04. mech3001y - unsymm.bending (3)

29
MECH 3001Y Week4 Mechanics of Materials & Machines III Unsymmetrical MECH 3001Y Unsymmetrical Bending

Upload: apapiah

Post on 03-Apr-2015

481 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 04. MECH3001Y - Unsymm.Bending (3)

MECH 3001Y

Week4

Mechanics of Materials

& Machines III

Unsymmetrical

MECH 3001Y

Unsymmetrical

Bending

Page 2: 04. MECH3001Y - Unsymm.Bending (3)

MECH 3001Y

� INTRODUCTION TO SOLID MECHANICS

IRVING H. SHAMES, JAMES M. PITARRESI

� MECHANICS OF MATERIALS (5th Edition in SI Units)

F. P. BEER, E. R. JOHNSTON, J. T. DeWOLF, D. F. MAZUREK

Textbooks & website

MECH 3001Y

Page 3: 04. MECH3001Y - Unsymm.Bending (3)

Wk3 - Problem1

A beam of rectangular cross section supports aninclined load P having its line of action along a diagonalof the cross section (see figure). Show that the neutralaxis lies along the other diagonal.

MECH 3001Y

Page 4: 04. MECH3001Y - Unsymm.Bending (3)

Wk3 - Problem1

1) The beam has a rectangularcross-section.

2) Axes y and z lie along the planesof symmetry of the section. yand z are principal axes.

3) Suppose it is a cantileveredbeam of span T (cf. figure)

T

P

MECH 3001Y

beam of span T (cf. figure)4) Resolve the load (or the bending

moment) along the principalaxes.

5) Apply the overall bendingequation.

Page 5: 04. MECH3001Y - Unsymm.Bending (3)

Wk2 - Problem1 / SolutionLocation of neutral axis

.cos .cos

.sin .sin

. . For neutral axis, 0

z y

y z

y zb b

y z

L P M P T

L P M P T

M z M y

I I

θ θ

θ θ

σ σ

= ⇒ = − ×

= − ⇒ = − ×

= − =

Overall bending equation

γγγγ

MECH 3001Y

. .z (equation of NA)

. (t

y z

yz

y z

yz

y z

I I

MIy

I M

Mdy I

dz I M

=

=

3 3 2

2

angent of NA)

12 12

zz y

y

bh hb I hI I

I b= = =

NA

θθθθ

Page 6: 04. MECH3001Y - Unsymm.Bending (3)

Wk2 - Problem1 / SolutionLocation of neutral axis

2

2

.cos 1 1

.sin tan

2 2

.

y

z

M P T b

h bM P T h

dy h b h

dz h bb

θ

θ θ

− ×= = = =

− ×

= =

γγγγ

MECH 3001Y

2 tan

2

The neutral axis lies along the other diagonal.

h h

b bγ = =

Observe that,NA

θθθθ

Page 7: 04. MECH3001Y - Unsymm.Bending (3)

Wk2 - Problem1 / SolutionLocation of neutral axis

2

2

.cos 1 1

.sin tan

2 2

.

y

z

M P T b

h bM P T h

dy h b h

dz h bb

θ

θ θ

− ×= = = =

− ×

= =

γγγγ

MECH 3001Y

2 tan

2

The neutral axis lies along the other diagonal.

h h

b bγ = =

Observe that,NA

θθθθ

Page 8: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Assumptions

a) Beam cross-section has anarbitrary shape.

b) Assume loading is such that

y

θ

z

MECH 3001Y

b) Assume loading is such thatthere is no twisting of thecross-section, i.e loads actthrough the centroid. Line of action of load passes

through centroid (no torsion)

z

Page 9: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

NB

Observe that we use a right-handed coordinate system.

y

θy

x

MECH 3001Y

θ

z

z

How to identify a right handed coordinate system

How are the axes z & y chosen ?

Page 10: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

NB

Observe that we use a right-handed coordinate system.

y

θy

x

MECH 3001Y

θ

z

z

How to identify a right handed coordinate system

z & y are chosen such that they are principal axes for

the section

Page 11: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Principal Axes

a) For a beam section possessing at least one plane ofsymmetry, one principal axis will coincide with theplane of symmetry. There will be a 2nd principal axis,perpendicular to the 1st one.

MECH 3001Y

b) A beam section with 2 planes of symmetry will have 2principal axes coinciding with these planes.

However, any given section possesses principal axes, even if the section is not

symmetrical.

Page 12: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Principal Axes - Moments of Inertia

Second moments of area (area moment of inertia) of across-section about its principal axes are found to bemaximum and minimum values.

The product second moment of area about the principalaxes is found to be zero.

MECH 3001Y

axes is found to be zero.

All plane sections, whether they have an axis ofsymmetry or not, have two perpendicular axes aboutwhich the product second moment of area is zero.

Principal axes are thus defined as the axes about which

the product second moment of area is zero.

Page 13: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Principal Axes

2

2

.

.

x x

A

y y

A

I y dA

I x dA

=

=

Moment of inertia about x-axis

Moment of inertia about y -axis

MECH 3001Y

.

A

xy

A

I xy dA= ∫ndProduct 2 moment of area

. 0xy

A

I xy dA= =∫Condition for x & y

to be principal axes

Page 14: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Road map to solving unsymmetrical bending problems

Beam bending problem

Unsymm.Bending

MECH 3001Y

Symmetrical section

Load applied along axis of symmetry

Load applied through centroid and at an angle to axes of

symmetry

Unsymmetric section

Page 15: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Unsymmetrical bending of beams having symmetricsections

1. Identify principal axes

2. Resolve load along principal axis directions

MECH 3001Y

axis directions

3. Find bending moments / stresses for each principal direction

4. Superimpose solutions for each direction to obtain the overall solution of the problem

Page 16: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Bending of beams having unsymmetric sections

Case 1: (Principal axes are given and load applied at anangle to principal axes)

1. Resolve load along principal axis directions

y

MECH 3001Y

2. Calculate moments of inertia of section with respect to principal axes

3. Find bending moments / stresses for each principal direction

4. Superimpose solutions for each direction to obtain the overall solution of the problem

θ

z

z & y principal axes

Page 17: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Bending of beams having unsymmetric sections

Case 2.1: (Principal axes not given)

1. Find moments of inertia (including product moment ofinertia) of section with respect to a set of known axes(if not given)**

MECH 3001Y

(if not given)**

2. Find the principal axes

3. Resolve load along principal axis directions

4. Calculate moments of inertia of section with respectto principal axes**

5. Find bending moments/stresses for each principaldirection

6. Superimpose solutions for each direction to obtain theoverall solution of the problem

** document sent by mail

Page 18: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Bending of beams having unsymmetric sections

Case 2.2: (Principal axes not given)

1. Use the Generalized Flexure Formula

MECH 3001Y

Page 19: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

A couple of magnitude M0=1.5kN.m acting in a verticalplane is applied to a beam having the Z-shaped cross-section shown. Determine (a) the stress at point A,

(b) the angle that the neutral axis forms with thehorizontal plane. The moments and product of inertia of

MECH 3001Y

horizontal plane. The moments and product of inertia ofthe section with respect to the y and z axes have beencomputed and are as follows:

Iy = 3.25x10-6m4

Iz = 4.18x10-6m4

Iyz = 2.87x10-6m4

Page 20: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

MECH 3001Y

Page 21: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

Principal axis ??

MECH 3001Y

Page 22: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

1- Principal axis

Relate to

MECH 3001Y

Relate to stress /strain transformation

Used to find principal axes

Page 23: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

Principal axis

y2.

tan2 yz

y z

I

I Iθ

−=

u

θθθθ1111=40.4=40.4=40.4=40.4°

θθθθ2222=130.4=130.4=130.4=130.4°

MECH 3001Y

z

( )

6

6

2 2.87 10

3.25 4.18 10

2 80.8 , 260.8

40.4 , 130.4

θθ

− × ×=

− ×

= ° °= ° °

v

Page 24: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

Loading ??

The applied couple M0 is

resolved into components

along the principal axes.

yu

MECH 3001Y

along the principal axes.

Mu=M0.sinθ1=1500 x sin 40.4°

= 972 N.m

Mv=M0.cosθ1=1500 x cos 40.4°

= 1142 N.m

z

vθθθθ1111=40.4=40.4=40.4=40.4°

ΜΜΜΜ0000

Page 25: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

(a) – Stress at A

y

z

u

A.

. . u vM v M u

σ = −

MECH 3001Y

v

. . u v

u v

M v M u

I Iσ = −

Iu , Iv , u , v ??

Page 26: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

(a) – Stress at A

y

z

u

A.

( ) ( )( )

6 6

+ .cos2 sin22 2

3.25 4.18 10 3.25 4.18 10 + .cos 80.8 ...

y z y z

u yz

I I I II Iθ θ

− −

+ −= −

+ × − ×= ° −

MECH 3001Y

v

( ) ( )( )

( )

( ) ( )

6

6 4

6

3.25 4.18 10 3.25 4.18 10 + .cos 80.8 ...

2 2

2.87 10 .sin 80.8

0.81 10

.cos2 sin22 2

3.25 4.18 10 3.25 4.18

2

y z y z

v yz

m

I I I II Iθ θ

+ × − ×= ° −

× °

= ×

+ −= − +

+ × −= − ( )

( )

6

6

6 4

10.cos 80.8 ...

2

2.87 10 .sin 80.8

6.62 10 m

×° +

× °

= ×

Page 27: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

(a) – Stress at A

y

u

A

( ) ( )A

y .cos .sin

50.cos 40.4 74.sin 40.4

A Au zθ θ= +

= ° + °

MECH 3001Y

z

v

uAvA

( ) ( )

( ) ( )A

50.cos 40.4 74.sin 40.4

86.0

y .sin .cos

50.sin 40.4 74.cos 40.4

23.9

A A

mm

v z

mm

θ θ

= ° + °

=

= − +

= − ° + °

=

Page 28: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

(a) – Stress at A

. . u v

u v

M v M u

I Iσ = −

MECH 3001Y

3 3

6 6

972 23.9 10 1142 86.0 10

0.81 10 6.62 10

28.68 14.84

13.84

MPa MPa

MPa

− −

− −

× × × ×= −

× ×

= −

=

Page 29: 04. MECH3001Y - Unsymm.Bending (3)

Ch.1 - Unsymmetrical Bending

Case 2.1: (Principal axes not given) – Example

(b) – Neutral axis

. .0

.

u v

u v

u v

M v M u

I I

M Iu v

= −

=

yuNA

ββββ

MECH 3001Y

.

u v

v u

u vM I

=

z

v

Let ββββ be the angle between the NA and principal axis v

6

6

. 972 6.62 10tan 6.96

. 1142 0.81 10

81.8

40.4

4

u v

v u

M I

M I

Angle between neutral axis and the horizontal

β

β

β

× ×= = =

× ×

= °

∴ = − °

= 1.4°