant effect on the sound level and its frequency.

The final value of timing and mutual location of the fuel quantities (for pilot and main injection) with respect to TDC of the piston can be selected only because of the optimal operation and environmental performances of the engine. It greatly simplifies the problem of optimization of the ignition system and fuel injection system designed to fuelling using LPG in liquid phase at sequential injection system and at split of injection.

The application of fuel system with dual LPG sequential injection of liquid phase and the catalytic converter can achieve satisfactory environmental performances of the engine. The use of a turbocharger gives the possibility to increase the engine power obtained in broad range of engine speed with small modifications of fuel system.

The use of broadband oxygen sensor instead of the two state oxygen sensor can improve the control accuracy and precision of fuel delivery. In this way can be met more and more rising requirements connected with emission standards.

Author details

Artur Jaworski, Hubert Kuszewski, Kazimierz Lejda and Adam Ustrzycki Rzeszów University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Automotive Vehicles and Internal Combustion Engines, Poland

6. References

Cipollone, R., & Villante, C. (2000). A/F and Liquid-Phase Control in LPG Injected Spark Ignition ICE. SAE Technical Paper 2000-01-2974

Page 21: 089 ' # '6& *#0 & 7pressure monitoring system. This function is performed by the pump (F ig. 2) placed in the fuel tank (Fig. 3) and pressure regulator (Fig. 4). The pressure regulator

Internal Combustion Engines 130

Cipollone, R., & Villante, C. (2001). A dynamical analysis of LPG vaporization in liquid-phase injection systems. International Workshop on "Modeling, Emissions and Control in Automotive Engines" MECA'01, University of Salerno, Italy, September 2001

Dutczak, J., Golec, K., & Papuga, T. (2003). Niektóre problemy związane z wtryskowym zasilaniem silników ciekłym propanem-butanem. VI Międzynarodowa Konferencja Naukowa SILNIKI GAZOWE 2003, Zeszyty Naukowe Politechniki Częstochowskiej, pp. 296-303, ISBN 83-7193-208-1, Częstochowa, 2003

Hyun, G., Oguma, M., & Goto, H. (2002). 3-D CFD analysis of the mixture formation process in an LPG DI SI engine for heavy duty vehicles. Twelfth International Multidimensional Engine Modeling User's Group Meeting Agenda, Detroit, 2002

Lee, E., Park, J., Huh, K.Y., Choi, J., & Bae, C. (2003). Simulation of fuel/air mixture formation for heavy duty liquid phase LPG injection (LPLI) engines. SAE Technical Paper 2003-01-0636

Oh, S., Kim, S., Bae, C., Kim, C., & Kang, K. (2002). Flame propagation characteristics in a heavy duty LPG engine with liquid phase port injection. SAE Technical Paper 2002-01-1736

PN-EN ISO 8178, part 1-4, 1999-2001 Training materials of Vialle. Kielce, 2001