060516_umh_ac

41
Nuevas herramientas para el control de la expresión génica en plantas basadas en pequeños RNAs artificiales Alberto Carbonell www.slideshare.net/ AlbertoCarbonell1 [email protected] v.es @A_Carbonell_

Upload: alberto-carbonell

Post on 15-Apr-2017

124 views

Category:

Science


0 download

TRANSCRIPT

Page 1: 060516_UMH_AC

Nuevas herramientas para el control de la expresión génica en plantas basadas

en pequeños RNAs artificialesAlberto Carbonell

www.slideshare.net/AlbertoCarbonell1

[email protected]

@A_Carbonell_

Page 2: 060516_UMH_AC

Gene Silencing

Eukaryotic evolutionarily conserved, sequence-specific, RNA-based gene-inactivation system that regulates key biological processes

Development Stress response

Chromatin structure Pathogen defense

Gene Silencing

Page 3: 060516_UMH_AC

Gene Silencing is important for plant growth

Normal RNA silencing

Defective RNA silencing

Page 4: 060516_UMH_AC

Gene Silencing is necessary for proper leaf shape

Defective RNA silencing

Normal RNA silencing

Page 5: 060516_UMH_AC

Gene Silencing controls developmental timing

Normal RNA silencing

Defective RNA silencing

Page 6: 060516_UMH_AC

Gene Silencing defends plants against diseases

Normal RNA silencing

Defective RNA silencing

Plant resistant to virus

Plant susceptible to virus

Page 7: 060516_UMH_AC

Classes of Gene Silencing

Transcriptional Gene Silencing

(TGS)

An

*

X

Gene

AnmRNA

Protein

NoGene Silencing

Post-Transcriptional Gene Silencing

(PTGS)

An*

X

Page 8: 060516_UMH_AC

PTGS in Plants

AGO

dsRNA

target RNA

ssRNA

Intramolecular(folding)

RNA-dependent RNA polymerase

DCL

RDR

..............AGO

..............

AGO.............. An

sRNA

An

An

Translationalrepression

.............

RNA-dependent RNA polymerase

target RNARDR

Page 9: 060516_UMH_AC

Small RNA (sRNA) Silencing Pathways

Page 10: 060516_UMH_AC

Artificial sRNA Silencing Pathways

Page 11: 060516_UMH_AC

Applications of Plant Artificial sRNAs

Study gene function

CONCLUSION: Gene A is necessary for chlorophyll synthesis

Normal function of plant gene A

Artificial small RNAs shut down function of plant gene A

Page 12: 060516_UMH_AC

Applications of Plant artificial sRNAs

Induce antiviral resistance

Niu et al. Nature Biotechnology (2006)

Page 13: 060516_UMH_AC

Advantages of Plant Artificial sRNAs

Spacio and temporal regulation of gene expression-Tissue specific expression of artificial sRNAs-Inducible expression of artificial sRNAs

Study of lethal genes

Simultaneous silencing of multiple: -Sequence related genes (e.g. gene family)

-Sequence unrelated genes

Generation of allelic series with different silencing levels-Transformation process-Use of expression promoters of distinct strength-Fine tune regulation of the artificial sRNA efficacy by modifying

base- pairing interactions between the artificial sRNA and target

Page 14: 060516_UMH_AC

Limitations of Artificial sRNA Systems

1. Design (WMD3):-Non-intuitive interface-Relatively slow-No syn-tasiRNA design tool

http://wmd3.weigelworld.org/

2. Cloning: -Long and slow (multi-step)-Non cost-effective-Non-high throughput capability-Lack of convenient syn-tasiRNAcloning systems

Schwabb et al., Plant Cell (2006)

3. Expression: -Frequent miss-processing of

amiRNAs (-> off target effects!)

1 2 3 4 5 6 7 8 9amiRNAs

-21 nt

Page 15: 060516_UMH_AC

This platform includes:

a) Web-based tools for the design of artificial sRNAs

b) A new generation of artificial sRNA vectors

GOAL:To develop a new platform for the:

1. Design

2. Cloning (high-throughput) and

3. Expression

of plant amiRNAs and syn-tasiRNAs in a simple, fast, cost-effective and effective manner for specific gene silencing in plants.

Page 16: 060516_UMH_AC

P-SAMShttp://p-sams.carringtonlab.org

Fahlgren et al. Bioinformatics (2016)

Page 17: 060516_UMH_AC

P-SAMS Computational Design of Artificial sRNAs

Step 1: Identification of all possible target sites in target transcript(s) by cataloguing all possible 21-nucleotide sequences

Step 2: Remove target sites that contain 15-nt sequence form positions 6-20 (core target pairing sequence) that perfectly match a non-target transcript

Step 3: Target sites are grouped by the core target pairing sequence, only target site groups that contain all input genes are considered further.

Step 4: Grouped sites are scored and ranked based on group-wise similarity and the identity of nucleotides at positions 1, 2, 3 and 21.

Step 5: For each group site, a guide RNA is designed to target all sites with the additional criteria that position 1 and 19 are a U and a C, and that position 21 is mismatched

Step 6: P-SAMS uses TargetFinder to predict target RNAs for each guide RNA.-Optimal Results: include guide RNAs predicted to target

exclusively transcripts from input genes-Sub-Optimal Results: guide RNAs predicted to target transcripts

from input genes AND from non-input genes

Page 18: 060516_UMH_AC
Page 19: 060516_UMH_AC
Page 20: 060516_UMH_AC

Precursor Selection For AmiRNA Vectors

Ath-MIR390a For EudicotsA

B

Carbonell et al. Plant Physiology (2014)

Osa-MIR390 For MonocotsA

B

Carbonell et al. Plant Journal (2015)

Page 21: 060516_UMH_AC

Oligonucleotide Designfor Direct AmiRNA Cloning in MIR390-Based Vectors

Carbonell et al. Plant Physiology (2014)

Page 22: 060516_UMH_AC

AmiRNA Cloning in B/c Vectors

Carbonell et al. Plant Physiology (2014)

Page 23: 060516_UMH_AC

Plant expression vectors

AmiRNA B/c Vectors

Carbonell et al. Plant Physiology (2014)

GATEWAY-compatible entry vectors

Carbonell et al. Plant Journal (2015)

Page 24: 060516_UMH_AC

Functionality Of AmiRNA Vectors For Eudicots

Carbonell et al. Plant Physiology (2014)

- amiRNA

amiR-CH42- +

- U6

amiR-CH42

Severe

Inter-mediate

Weak

No phenotype

Silencing of CHLORINA 42 (CH42)

RN

A ac

cum

ulat

ion

amiR-CH42- +

62/101

25/101

10/101

vector

48/48

- amiRNA

- +- U6

amiR-Trich

amiR-Trichvector

RN

A ac

cum

ulat

ion

amiR-Trich

- + - + - +

52/5333/33

Silencing of TRICH (TRY, CPC, ETC2)

Page 25: 060516_UMH_AC

35S:OsMIR390-AtL-Bri1

16/20

35S:OsMIR390-Bri1vector

0/7 7/11

Silencing of BRASSINOSTEROID-INSENSITIVE 1 (BRI1)

Carbonell et al. Plant Journal (2015)

Functionality Of AmiRNA Vectors For Monocots

0

0.2

0.4

0.6

0.8

1

1.2

amiR-Bri1- +

BRI1 RNA

-

35S:OsMIR390

35S:OsMIR390-AtL

+

vect

or 35S:OsMIR390-Bri1 AtL-Bri1

21 -

24 -

- amiRNA

- U6

amiR-Spl11

35S:OsMIR390-

Spl11

35S:OsMIR390-AtL-

Spl11vector

0/33 8/8 23/23

vect

or 35S:OsMIR390-Spl11 AtL-Spl11

Silencing of SPOTTED LEAF 11 (SPL11)

- + +

SPL11 RNA

21 -

24 -- amiRNA

- U6

vector

35S:OsMIR390

35S:OsMIR390-AtL

Page 26: 060516_UMH_AC

Carbonell et al. Plant Physiology (2014)

Precursor Selection For Syn-tasiRNA Vectors

Oligonucleotide Design for Cloning in AtTAS1c-based Vectors

Page 27: 060516_UMH_AC

Syn-tasiRNA Cloning in B/c Vectors

Carbonell et al. Plant Physiology (2014)

Page 28: 060516_UMH_AC

pMDC123SB-AtTAS1c-B/c

Gateway-compatible entry clonePlant expression vectors

pMDC32B-AtTAS1c-B/c pENTR-TAS1c-B/c

ccdB

BsaI

BsaIAtTAS1c

5’ 3’KanRattL2attL

1ccdB

BsaI

BsaIAtTAS1c

5’ 3’HygRNosR

BLB2x35S

BsaI

KanR

ccdB

BsaI

BsaIAtTAS1c

5’ 3’BastaRNosR

BLB2x35S

BsaI

KanR

Syn-tasiRNA B/c Vectors

Carbonell et al. Plant Physiology (2014)

Page 29: 060516_UMH_AC

Functionality of Syn-tasiRNA Vectors

vector syntasiRNA-TrichsyntasiRNA-Ft

Carbonell et al. Plant Physiology (2014)

Page 30: 060516_UMH_AC

syn-tasiRNA vectors for targeting single or multiple (sequence unrelated) genes

-Arabidopsis (and close species) vectors: AtTAS1c-based-In other species if MIR173 is co-expressed

amiRNA vectors for targeting single or multiple (sequence related) genes:

-Eudicot vectors: AtMIR390a-based

-Monocot vectors: OsMIR390-AtL-based

Development of a new platform to design, clone and express plant artificial small RNAs in a simple, fast, cost-effective and effective manner to silence single or multiple genes in plants

Summary

P-SAMS webtool with two apps (P-SAMS amiRNA Designer and P-SAMS syn-tasiRNA Designer) for the automated design of amiRNAs and syn-tasiRNAs, respectively

Page 31: 060516_UMH_AC

World-Wide Usage Of P-SAMS

Number of Sessions

Page 32: 060516_UMH_AC

B/c Vectors are Available @ www.addgene.org

Page 33: 060516_UMH_AC

Some Institutions Having Requested B/c Vectors

Page 34: 060516_UMH_AC

Viroids Single-stranded circular RNA (246-401 nt)

High secondary structure content

Do not code for proteins

Need host factors for replication

GCUGA

120

CU

U C A G G UC

U CG

AC U

G

. . . . . . . . . . . .

GA

160

180

200

240

380

GGC

ACCUGAU

G

C

C

U A G

CGU C C A A C C C C

G G GAG

GAAA

GGGGUUGGGA

C

G

GGCC

AG

UCCCAGU

CGGUUC

GCUC

UCGU

AGUC

AC

AGCCACUGGGGA

ACC

UAG

GCAGA

UGGCUGGACG

GA U

G U C U A G U C C

CCG

AGC . . . . . . . . .

.. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . . . . . .

1

UCCUUUGGAGUA

CUCCAGAGGA .

.

.

.

.

.

.

.

.

.

.

CCGGAAC

GUUCCG. . . . .

. . U

UG

GGU

UUGA

AA

C C CC

CA

A

AG

GUA A

AUA

CC

UC

. .

. .

. CUCU

AA G

GGAG

.

.

.

. AGGU

CG

U A A AA

CU

UC

C. .

. . .

140

60 100

UC C A

U U U C U C A U C A G G AA

A C CC

A. . . . . . . . . . . . . . . . . . .

U

GGCUGUG

CG .

20

UC

GGUG

UCUGAA

GAAACCUC

U

40

GAUCC

AU

GACA

GAUC .

.

.

.

.

80

UA

A A

GGAG

GC

UU U

C

C

C

CC

UC

CA

AG

GCU

UC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

320

340

360

280

C C A U U U CGAGAUGG. . . . . . . .

300

U C U

GAA

GG

. .

U

A G

CA

A. C

GUUG

G A A UUCU

CCUCGG

260

.

CU

A 220

AU G

G

GCUGA

120

CU

U C A G G UC

U CG

AC U

G

. . . . . . . . . . . . . . . . . . . . . . . .

GA

160

180

200

240

380

GGC

ACCUGAU

G

C

C

U A G

CGU C C A A C C C C

G G GAG

GAAA

GGGGUUGGGA

C

G

GGCC

AG

GGCC

AG

UCCCAGU

UCCCAGU

CGGUU

GGUUC

GCU

GCUC

UCGU

AGUC

AC

AGCCACUGGGGA

ACC

UAG

GCAGA

UGGCUGGAC GGCUGGACG

GA U

G U C U A G U CG U C U A G U C C

CCG

AGC . . . . . . . . . . . . . . . . . .

.. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . . . . . . . . . . . . . . . . . . . . . .

1

UCCUUUGGAGU

UCCUUUGGAGUA

CUCCAGAGGA .

.

.

.

.

.

.

.

.

.

.

CCGGAAC

GUUCCG. . . . .

. . U

UG

GGU

UUGA

AA

C C CC

CA

A

AG

GUA A

AUA

CC

UC

. .

. .

. CUCU

CUCU

AA G

GGAG

GGAG

.

.

.

.

.

.

.

. AGGU

CG

U A A AA

CU

UC

C. .

. . .

140

60 100

UC C A

U U U C U C A U C A G G AA

A C CC

A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U

GGCUG

GGCUGUG

CG .

20

UC

GGUG

UCUGAA

GAAACCUC

U

40

GAUCC

AU

GACA

GAUC .

.

.

.

.

80

UA

A A

GGAG

GC

GGAG

G

GGAG

GC

UU U

C

C

C

CC

UC

CA

AG

GCU

UC

C

CC

UC

CA

AG

GCU

UC

CC

UC

CA

AG

GCU

UC

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

320320

340340

360360

280

C C A U U U CGAGAUGG. . . . . . . . . . . . . . . .

300300

U C U

GAA

GG

. .

U

A G

CA

A. C

GUUG

G A A UUCU

CCUCGG

260

.

CU

A 220

AU G

G

GGGU

GGUGUGUGCCAC

CCCUGAUGAGA

CCGAAAGGU

CGGGGU

UUCGCCAU

GGGUC

GGGACUUUAA

AUUC

GGAGGAUU

CGUCCU

UUA A

ACG U UCCUCC A AGAGUCCCUUCCCCA

AACC

CU

UACUUUGU

AAGUGUGGUUCGGCGAA

UGUA

CCGUUUCGUCCUUUCGGACUCAUCAGGGAAA

GUACACAGGG

UGGUGUGUGC

CACCCCUGAUGAG

ACCGAAAGG

UCGG

GGUUUCGCC

AUGGG

UCGGGACUUU

AA

AUUC

GGAGGAUU

CGUCCU

UUA A

ACG U UCCUCC A AGAGUCCCUUCCCCA

AACC

CU

UACUUUGU

AAGUGUGGUUCGGCGAA

UGUA

CCGUUUCGUCCUUUCGGACUCAUCAGGGAAA

GUACACACUUUCCGACGGUGGGUUCGUCG

ACACCUC

UCC C

CCUCC

CAGG

UACUAUCC

CCUU UC

AA

GGAUG

UGUUC

CCUA

GGAGGG

UGGGUGU A

CCUCUUUUGGAU UGC UC

CGGCCUUCCAGGAGAGA

UAGAGGACGACCUCUCC

CC

A1204060

80

100120

140

160 180 200220

240

260

280

300320

CUUUCCGACGGUGGGUUCGUCG

ACACCUC

UCC C

CCUCC

CAGG

UACUAUCC

CCUU UC

AA

GGAUG

UGUUC

CCUA

GGAGGG

UGGGUGU A

CCUCUUUUGGAU UGC UC

CGGCCUUCCAGGAGAGA

UAGAGGACGACCUCUCC

CCAUAUA1

406080

100120

140

160 180 200220

240

260

280

300320

GGGU

GGUGUGUGCCAC

CCCUGAUGAGA

CCGAAAGGU

CGGGGU

UUCGCCAU

GGGUC

GGGACUUUAA

AUUC

GGAGGAUU

CGUCCU

UUA A

ACG U UCCUCC A AGAGUCCCUUCCCCA

AAC

CU

UACUUUGU

AAGUGUGGUUCGGCGAA

UGUA

CCGUGGG

UGGUGUGUGC

CACCCCGAUG

ACCGAAAGG

UCAAAU GAAAU GG

GGUUUCGCC

AUGGG

UCGGGACUUU

AA

AUUC

GGAGGAUU

CGUCCU

UUA A

ACG U UCCUCC A AGAGUCCCUUCCCCA

AAC

CU

UACUUUGU

AAGUGUGGUUCGGCGAA

UGUA

CCGUGGG

UGGUGUGUGC

CACCCCUGAUGAG

ACCGAAAGG

UCG

GGUUUCGCC

AUGGG

UCGGGACUUU

AA

AUUC

GGAGGAUU

CGUCCU

UUA A

ACG U UCCUCC A AGAGUCCCUUCCCCA

AAC

CU

UACUUUGU

AAGUGUGGUUCGGCGAA

UGUA

CCGUUUCGUCCUUUCG ACUCAUCAGGGAAA

GUACACAGGG

UGGUGUGUGC

CACCCCUGAUGAG

ACCGAAAGG

UCG

GGUUUCGCC

AUGGG

UCGGGACUUU

AA

AUUC

GGAGGAUU

CGUCCU

UUA A

ACG U UCCUCC A AGAGUCCCUUCCCCA

AAC

CU

UACUUUGU

AAGUGUGGUUCGGCGAA

UGUA

CCGU GUCCUUU ACUCAUCAGGGAAA

GUACAC CUUUCCGACGGUGGGUUCGUCG

ACACCUC

UCC C

CCUCC

CAGG

UACUAUCC

CCUU UC

AA

GGAUG

UGUUC

CCUA

GGAGGG

UGGGUGU A

CCUCUUUUGGAU UGC UC

CGGCCUUCCAGGAGAGA

UAGAGGACGACCUCUCC

CC

A14060

80

100120

140

160 180 200220

240

260

280

300320

UUUCCGACGGUGGGUUCGUCG

CACCUC

UCC C

CCUCC

CAGG

UACUAUCC

CCUU UC

AA

GGAUG

UGUUC

CCUA

GGAGGG

UGGGUGU A

CCUC UUUGGAU UGC UC

CGGCCUUCCAGGAGAGA

UAGAGGACGACCUCUCC

CCAUAUA1

406080

100120

140

160 180 200220

240

260

280

300320

GGGU

GGUGUGUGCCAC

CCCUGAUGAGA

CCGAAAGU

CGGGU

UUCGCCAU

GGGUC

GGGACUUUAA

AUUC

GGAGGAUU

CGUCCU

UUA A

ACG U UCCUCC A AGAGUCCCUUCCCCA

AAC

CU

UACUUUGU

AAGUGUGGUUCGGCGAA

UGUA

CCGUGGG

UGGUGUGUGC

CACCCCGAUG

ACCGAAAG

UCAAA GAGG

GGUUUCGCC

AUGGG

UCGGGACUUU

AA

AUUC

GGAGGAUU

CGUCCU

UUA A

ACG U UCCUCC A AGAGUCCCUUCCCCA

AAC

UUACUUUGU

AAGUGUGGUUCGGCGAA

UGUA

CC

Plant pathogens

Trifoliate orange

Semancik and Weathers Virology (1972)Gross et al. Europ. J. Biochem. (1982)

Tomato

Chrysanthemum

Page 35: 060516_UMH_AC

Potato Tuber Spindle Viroid (PSTVd)

Potato Tomato

1

CGGA CUAA

AUU C ACACCU GACCUCCUGAGCAGAAAAGAA

AAAAGAAGGCGG CUCGGAGGA

GC

UCCCGAGAA

CCGCUUUUUC

UC

UA

UCUUACUGCUUC

GGGGC

GA

GGGUGUUU

AGCCC

UU

GGAACCGCAGUUGGUUCCU

GCUUCAGG

GA

UCC CG

UGGAA

AC

AA

CUGAAGCCGGG

GAA

AC

CUGGAGCGAACUGGCAAA

GCGCUGUCGCUUCGG

CU

ACU

ACCCGAAAGGAC

CCCUUU

GGUGGGGAGUGCACCCCUCGCC

C

AC

CCAGCGGCCGCGCCCGCAGG

AC

CG

AGGAGUUCCU

UA

CC

AUUCCCGCGGGUGU

CC

UU

GAAA C AGGGUUUU

CACCCUU

CC

UUUC

20 40 60 80

100120 140 160

180200220240260

280300320340

UA C

CGUGGUUCCUG

UGGU

1

CGGA CUAA

AUU C ACACCU GACCUCCUGAGCAGAAAAGAA

AAAAGAAGGCGG CUCGGAGGA

GC

UCCCGAGAA

CCGCUUUUUC

UC

UA

UCUUACUGCUUC

GGGGC

GA

GGGUGUUU

AGCCC

UU

GGAACCGCAGUUGGUUCCU

GCUUCAGG

GA

UCC CG

UGGAA

AC

AA

CUGAAGCCGGG

GAA

AC

CUGGAGCGAACUGGCAAA

GCGCUGUCGCUUCGG

CU

ACU

ACCCGAAAGGAC

CCCUUU

GGUGGGGAGUGCACCCCUCGCC

C

AC

CCAGCGGCCGCGCCCGCAGG

AC

CG

AGGAGUUCCU

UA

CC

AUUCCCGCGGGUGU

CC

UU

GAAA C AGGGUUUU

CACCCUU

CC

UUUC

20 40 60 80

100120 140 160

180200220240260

280300320340

UA C

CGUGGUUCCUG

UGGU

N. benthamiana

Gross et al. Nature (1978)

Diener Virology (1971)

Page 36: 060516_UMH_AC

Goal:

To induce PSTVd resistance in tomato plants using efficient plant artificial sRNAs:

-amiRNAs

-syn-tasiRNAs

Page 37: 060516_UMH_AC

Carbonell et al. RNA&Disease (2016)

Methodology

Page 38: 060516_UMH_AC

P-SAMS-Based amiRNA Design

164 optimal results

PSTVd(+)-amiRNAs

6 amiRNAs selected*

PSTVd(-)-amiRNAs GUS-amiRNAs

2 amiRNAs selected

148 optimal results 3 optimal results

6 amiRNAs selected*

*Criteria:-Low score-Target different genomic

locations-With non-overlapping target

sites

Location of PSTVd-amiRNA Target Sites

Page 39: 060516_UMH_AC

Screening of AmiRNA Anti-PSTVd ActivityNicotiana benthamiana transient assays

amiRNA

2x35S T

PSTVd

2x35S T

-Collect leaves 2 dpi

-RNA extraction

-Northern-blot analysis

From Wikipedia.org

amiRNAs against PSTVd(-)amiRNAs against PSTVd(+)

Page 40: 060516_UMH_AC

Syn-tasiRNAs Against PSTVd

An

PSTVdsyn-tasiRNAs

miR173target site

miR173

DCL4

RDR6

AGO1

RDR6

DCL4

AGO1

AGO1 AGO1

AGO1

AGO1

syn-tasiRNA construct

PSTVd

Page 41: 060516_UMH_AC

Acknowledgements

Mockler labTodd MocklerSkyler Mitchell

Kevin CoxKevin Reilly

DDPSC Bioinformatics

Noah FahlgrenSteven Hill

Carrington labJim CarringtonAtsushi TakedaJosh T. Cuperus Daròs lab

José Antonio DaròsTeresa Cordero

Verónica Aragonés