07 convestav heat transfer during air-mist spray...

10
CCC ANNUAL REPORT UIUC, August 18, 2011 Heat Transfer During Air Mist Spray Cooling * Alberto Hernandez Humberto Castillejos Air-Mist Spray Cooling Humberto Castillejos Andres Acosta Xiaoxu Zhou * Brian G Thomas Brian G. Thomas * University of Illinois at Urbana Champaign University of Illinois at Urbana-Champaign CINVESTAV, Unidad Saltillo, Mexico Project Objectives Q tif h tt f t d i i it Quantify heat transfer rate during air-mist spray cooling: measure: size, velocity, flow rate, and impact density measure: size, velocity, flow rate, and impact density distributions of water droplets from commercial nozzles spraying air-water mists interpret steady-state heat-transfer measurements with interpret steady-state heat-transfer measurements with computational models develop empirical heat flux relation based on f d tl t d lt t fundamental water droplet parameters _____________________________________________________________________________________________________________________________________________ University of Illinois at Urbana-Champaign Metals Processing Simulation Lab BG Thomas 2

Upload: others

Post on 03-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • CCC ANNUAL REPORTUIUC, August 18, 2011

    Heat Transfer During Air Mist Spray Cooling

    *Alberto HernandezHumberto Castillejos

    Air-Mist Spray Cooling

    Humberto CastillejosAndres AcostaXiaoxu Zhou

    * Brian G ThomasBrian G. Thomas

    * University of Illinois at Urbana ChampaignUniversity of Illinois at Urbana-ChampaignCINVESTAV, Unidad Saltillo, Mexico

    Project Objectives

    Q tif h t t f t d i i i t• Quantify heat transfer rate during air-mist spray cooling:

    • measure: size, velocity, flow rate, and impact densitymeasure: size, velocity, flow rate, and impact density distributions of water droplets from commercial nozzles spraying air-water mists

    • interpret steady-state heat-transfer measurements with• interpret steady-state heat-transfer measurements with computational models

    • develop empirical heat flux relation based on f d t l t d l t tfundamental water droplet parameters

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 2

  • Steady Heat Transfer Measurement

    • Induction heating is used to heat up platinum sample

    • Power controller is used to maintain• Power controller is used to maintain sample temperature at a specific value

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 3

    Experiment Details

    Side Vie TC Wire

    Cylinder Plastic CoverSpray Nozzle

    Side View

    Ceramic BodyX

    Top ViewY

    Z Platinum Sample

    Top ViewBox and SampleY

    C

    Copper Coil

    Quartz Glass

    TC Wires

    • Plastic cover and quartz glass are used to keep spray water from ceramic body, only exposing front surface of platinum

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 4

    sample to the water

  • Typical Ts and Itot Measurements Water Flow Rate=4.6lpm, Air Flow Rate=104lpm,Nozzle Centered (June 26, 09)

    Total current measurement approaches steady state at the end of the 8 min for each stage

    25 s20 s

    Sample temperature Ts=300 C

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 5

    Heat Source Distribution and Temperature Distributionand Temperature Distribution

    Temperature distributionHeat Source distribution

    670680690

    , oC D

    620630640650660670

    Tem

    pera

    ture

    C

    Heat Generated, W Heat Out, W

    Sample 264.49Spray 229.14

    Coil 206.22

    Window 14 96

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 6

    6200 0.5 1 1.5 2 2.5 3 3.5 4

    T

    Platinum Sample Radius, mm

    Coil 186.19Window 14.96

    Natural convection 0.44

    Total 450.68 Total 450.76

  • Nozzle CenterSpray Heat Transfer Coefficientsp y

    Y=0mm(Nozzle Centered)

    24

    26

    K

    WaterFlowRate=4.6lpm, Heating

    WaterFlowRate=4.6lpm, Cooling

    16

    18

    20

    22

    24

    cien

    t, kW

    /m^2

    K WaterFlowRate 4.6lpm, CoolingWaterFlowRate=3.5lpm, Heating

    WaterFlowRate=3.5lpm, Cooling

    WaterFlowRate=2.5lpm, Heating

    WaterFlowRate=2.5lpm, Cooling

    10

    12

    14

    16

    Tran

    sfer

    Coe

    ffi

    WaterFlowRate 2.5lpm, Cooling

    2

    4

    6

    8

    Spra

    y H

    eat T

    •Increasing water flow rate increases heat transfer coefficient.During heating HTC peaks around 150 200 C then decreases as sample surface increases

    00 100 200 300 400 500 600 700 800 900 1000 1100 1200

    Sample Surface Temperature, C

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 7

    •During heating, HTC peaks around 150~200 C, then decreases as sample surface increases•During cooling, HTC keeps increasing gradually.•Hysteresis is shown in heat transfer coefficient curves. HTC is independent of temp at temp >850 C

    Nozzle Centered - Spray Heat Flux

    ( )

    4.5

    5.0Nucleate boiling

    Transition boiling

    Stable Film boiling

    3.5

    4.0

    W/m

    ^2

    g

    2.0

    2.5

    3.0

    y H

    eat F

    lux,

    MW

    WaterFlowRate=4.6lpm,HeatingWaterFlowRate=4.6lpm,CoolingWaterFlowRate=3.5lpm,HeatingWaterFlowRate=3.5lpm,CoolingWaterFlowRate=2.5lpm,HeatingWaterFlowRate=2.5lpm,CoolingTransient 2 02lpm

    0 5

    1.0

    1.5Spra

    y Transient_2.02lpmTransient_1.761lpmTransient_3.321lpmTransient_3.34lpm

    •Increasing water flow rate increases spray heat flux

    0.0

    0.5

    0 100 200 300 400 500 600 700 800 900 1000 1100 1200Sample SurfaceTemperature, C

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 8

    •Increasing water flow rate increases spray heat flux.•Heat transfer almost independent of temperature above ~850 oC•Hysteresis is observed below Leidenfrost temperature ~850 oC•Steady measurement gives higher heat flux than transient measurement

    --Transient results by Sami Vapalahti, etc, Spray Heat Transfer Research at CINVESTAC,P26, CCC report, 2007

  • Mechanism of Hysteresis

    sample

    Steam LayersampleWater Layer

    Spray DropletWater Layer

    •Heating process: Fig. 1 Fig. 2

    •spray droplet impinges on water layer, touches surface, boils, and takes heat away. (Fig. 1)•High heat removal keeps surface cold.

    •Cooling process:•At high sample surface temperature (>~860oC), a stable steam layer forms on the sample surface. (Fig. 2)•This steam layer acts as a barrier to heat transfer and decreases heat removal

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 9

    •This steam layer acts as a barrier to heat transfer and decreases heat removal.•Low rate of heat removal sustains the air gap to low temperatures before droplets finally can penetrate through

    •Result: difference in heat transfer at intermediate temperatures according to history (heating or cooling)

    Nozzle Water Flow Rate=4.6lpm--Spray Heat Transfer Coefficientsp y

    2426

    W/m

    2 K

    WaterFlowRate=4.6lpm

    Y=0mm,HeatingY=0mm Cooling

    25

    30000

    35000100 C300 C500 C700 C

    1416182022

    Coe

    ffici

    ent,

    kW

    Y=0mm,CoolingY=9mm,HeatingY=9mm,CoolingY=18mm,HeatingY=18mm,Cooling

    15

    20

    20000

    25000

    30000, l/m2 s

    700 C900 C1100 CWater Flux Rate

    468

    101214

    Hea

    t Tra

    nsfe

    r C

    10

    10000

    15000

    20000

    r Flux Rate

    HTC,W/m2 K

    024

    0 100 200 300 400 500 600 700 800 900 1000 1100 1200

    Spr

    ay

    Sample Surface Temperature, C0

    5

    0

    5000

    10000

    Wate

    •Hysteresis exists for different location from spray centerline.•Moving further away from spray centerline decreases HTC.

    00

    0 3 6 9 12 15 18Y Direction,mm

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 10

    •Difficult to correlate water flow rate footprint measurements with HTC. •More details of spray dynamics needed (droplet distribution, size, velocity, etc, --collaboration work at CINVESTAV, Mexico)

  • Heat Transfer in Film-Boiling Regime

    Stable

    No hysteresis

    Almost independent of surface temperature

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 11

    Flow-rate and Pressure of air and water are related in a nozzle

    Operating Diagram(Delavan W19822 nozzle)

    Water Flow Rate (L/s)

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 12

    (Delavan W19822 nozzle)

  • Droplet Parameter Measurements

    For a given nozzle, water flow rate and air pressureflow rate, and air pressure,Measure distributions of droplet:droplet:• Size• VelocityVelocity• Weber number

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 13

    Measure water flux and impact density mapsp y p

    For a given: - nozzle, - water flow rate, and- air pressure

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 14

  • Title

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 15

    New Correlations

    Heat Flux (W/m2)0.319 0.317 0.144 0.036

    300.307 z wq w u T d−− =

    0 318 0 330 0 895 0 024

    Heat Transfer Coefficient (W/m2K)0.318 0.330 0.895 0.024

    30379.93 z wh w u T d− −=

    2w = local water flux density (L/m2s)uz = volume-weighted mean droplet velocity (m/s)Tw = surface temperature (K)

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 16

    w p ( )d30 = volume-mean droplet diameter (mm)

  • Agreement of fit: 96% of h measurements fall within +/-25% of predictionp

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 17

    Conclusions

    • Spray heat transfer coefficient and heat flux show hysteresis likely related to formation of vapor layer on sample surface.

    • Heat transfer in stable film boiling regime above ~650 oC experiences no hysteresis, (above Leidenfrost temperature)

    • New correlation to predict air-water spray mist heat transfer has been developed based on fundamental droplet parameters: flux density, size, velocity, & surface temperatureparameters: flux density, size, velocity, & surface temperature

    • New correlation fits measurements for 3 different nozzle types and many different water-flow and air-pressure

    diticonditions

    • New correlation shows heat transfer depends mainly on water flux density with velocity also important but is

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 18

    water flux density, with velocity also important, but is almost independent of surface temperature & droplet size.

  • References (for further details)

    • C.A. Hernández, J.I. Minchaca, A.H. Castillejos, F.A. Acosta, X. Zhou, and B.G. Thomas, “Measurement of Heat Flux in Dense Air-Mist Cooling: Part gI. A Novel Steady-State Technique”, CCC Report 201101, Aug. 18, 2011.

    • C.A. Hernández, J.I. Minchaca, A.H. Castillejos, F.A. Acosta, X. Zhou, and B.G. Thomas, “Measurement of Heat Flux in Dense Air-Mist Cooling: Part II. The Influence of Mist Characteristics on Heat Transfer”, CCC Report 201102, Aug. 18, 2011.

    • X. Zhou, Heat Transfer During Spray Water Cooling Using Steady Experiments, MS Thesis, University of Illinois, 2009.

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 19

    Acknowledgementsg• Continuous Casting Consortium Members

    (ABB A l Mitt l B t l T t St l(ABB, Arcelor-Mittal, Baosteel, Tata Steel, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech Posco SSAB ANSYS-Fluent)Postech, Posco, SSAB, ANSYS Fluent)

    • National Science FoundationNational Science Foundation– GOALI DMI 05-00453

    _____________________________________________________________________________________________________________________________________________University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • BG Thomas 20