08. iron-carbon phase diagrams

25
Equilibrium crystallisation of Equilibrium crystallisation of Iron-Carbon alloys Iron-Carbon alloys Metallography - Lecture 8. 2012/2013. Academic Year 2013.

Upload: tiszam

Post on 08-Nov-2014

320 views

Category:

Documents


23 download

DESCRIPTION

Analysis of stable (iron-carbon) and metastable (iron-ironcarbide) ohase diagrams

TRANSCRIPT

Equilibrium crystallisation of Iron-Equilibrium crystallisation of Iron-Carbon alloysCarbon alloys

Metallography - Lecture 8.

2012/2013. Academic Year

2013.

Metallography of Iron-Carbon alloysMetallography of Iron-Carbon alloys

Definition of Iron-Carbon alloys – the base metal is iron (Fe);– it is always a multi-component alloy having several

elements inevitably from the manufacturing processes, but it may be regarded as binary Fe-C alloy until the following conditions are fulfilleda Si < 0,5 %, Mn < 0,7 %, S+P < 0,035 %

– in these cases their equilibrium crystallisation can be studied in the iron-carbon binary phase diagram

– the iron-carbon binary phase diagram – or Heyn-Charpy

Characteristic features of Heyn-Charpy Characteristic features of Heyn-Charpy dual phase diagram dual phase diagram

Dual phase diagram since it contains

– the Fe-Fe3C metastable phase diagram (the carbon is chemically bonded in iron-carbide)

– the Fe-C stable phase diagram (the carbon is present in the form of free graphite)

Hein-Charpy dual phase diagramHein-Charpy dual phase diagram

AB

C

D

E F

G

H

I

K

L

M

N

P S

Q

(austenite)

liquid + Fe3C(liquid + graphite)

+Fe 3C

+ graphite)

liquid

+

723 oC

Fe 1 2 3 4 5 6

700

900

1000

1100

1200

1300

1400

1600

769 oC

C'

D'

E'

S'

F'

20

738 oCA1

A cm

A3 O

K'

6.687

800

1500

1147 oC

1153 oC

Weight percent, % C

Temperature oC

Figure 8.1

+ liquid

+Fe 3C

(+ graphite)

+ liquid

Characteristic points of Hein-Charpy dual phase

diagram

Table 8.1.

Point Temperature

T (oC)

Carbon-content

C (%)

A 1536 0,000

B 1493 0,510

C 1147 4,300

C' 1153 4,260

D 1250 6,687

D' * 100,000

E 1147 2,060

E' 1153 2,030

F 1147 6,687

F' 1153 100,000

G 911 0,000

H 1493 0,100

I 1493 0,160

K 723 6,687

K' 738 100,000

L 20 6,687

L' 20 100,000

M 769 0,000

N 1392 0,000

O 769 0,512

P 723 0,025

P' 738 0,020

Q 20 0,006

S 723 0,800

S' 738 0,690

Characteristic features of Heyn-Charpy Characteristic features of Heyn-Charpy dual phase diagramdual phase diagram

Unlimited liquid solubility

– 3 liquidus section 3 primary crystals

-solid solution (along AB-liquidus)

-solid solution (along BC-liquidus)

Fe3C primary cementite ( graphite in the stable system)

Characteristic features of Heyn-Charpy Characteristic features of Heyn-Charpy dual phase diagramdual phase diagram

three solid solution zone

-solid solution (below the GP-curve)

-solid solution (below the IE-solidus curve)

-solid solution (below the AH-solidus curve)

Characteristic features of Heyn-Charpy Characteristic features of Heyn-Charpy dual phase diagramdual phase diagram

Three chemical compounds

– along the DC-curve: I. Fe3C primary cementite

( primary graphite)

– along the ES-curve: II.Fe3C secondary cementite

( secondary graphite)

– along the PQ-curve: III.Fe3C tertiary cementite

( tertiary graphite)

Characteristic features of Heyn-Charpy Characteristic features of Heyn-Charpy dual phase diagramdual phase diagram

In solid state limited solubility

– along the ES-curve: II.Fe3C secondary cementite

( secondary graphite)

– along the PQ-curve: III.Fe3C tertiary cementite

( tertiary graphite)

Characteristic features of Heyn-Charpy Characteristic features of Heyn-Charpy dual phase diagramdual phase diagram

three non-variant reaction

– peritectic reaction at the T=THIB line

H + liquidB I

– eutectic reaction at the T=TECF line

liquidC E + Fe3C (ledeburite)

– eutectoid reaction at the T=TPSK line

S P + Fe3C (perlite)

Analyis of crystallisation of alloysAnalyis of crystallisation of alloys

A

B

C

D

E F

G

H

I

K

L

M

N

P S

Q

(austenite)

+ olv.

olv. + Fe3C

+ Fe3C

+ Fe3C

liquid

723 oC

Fe 1 2 3 4 5 6

700

900

1000

1100

1200

1300

1400

1600

20

A1

A cm

A3O

6,687

1147 oC

1 2 4 53

800

1500

Weight percent, % C

Tem

pera

ture

, o C

Crystallisation of alloy-1 in the metastable Crystallisation of alloy-1 in the metastable system (carbon content C=0,12 %)system (carbon content C=0,12 %)

olvB

T > T

T = T - T

T = THIB + T

T = 20 oC

T = THIB - T

T = TGOS + T

T = TPSK + T

T = TNI - T

T = TPSK - T

olv0,12

0,12

0,12

P S

P P

Fe3C

T = 20 oC

Q III. Fe3C Q

Fe3C

H + olvB I

perliteferrite

Eutectoid

S P + Fe3C

0,12

nuclei

liquid

reaction

tertiarycementite

perlite

ferrite

Peritecticreaction

liquid0,12

tertiarycementite

Crystallisation of alloy-1 in the metastable Crystallisation of alloy-1 in the metastable system (carbon content system (carbon content C=0,12 %)C=0,12 %)

Calculation of quantity of phases

before reaction after reaction

phases participating in the peritectic reaction

.%505,0110,051,0

10,012,0

%,9595,0110,051,0

12,051,0

kgolv

kg

B

H

%.3333,0110,016,0

10,012,0

%,6767,0110,016,0

12,016,0

kg

kg

I

H

IBH kgolvkgkg 33,005,028,0

Crystallisation of alloy-2 in the metastable Crystallisation of alloy-2 in the metastable system (carbon content system (carbon content C=0,8 %)C=0,8 %)

T > T

T = T - T

T = TSol. - T

T = TPSK + T

olv0,8

T = 20 oC

0,8

0,8

P

Fe3C

perliteQ Fe3C)

T = TPSK - T

perlite

0,8

nuclei

liquid liquid

Crystallisation of alloy-3 in the metastable Crystallisation of alloy-3 in the metastable system (carbon content system (carbon content C=1,2 %)C=1,2 %)

perlite

nuclei

T > T

T = T - T

T = Ts - T

T = TES + T

olv1,2

T = 20 oC

1,2

1,2

S II. Fe3C

Q Fe3C)

T = TPSK + T

T = TPSK - T II. Fe3CP Fe3C+

II. Fe3C

II. Fe3C

0,8

II. Fe3C

liquid1,2liquid1,2

perlite

Quantity of microstructural elements in Quantity of microstructural elements in alloy with C=1,2 %alloy with C=1,2 %

Calculations concerning the quantity of secondary cementite

analysis of microstructure

6,687 1,2% 100% 93,2%

6,687 0,8perlite

%8,6%1008,0687,6

8,02,1%. 3

CFeII

Crystallisation of alloy-4 in the metastable Crystallisation of alloy-4 in the metastable system (carbon content system (carbon content C=2,5 %)C=2,5 %)

E

olv2,5

olvC

T > Tl

T = Tl - T

T = TECF + T

T = TECF - T

T = TPSK + T

T = TPSK - T

olv2,5

T = 20 oC

Eutectic reaction

olvc E + Fe3C

II. Fe3C

II. Fe3C

II. Fe3CQ

Fe3C

+

S

PFe3C+

E Fe3C+

(S Fe3C)+

(p Fe3C)+

(Q Fe3C)+

ledeburite

perlite

ledeburite

ledeburite

ledeburite

ledeburite perlite

Crystallisation of alloy-4 in the metastable Crystallisation of alloy-4 in the metastable system (carbon content system (carbon content C=2,5 %)C=2,5 %)

Determination of quantity of microstructural elements at room temperature (3 microstructures - perlite+secondary cementite+ledeburite) therefore we have to find what are they originated from

– II. Fe3C is originated from E : the quantity of E

should be determined at the temperature of eutectic reaction 4,3 2,5

% 100% 80,4%,4,3 2,06

2,5 2,06% 100% 19,6%.

4,3 2,06

E

ledeburit

Crystallisation of alloy-4 in the metastable Crystallisation of alloy-4 in the metastable system (carbon content system (carbon content C=2,5 %)C=2,5 %)

The maximum quantity of II. Fe3C (if the composition of the alloys should correspond to point E)

The real quantity of II. Fe3C

the third microstructural element is the perlite

%4,21%1008,0687,6

8,006,2).( max3

CFeII

3 3 max( . ) ( . ) 0,804 21,3% 17,2%real EII Fe C II Fe C

3% % ( . ) % 80,4 17,2 63,2%E realperlit II Fe C

Micro-Micro-structure-structure-

diagram for diagram for Fe-FeFe-Fe33C C

alloysalloys

Figure 8.8. Figure 8.8.

0 2 4,3

Ferrite

Perlite

Secondary cementite

Ledeburite

Primary cementite

6,687 %C

Tertiary cementite

100

%

AB

C

D

E F

G

H

I

KL

M

N

P SQ

(austenite)

+ liquid

liquid + Fe3C

+ Fe3C

+ Fe3C

liquid

+ liquid

+

723 oC

Fe 1 2 3 4 5 6

700

900

1000

1100

1200

1300

1400

1600

20

A cm

A3

O

6,687

1147 oC

Temperature oC

Weight percent, % Ca) Fe-Fe3C phase diagram

A1

b) Microstructure diagram (T = 20oC)

Phases Phases in the in the

Fe-FeFe-Fe33C C

systemsystem

Figure Figure 8.8. 8.8.

AB

C

D

E F

G

H

I

KL

M

N

P SQ

(austenite)

+ liquid

liquid + Fe3C

+ Fe3C

+ Fe3C

liquid

+ liquid

+

723 oC

Fe 1 2 3 4 5 6

700

900

1000

1100

1200

1300

1400

1600

20

A cm

A3

O

6,687

1147 oC

Temperature oC

Weight percent, % Ca) Fe-Fe3C phase diagram

A1

0

- Ferrite

6,687 %C

Fe3C - Cementite

c) Diagram of phases (T = 20 oC)

100

%

Analysis of crystallisation in the Fe-C Analysis of crystallisation in the Fe-C stable systemstable system

The dotted lines in the Hein-Charpy dual phase diagram relate for the stable system

the basic difference between the stable and metastable system can be found in the form of carbon

– in the metastable system: carbon is present in chemically bonded form of Fe3C (iron-carbide),

– in the stable system: carbon is present in the form of free C (i.e. graphite),

Summary of differences between the Summary of differences between the stable and metastable systemstable and metastable system

metastable stable

Fe3C C (primary, secondary, tertiary)

perlite graphite eutectoid ( + C)

ledeburite graphite eutectic (graphite eutectoid + C)

Analysis of crystallisation of alloy with Analysis of crystallisation of alloy with carbon content C=2,5 %carbon content C=2,5 %

liquid 2,5

T > Tl

T = Tl - T

T = TE'C'F' + T

T = TE'C'F' - T

olv2,5

' Eutectic reaction

'E' Cgr liquidC' E' Cgr

T = 20 oC II.Cgr Q' Cgr)

T = TP'S'K' - T P' Cgr P' Cgr)II.Cgr

T = TP'S'K' + T S' II.CgrS' Cgr)

C'liquid

Grafiteeutectic

Grafiteeutectic

Grafiteeutectic

Grafiteeutectoid

ClassiClassi--fication fication of iron-of iron-carbon carbon alloys alloys on the on the

basis of basis of phase phase

diagramdiagram

H y p o - H y p er-

e u tec to id

P ig iro n

H y p o -H y p er

-e u tec tic

AB

C

D

E F

G

H

I

K

L

M

N

P SQ

(a u sten ite )

+ o lv .

o lv . + F e 3C

+ F e 3C

+ F e 3C

liq u id

+ liq u .

+

7 2 3 oC

F e 1 2 3 4 5 6

7 0 0

9 0 0

1 0 0 0

1 1 0 0

1 2 0 0

1 3 0 0

1 4 0 0

1 6 0 0

2 0

A 1

A cm

A3

O

6 ,6 8 7

11 4 7 oC

S te e ls

8 0 0

1 5 0 0

T em p era tu re , oC

w eig h t % C

Figure 8.2.