03[anal add math cd]

16
1  Additional Mathematics  SPM Chapter 3 © Penerbitan Pelangi Sdn. Bhd.  1. (b), (c), (d), (e) and (h)  2.  f (  x) = 4  x 2  8  x + 6 When x = –2,  f (–2) = 4(–2) 2  – 8(–2) + 6  = 16 + 16 + 6  = 38  3.  f (  x) =  x 2  3  x + 2 When f (  x) = 0,  x 2  3  x + 2 = 0  (  x – 1)(  x – 2) = 0   x – 1 = 0 or  x – 2 = 0   x = 1 or  x = 2  4.  f (  x) = –3  x 2  + 5  x 1 When f (  x) = 1,  –3  x 2  + 5  x – 1 = 1  –3  x 2  + 5  x – 1 – 1 = 0  3  x 2  5  x + 2 = 0  (3  x – 2)(  x – 1) = 0  3  x 2 = 0 or  x – 1 = 0   x = 2 3  or  x = 1  5. (a) (b) (c) (d) (e) (f) 6. (a) Two different real roots (b) One real root or two similar real roots (c) No real roots  7. (a) The minimum value is 3. (b) The maximum value is 4. (c) The minimum value is –10. (d)  f (  x) = 2 1 2 (  x 3) 2  + 1 4    = (  x 3) 2  + 1 2  Therefore, the minimum value is 1 2 . (e)  f (  x) = 1 3  [6 – (  x + 1) 2 ] + 5  = 2 1 3  (  x + 1) 2  + 5  = – 1 3  (  x + 1) 2  + 7  Therefore, the maximum value is 7. (f) The minimum value is 3.  8. (a)  f (  x) = x 2  – 4  x + 2  = x 2  – 4  x + 4 2   2   4 2   2  + 2  = (  x 2) 2  – 4 + 2  = (  x 2) 2  2  Hence, the minimum value is –2. (b)  f (  x) = 2  x 2  + 6  x 5  = 2(  x 2  + 3  x) – 5  = 2  x 2  + 3  x + 3 2   2   3 2   2  5  = 2  x + 3 2   2  9 4    – 5  = 2  x + 3 2   2  9 2  5  = 2  x + 3 2   2  19  ––– 2  Hence, the minimum value is 19  ––– 2 . (c)  f (  x) =  x 2  + 5  x  = x 2  + 5  x + 5 2   2   5 2   2  =  x + 5 2   2  25  ––– 4  Hence, the minimum value is 25  ––– 4 . CHAPTER 3 Quadratic Functions

Upload: q998

Post on 07-Aug-2018

361 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 116

1

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 (b) (c) (d) (e) and (h)

2 f ( x) = 4 x2 ndash 8 x + 6

When x = ndash2

f (ndash2) = 4(ndash2)2 ndash 8(ndash2) + 6

= 16 + 16 + 6

= 38

3 f ( x) = x2 ndash 3 x + 2

When f ( x) = 0

x2 ndash 3 x + 2 = 0

( x ndash 1)( x ndash 2) = 0

x ndash 1 = 0 or x ndash 2 = 0

x = 1 or x = 2

4 f ( x) = ndash3 x2 + 5 x ndash 1

When f ( x) = 1

ndash3 x2 + 5 x ndash 1 = 1

ndash3 x2 + 5 x ndash 1 ndash 1 = 0

3 x2 ndash 5 x + 2 = 0 (3 x ndash 2)( x ndash 1) = 0

3 x ndash 2 = 0 or x ndash 1 = 0

x =2mdash3

or x = 1

5 (a) (b)

(c) (d)

(e) (f)

6 (a) Two different real roots

(b) One real root or two similar real roots

(c) No real roots

7 (a) The minimum value is 3

(b) The maximum value is 4

(c) The minimum value is ndash10

(d) f ( x) = 2983091 1mdash2

( x ndash 3)2 +1mdash4 983092

= ( x ndash 3)2 +1mdash2

Therefore the minimum value is1mdash2

(e) f ( x) =1mdash3

[6 ndash ( x + 1)2] + 5

= 2 ndash 1mdash3

( x + 1)2 + 5

= ndash1mdash3

( x + 1)2 + 7

Therefore the maximum value is 7

(f) The minimum value is 3

8 (a) f ( x) = x2 ndash 4 x + 2

= x2 ndash 4 x + 983089 4mdash2 983090

2

ndash 983089 4mdash2 983090

2

+ 2

= ( x ndash 2)2 ndash 4 + 2

= ( x ndash 2)2 ndash 2

Hence the minimum value is ndash2

(b) f ( x) = 2 x2 + 6 x ndash 5

= 2( x2 + 3 x) ndash 5

= 2983091 x2 + 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 ndash 5

= 2983091983089 x + 3mdash2 983090

2

ndash9mdash4 983092 ndash 5

= 2983089 x + 3mdash2 983090

2

ndash9mdash2

ndash 5

= 2983089 x + 3mdash2 983090

2

ndash19

ndashndashndash2

Hence the minimum value is ndash19

ndashndashndash2

(c) f ( x) = x2 + 5 x

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

= 983089 x +5mdash2 983090

2

ndash25

ndashndashndash4

Hence the minimum value is ndash25

ndashndashndash4

CHAPTER

3 Quadratic Functions

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 216

2

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(d) f ( x) = 6 x ndash x2

= ndash( x2 ndash 6 x)

= ndash983091 x2 ndash 6 x + 983089 6mdash2 983090

2

ndash 983089 6mdash2 983090

2

983092 = ndash[( x ndash 3)2 ndash 9]

= ndash ( x ndash 3)2 + 9

Hence the maximum value is 9

(e) f ( x) = 3 ndash 4 x ndash x2

= ndash x2 ndash 4 x + 3

= ndash( x2 + 4 x) + 3

= ndash983091 x2 + 4 x + 983089 4mdash2 983090

2

ndash 983089 4mdash2 983090

2

983092 + 3

= ndash[( x + 2)2 ndash 4] + 3

= ndash( x + 2)2 + 4 + 3

= ndash( x + 2)2 + 7

Hence the maximum value is 7

(f) f ( x) = 4 x ndash 2 x2

= ndash2 x2 + 4 x

= ndash2( x2

ndash 2 x) = ndash2983091 x2 ndash 2 x + 983089 2

mdash2 983090

2

ndash 983089 2mdash2 983090

2

983092 = ndash2[( x ndash 1)2 ndash 1]

= ndash2( x ndash 1)2 + 2

Hence the maximum value is 2

(g) f ( x) = 10 + 5 x ndash 3 x2

= ndash3 x2 + 5 x + 10

= ndash3983089 x2 ndash5mdash3 x983090 + 10

= ndash3983091 x2 ndash5mdash3 x + 983089 5

mdash6 983090

2

ndash 983089 5mdash6 983090

2

983092 + 10

= ndash3983091983089 x ndash5mdash6 983090

2

ndash25

ndashndashndash36 983092 + 10

= ndash3983089 x ndash5mdash6 983090

2

+25

ndashndashndash12

+ 10

= ndash3983089 x ndash5mdash6 983090

2

+145

ndashndashndashndash12

Hence the maximum value is145

ndashndashndashndash12

(h) f ( x) = (2 x ndash 1)( x + 3)

= 2 x2 + 5 x ndash 3

= 2983089 x2

+

5

mdash2 x983090 ndash 3

= 2983091 x2 +5mdash2 x + 983089 5

mdash4 983090

2

ndash 983089 5mdash4 983090

2

983092 ndash 3

= 2983091983089 x +5mdash4 983090

2

ndash25

ndashndashndash16 983092 ndash 3

= 2983089 x +5mdash4 983090

2

ndash25

ndashndashndash8

ndash 3

= 2983089 x +5mdash4 983090

2

ndash49

ndashndashndash8

Hence the minimum value is ndash49

ndashndashndash8

(i) f ( x) = (1 ndash 4 x)( x + 2)

= x + 2 ndash 4 x2 ndash 8 x

= ndash 4 x2 ndash 7 x + 2

= ndash 4983089 x2 +7mdash4 x983090 + 2

= ndash 4983091 x2 +7mdash4 x + 983089 7

mdash8 983090

2

ndash 983089 7mdash8 983090

2

983092 + 2

= ndash 4983091983089 x + 7mdash8 983090

2

ndash49

ndashndashndash64 983092 + 2

= ndash 4983089 x + 7mdash8 983090

2

+49

ndashndashndash16

+ 2

= ndash 4983089 x + 7mdash8 983090

2

+81

ndashndashndash16

Hence the maximum value is81

ndashndashndash16

9 (a) f ( x) = x2 ndash 4

Therefore the minimum point is (0 ndash 4)

x ndash2 2 4 f ( x) 0 0 12

f (x )

x

ndash4 ndash2 2 4

12

0

(b) f ( x) = 3 x2 + 5

Therefore the minimum point is (0 5)

x ndash1 3

f ( x) 8 32

f (x )

x

ndash1 3

5

8

32

0

(c) f ( x) = 8 ndash x2

Therefore the maximum point is (0 8)

x ndash3 plusmn9831059831068 3

f ( x) ndash1 0 ndash1

f (x )

x

ndash1

8

ndash3 3 ndash 8 8

0

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 316

3

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(d) f ( x) = 10 ndash 2 x2

Therefore the maximum point is (0 10)

x ndash3 plusmn9831059831065 4

f ( x) ndash8 0 ndash22

f (x )

x

ndash8

10

ndash3 4 ndash 5 5 0

ndash22

(e) f ( x) = x( x + 2)

= x2 + 2 x

= x2 + 2 x + 12 ndash 12

= ( x + 1)2 ndash 1

Therefore the minimum point is (ndash1 ndash1)

x ndash 4 ndash2 0 2 f ( x) 8 0 0 8

f (x )

x

(ndash1ndash1) ndash4

8

ndash2 20

(f) f ( x) = ( x ndash 1)(2 x + 1)

= 2 x2

ndash x ndash 1 = 2983089 x2 ndash

xmdash2 983090 ndash 1

= 2983091 x2 ndash xmdash2

+ 983089 1mdash4 983090

2

ndash 983089 1mdash4 983090

2

983092 ndash 1

= 2983091983089 x ndash 1mdash4 983090

2

ndash1

ndashndashndash16 983092 ndash 1

= 2983089 x ndash 1mdash4 983090

2

ndash1mdash8

ndash 1

= 2983089 x ndash 1mdash4 983090

2

ndash9mdash8

Therefore the minimum point is (

1

mdash4 ndash

9

mdash8 )

x ndash1 ndash1mdash2

0 1 2

f ( x) 2 0 ndash1 0 5

f (x )

x

1 2ndash1 1

2ndash ndash

98ndashndash)14 ( ndash

2

0

5

ndash1

(g) f ( x) = ndash( x ndash 3)2 + 5

Therefore the maximum point is (3 5)

x ndash2 0 3 ndash 9831059831065 3 + 9831059831065 6

f ( x) ndash20 ndash 4 0 0 ndash4

f (x )

x

ndash2 ndash4

ndash20

(3 5)

63 + 53 ndash 50

(h) f ( x) = x2 + 4 x + 5

= x2 + 4 x + 22 ndash 22 + 5

= ( x + 2)2 + 1

Therefore the minimum point is (ndash2 1)

x ndash3 0 1 f ( x) 2 5 10

f (x )

x

(ndash2 1)

ndash3 1

2

5

10

0

(i) f ( x) = 2 x2 + 6 x ndash 8

= 2( x2

+ 3 x) ndash 8

= 2983091 x2 + 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 ndash 8

= 2983091983089 x +3mdash2 983090

2

ndash9mdash4 983092 ndash 8

= 2983089 x + 3mdash2 983090

2

ndash9mdash2

ndash 8

= 2983089 x + 3mdash2 983090

2

ndash25

ndashndashndash2

Therefore the minimum point is (ndash3mdash2

ndash25

ndashndashndash2

)

x ndash3 0 1 2 f ( x) ndash8 ndash8 0 12

ndash25

2ndashndash)3

2( ndash

f (x )

x

ndash3

12

ndash8

0 1 2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 416

4

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(j) f ( x) = ( x ndash 4)2

Therefore the minimum point is (4 0)

x 0 4 5

f ( x) 16 0 1

f (x )

x

4 501

16

(k) f ( x) = ndash x2 + 6 x ndash 9

= ndash( x2 ndash 6 x) ndash 9

= ndash( x2 ndash 6 x + 32 ndash 32) ndash 9

= ndash[( x ndash 3)2 ndash 9] ndash 9

= ndash( x ndash 3)2

Therefore the maximum point is (3 0)

x 0 3 4

f ( x) ndash9 0 ndash1

f (x )

x 0

ndash1

ndash9

(3 0)

4

10 (a) x( x ndash 2) 983102 0

0 2x

f (x )

The range of values of x is x 983100 0 or x 983102 2

(b) ( x ndash 3)( x ndash 4) 983100 0

0 43

x

f (x )

The range of values of x is 3 983100 x 983100 4

(c) x2 ndash 3 x ndash 4 983086 0

( x ndash 4)( x + 1) 983086 0

4 ndash1 0 x

f (x )

The range of values of x is x 983084 ndash1 or x 983086 4

(d) 2 x2 + 5 x ndash 3 983084 0

(2 x ndash 1)( x + 3) 983084 0

1 ndash

2 ndash3 0

x

f (x )

The range of values of x is ndash3 983084 x 983084 1mdash2

(e) ( x ndash 3)( x + 2) 983100 ndash4

x2 ndash x ndash 6 983100 ndash4

x2 ndash x ndash 2 983100 0

( x ndash 2)( x + 1) 983100 0

ndash1 20 x

f (x )

The range of values of x is ndash1 983100 x 983100 2

(f) (2 x ndash 1)( x ndash 3) 983100 4( x ndash 3)

2 x2 ndash 6 x ndash x + 3 983100 4 x ndash 12

2 x2 ndash 11 x + 15 983100 0

( x ndash 3)(2 x ndash 5) 983100 0

5 ndash

2

30 x

f (x )

The range of values of x is5mdash2

983100 x 983100 3

(g) x2 + 4

ndashndashndashndashndashndash5

983100 2 x ndash 1

x2 + 4 983100 5(2 x ndash 1)

x2 + 4 983100 10 x ndash 5

x2 ndash 10 x + 9 983100 0

( x ndash 1)( x ndash 9) 983100 0

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 516

5

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

910 x

f (x )

The range of values of x is 1 983100 x 983100 9

(h) x (1 ndash 4 x) 983084 5 x ndash 8

x ndash 4 x2 ndash 5 x + 8 983084 0

ndash 4 x2 ndash 4 x + 8 983084 0

x2 + x ndash 2 983086 0

( x + 2)( x ndash 1) 983086 0

1 ndash2 0 x

f (x )

The range of values of x is x 983084 ndash2 or x 983086 1

1 (a) x-coordinate of the maximum part =1 + 7

ndashndashndashndashndash2

= 4

Therefore the equation of the axis of symmetry

is x = 4

(b) f ( x) = p ndash ( x + q)2

= 5 ndash ( x ndash 4)2

2 f ( x) = 2 x2 ndash 16 x + k 2 + 2k + 1

= 2( x2 ndash 8 x) + k 2 + 2k + 1

= 2983091 x2 ndash 8 x + 983089 8mdash2 983090

2

ndash 983089 8mdash2 983090

2

983092 + k 2 + 2k + 1

= 2[( x ndash 4)2 ndash 16] + k 2 + 2k + 1

= 2( x ndash 4)2 ndash 32 + k 2 + 2k + 1

= 2( x ndash 4)2 + k 2 + 2k ndash 31

Given minimum value = ndash28

there4 k 2 + 2k ndash 31 = ndash28

k 2 + 2k ndash 3 = 0

(k + 3)(k ndash 1) = 0 k = ndash3 1

3 (a) f ( x) = 2( x ndash 3)2 + k

p is the x-coordinate of the minimum point

Therefore p = 3

(b) k is the minimum value of f ( x)

Therefore k = ndash4

(c) The equation of the axis of symmetry is x = 3

4 f ( x) = 3 x2 ndash 2 x + p

a = 3 b = ndash2 c = p

Since the graph does not intersect the x-axis

b2 ndash 4ac lt 0

(ndash2)2 ndash 4(3)( p) lt 0

4 ndash 12 p lt 0

4 lt 12 p

13

lt p

p gt13

5 f ( x) = 2 x2 ndash 12 x + 5

= 2( x2 ndash 6 x) + 5

= 2[( x ndash 3)2 ndash 32] + 5

= 2( x ndash 3)2 ndash 18 + 5

= 2( x ndash 3)2 ndash 13

there4 p = 2 q = ndash3 ndashr + 1 = ndash13

r = 14

6 (a) f ( x) = ndash x2 + 6 px + 1 ndash 4 p2

= ndash( x2 ndash 6 px) + 1 ndash 4 p2

= ndash983091 x2 ndash 6 px + 983089 6 p ndashndashndash

2 983090

2

ndash 983089 6 p ndashndashndash

2 983090

2

983092 + 1 ndash 4 p2

= ndash[( x ndash 3 p)2 ndash 9 p2] + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 9 p2 + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 1 + 5 p2

The maximum value given is q2 ndash p

Therefore q2 ndash p = 1 + 5 p2

5 p2 + p + 1 = q2

(b) x = 3 is symmetrical axis 3 p = 3

p = 1

Substitute p = 1 into 5 p2 + p + 1 = q2

5(1)2 + 1 + 1 = q2

q2 = 7

q = plusmn9831059831067 Hence p = 1 q = plusmn9831059831067

7 4t (t + 1) ndash 3t 2 + 12 983086 0

4t 2 + 4t ndash 3t 2 + 12 983086 0

t 2 + 4t + 12 983086 0

(t + 2)(t + 6) 983086 0

0 ndash2 ndash6x

f (x )

The range of values of t is t 983084 ndash6 or t 983086 ndash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 616

6

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 x-coordinate of maximum point = ndash 4 + 0 ndashndashndashndashndashndash

2 = ndash2

Equation of the axis of symmetry is x = ndash2

2 Let x be the x-coordinate of A

0 + x

ndashndashndashndashndash2

= 3

x = 6

The coordinates of A are (6 4)

3 Let x be the x-coordinate of A

x + 6 ndashndashndashndashndash

2 = 2

x = 4 ndash 6

x = ndash2

The coordinates of A are (ndash2 0)

4 x-coordinate of A =0 + 8

ndashndashndashndashndash2

= 4

Let C be the centre of OB

4

5

A

C O

AC 2

= OA2

ndash OC 2

= 52 ndash 42

= 9

AC = 3

The coordinates of A are (4 3)

5 x-coordinate of minimum point =0 + 4

ndashndashndashndashndash2

= 2

x-coordinate of minimum point for the image is ndash2

6 (a) y = ( x ndash p)2 + q and minimum point is (2 ndash1)

Hence p = 2 and q = ndash1

(b) y = ( x ndash 2)2 ndash 1

When y = 0

( x ndash 2)2 ndash 1 = 0

( x ndash 2)2 = 1

x ndash 2 = plusmn1

x = plusmn1 + 2

= 1 3

Hence A is (1 0) and B is (3 0)

7 f ( x) = 2k + 1 ndash 983089 x + 1mdash2 p983090

2

Given (ndash1 k ) is the maximum point

Therefore 2k + 1 = k

k = ndash1

x +1mdash2 p = 0 when x = ndash1

ndash1 + 1mdash2 p = 0

1mdash2 p = 1

p = 2

8 Given ( p 2q) is the minimum point of

y = 2 x2 ndash 4 x + 5

= 2( x2 ndash 2 x) + 5

= 2( x2 ndash 2 x + 12 ndash 12) + 5

= 2[( x ndash 1)2 ndash 1] + 5

= 2( x ndash 1)2 ndash 2 + 5

= 2( x ndash 1)2 + 3

2q = 3

q =3mdash2

p ndash 1 = 0

p = 1

9 (a) Since (1 4) is the point on y = x2 ndash 2kx + 1

substitute x = 1 y = 4 into the equation

4 = 12 ndash 2k (1) + 1

2k = ndash2

k = ndash1

(b) y = x2 ndash 2(ndash1) x + 1

= x2 + 2 x + 1

= ( x + 1)2

Minimum value of y is 0

10 f ( x) = ndash x2 ndash 8 x + k ndash 1

= ndash( x2 + 8 x) + k ndash 1

= ndash( x2 + 8 x + 42 ndash 42) + k ndash 1

= ndash[( x + 4)2 ndash 16] + k ndash 1

= ndash( x + 4)2 + 16 + k ndash 1

= ndash( x + 4)2 + 15 + k

Since 13 is the maximum value

then 15 + k = 13

k = ndash2

11 f ( x) = 2 x2 ndash 6 x + 7

= 2( x2 ndash 3 x) + 7

= 2983091 x2 ndash 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 + 7

= 2983091983089 x ndash3mdash2 983090

2

ndash9mdash4 983092 + 7

= 2983089 x ndash3mdash2 983090

2

ndash9mdash2

+ 7

= 2983089 x ndash3mdash2 983090

2

+5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 716

7

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

The minimum point is (3mdash2

5mdash2

)

x ndash1 0 3

f ( x) 15 7 7

ndash ndash

3

5322

0

7

15

x

f (x )

ndash1

The range is5mdash2

983100 f ( x) 983100 15

12 f ( x) = 5 ndash 4 x ndash 2 x2

= ndash2 x2 ndash 4 x + 5

= ndash2( x2 + 2 x) + 5

= ndash2( x2 + 2 x + 12 ndash 12) + 5

= ndash2[( x + 1)2 ndash 1] + 5

= ndash2( x + 1)2 + 2 + 5

= ndash2( x + 1)2 + 7

When f ( x) = ndash1

ndash2( x + 1)2 + 7 = ndash1

ndash2( x + 1)2 = ndash8

( x + 1)2 = 4

x + 1 = plusmn2

x = plusmn2 ndash 1

= ndash3 or 1

13 y = ( x ndash 3)2 ndash 4

Minimum point is (3 ndash4)

x ndash1 0 1 5 6

y 12 5 0 0 5

x 0 1 5 6

5

12

ndash1

(3 ndash4)

y

The range is ndash 4983100 y 983100 12

14 y = ndash x2 + 4 x ndash 5

= ndash( x2 ndash 4 x) ndash 5

= ndash( x2 ndash 4 x + 22 ndash 22) ndash 5

= ndash [( x ndash 2)2 ndash 4] ndash 5

= ndash( x ndash 2)2 + 4 ndash 5

= ndash( x ndash 2)2 ndash 1

Maximum point is (2 ndash1)

x ndash1 0 3

y ndash10 ndash5 ndash2

x

0 3(2 ndash1)

ndash1

ndash5

ndash10

y

The range is ndash10 983100 y 983100 ndash1

15 y = 9 ndash ( x ndash 3)2Maximum point is (3 9)

x ndash1 0 6 7

y 7 0 0 7

x

y

0 ndash1 6

(3 9)

7

7

The range is 0 983100 y 983100 9

16 3 x2 983084 x

3 x2

ndash x 983084 0 x(3 x ndash 1)983084 0

ndash

13

0 x

f (x )

The range is 0 983084 x 983084 1mdash3

17 3 x ndash x

2

ndashndashndashndashndashndash2 983084 1

3 x ndash x2 983084 2

ndash x2 + 3 x ndash 2 983084 0

x2 ndash 3 x + 2 983086 0

( x ndash 1)( x ndash 2) 983086 0

20 x

f (x )

1

The range is x 983084

1 or x 983086

2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 816

8

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

18 Given that x ndash 2 y = 1

there4 x = 1 + 2 y 983089

Substitute 983089 into y + 3983102 2 xy

y + 3983102 2(1 + 2 y) y

y + 3983102 2 y + 4 y2

0983102 4 y2 + y ndash 3

0983102 (4 y ndash 3)( y + 1)

3 ndash

4

0 y

f (y )

ndash1

The range is ndash1 983100 y 983100 3mdash4

19 f ( x) 983084 0

5 x2 ndash 4 x ndash 1 983084 0

(5 x + 1)( x ndash 1) 983084 0

1 ndash ndash

5

0 x

f (x )

1

The range is ndash1mdash5

983084 x 983084 1

20 g( x) 983086 0

4 x2 ndash 9 983086 0(2 x + 3)(2 x ndash 3) 983086 0

3 ndash ndash

23 ndash

2

0 x

g (x )

The range is x 983084 ndash3mdash2

or x 983086 3mdash2

21 (a) Since y = 3 x

2

ndash 9 x + t 983086

0 for all values of x andit does not have root when y = 0

Then b2 ndash 4ac 983084 0 for 3 x2 ndash 9 x + t = 0

(ndash9)2 ndash 4(3)(t ) 983084 0

81 ndash 12t 983084 0

ndash12t 983084 ndash81

t 983086 ndash81 ndashndashndashndash ndash12

t 983086 27

ndashndashndash4

(b) Let f ( x) = a( x ndash b)2 + c

f ( x) = a( x ndash 2)2 + 0

f ( x) = a( x ndash 2)2

Substitute x = 0 f ( x) = ndash3 into the equation

ndash3 = a(0 ndash 2)2

= 4a

a = ndash3mdash4

Hence the quadratic function is

f ( x) = ndash3mdash4

( x ndash 2)2

22 (a) Given 2 x2 ndash 3 y + 2 = 0

3 y = 2 x2 + 2

y =2 x2

ndashndashndash3

+2mdash3

983089

Substitute 983089 into y 983084 10

2 x2

ndashndashndash

3

+2mdash

3

983084 10

2 x2 + 2 983084 30

2 x2 ndash 28 983084 0

x2 ndash 14 983084 0

( x + 98310598310698310614 )( x ndash 98310598310698310614 ) 983084 0

14 ndash14

0 x

f (x )

The range is ndash98310598310698310614 983084 x 983084 98310598310698310614

(b) 2 x2 ndash 8 x ndash 10 = 2( x2 ndash 4 x) ndash 10

= 2( x2 ndash 4 x + 22 ndash 22) ndash 10

= 2[( x ndash 2)2 ndash 4] ndash 10

= 2( x ndash 2)2 ndash 8 ndash 10

= 2( x ndash 2)2 ndash 18

Therefore a = 2 b = ndash2 and c = ndash18

Hence the minimum value of 2 x2 ndash 8 x ndash 10 is

ndash18

23 5 ndash 2 x 983100 0 3 x2 ndash 4 x 983086 ndash1

3 x2

ndash 4 x + 1983086

0(3 x ndash 1)( x ndash 1) 983086 0

11 ndash

3

0 x

f (x )

x 983084 1mdash3

x 983086 1

ndash2 x 983100

ndash5 x 983102

ndash5 ndashndashndash ndash2

x 983102 5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 2: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 216

2

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(d) f ( x) = 6 x ndash x2

= ndash( x2 ndash 6 x)

= ndash983091 x2 ndash 6 x + 983089 6mdash2 983090

2

ndash 983089 6mdash2 983090

2

983092 = ndash[( x ndash 3)2 ndash 9]

= ndash ( x ndash 3)2 + 9

Hence the maximum value is 9

(e) f ( x) = 3 ndash 4 x ndash x2

= ndash x2 ndash 4 x + 3

= ndash( x2 + 4 x) + 3

= ndash983091 x2 + 4 x + 983089 4mdash2 983090

2

ndash 983089 4mdash2 983090

2

983092 + 3

= ndash[( x + 2)2 ndash 4] + 3

= ndash( x + 2)2 + 4 + 3

= ndash( x + 2)2 + 7

Hence the maximum value is 7

(f) f ( x) = 4 x ndash 2 x2

= ndash2 x2 + 4 x

= ndash2( x2

ndash 2 x) = ndash2983091 x2 ndash 2 x + 983089 2

mdash2 983090

2

ndash 983089 2mdash2 983090

2

983092 = ndash2[( x ndash 1)2 ndash 1]

= ndash2( x ndash 1)2 + 2

Hence the maximum value is 2

(g) f ( x) = 10 + 5 x ndash 3 x2

= ndash3 x2 + 5 x + 10

= ndash3983089 x2 ndash5mdash3 x983090 + 10

= ndash3983091 x2 ndash5mdash3 x + 983089 5

mdash6 983090

2

ndash 983089 5mdash6 983090

2

983092 + 10

= ndash3983091983089 x ndash5mdash6 983090

2

ndash25

ndashndashndash36 983092 + 10

= ndash3983089 x ndash5mdash6 983090

2

+25

ndashndashndash12

+ 10

= ndash3983089 x ndash5mdash6 983090

2

+145

ndashndashndashndash12

Hence the maximum value is145

ndashndashndashndash12

(h) f ( x) = (2 x ndash 1)( x + 3)

= 2 x2 + 5 x ndash 3

= 2983089 x2

+

5

mdash2 x983090 ndash 3

= 2983091 x2 +5mdash2 x + 983089 5

mdash4 983090

2

ndash 983089 5mdash4 983090

2

983092 ndash 3

= 2983091983089 x +5mdash4 983090

2

ndash25

ndashndashndash16 983092 ndash 3

= 2983089 x +5mdash4 983090

2

ndash25

ndashndashndash8

ndash 3

= 2983089 x +5mdash4 983090

2

ndash49

ndashndashndash8

Hence the minimum value is ndash49

ndashndashndash8

(i) f ( x) = (1 ndash 4 x)( x + 2)

= x + 2 ndash 4 x2 ndash 8 x

= ndash 4 x2 ndash 7 x + 2

= ndash 4983089 x2 +7mdash4 x983090 + 2

= ndash 4983091 x2 +7mdash4 x + 983089 7

mdash8 983090

2

ndash 983089 7mdash8 983090

2

983092 + 2

= ndash 4983091983089 x + 7mdash8 983090

2

ndash49

ndashndashndash64 983092 + 2

= ndash 4983089 x + 7mdash8 983090

2

+49

ndashndashndash16

+ 2

= ndash 4983089 x + 7mdash8 983090

2

+81

ndashndashndash16

Hence the maximum value is81

ndashndashndash16

9 (a) f ( x) = x2 ndash 4

Therefore the minimum point is (0 ndash 4)

x ndash2 2 4 f ( x) 0 0 12

f (x )

x

ndash4 ndash2 2 4

12

0

(b) f ( x) = 3 x2 + 5

Therefore the minimum point is (0 5)

x ndash1 3

f ( x) 8 32

f (x )

x

ndash1 3

5

8

32

0

(c) f ( x) = 8 ndash x2

Therefore the maximum point is (0 8)

x ndash3 plusmn9831059831068 3

f ( x) ndash1 0 ndash1

f (x )

x

ndash1

8

ndash3 3 ndash 8 8

0

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 316

3

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(d) f ( x) = 10 ndash 2 x2

Therefore the maximum point is (0 10)

x ndash3 plusmn9831059831065 4

f ( x) ndash8 0 ndash22

f (x )

x

ndash8

10

ndash3 4 ndash 5 5 0

ndash22

(e) f ( x) = x( x + 2)

= x2 + 2 x

= x2 + 2 x + 12 ndash 12

= ( x + 1)2 ndash 1

Therefore the minimum point is (ndash1 ndash1)

x ndash 4 ndash2 0 2 f ( x) 8 0 0 8

f (x )

x

(ndash1ndash1) ndash4

8

ndash2 20

(f) f ( x) = ( x ndash 1)(2 x + 1)

= 2 x2

ndash x ndash 1 = 2983089 x2 ndash

xmdash2 983090 ndash 1

= 2983091 x2 ndash xmdash2

+ 983089 1mdash4 983090

2

ndash 983089 1mdash4 983090

2

983092 ndash 1

= 2983091983089 x ndash 1mdash4 983090

2

ndash1

ndashndashndash16 983092 ndash 1

= 2983089 x ndash 1mdash4 983090

2

ndash1mdash8

ndash 1

= 2983089 x ndash 1mdash4 983090

2

ndash9mdash8

Therefore the minimum point is (

1

mdash4 ndash

9

mdash8 )

x ndash1 ndash1mdash2

0 1 2

f ( x) 2 0 ndash1 0 5

f (x )

x

1 2ndash1 1

2ndash ndash

98ndashndash)14 ( ndash

2

0

5

ndash1

(g) f ( x) = ndash( x ndash 3)2 + 5

Therefore the maximum point is (3 5)

x ndash2 0 3 ndash 9831059831065 3 + 9831059831065 6

f ( x) ndash20 ndash 4 0 0 ndash4

f (x )

x

ndash2 ndash4

ndash20

(3 5)

63 + 53 ndash 50

(h) f ( x) = x2 + 4 x + 5

= x2 + 4 x + 22 ndash 22 + 5

= ( x + 2)2 + 1

Therefore the minimum point is (ndash2 1)

x ndash3 0 1 f ( x) 2 5 10

f (x )

x

(ndash2 1)

ndash3 1

2

5

10

0

(i) f ( x) = 2 x2 + 6 x ndash 8

= 2( x2

+ 3 x) ndash 8

= 2983091 x2 + 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 ndash 8

= 2983091983089 x +3mdash2 983090

2

ndash9mdash4 983092 ndash 8

= 2983089 x + 3mdash2 983090

2

ndash9mdash2

ndash 8

= 2983089 x + 3mdash2 983090

2

ndash25

ndashndashndash2

Therefore the minimum point is (ndash3mdash2

ndash25

ndashndashndash2

)

x ndash3 0 1 2 f ( x) ndash8 ndash8 0 12

ndash25

2ndashndash)3

2( ndash

f (x )

x

ndash3

12

ndash8

0 1 2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 416

4

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(j) f ( x) = ( x ndash 4)2

Therefore the minimum point is (4 0)

x 0 4 5

f ( x) 16 0 1

f (x )

x

4 501

16

(k) f ( x) = ndash x2 + 6 x ndash 9

= ndash( x2 ndash 6 x) ndash 9

= ndash( x2 ndash 6 x + 32 ndash 32) ndash 9

= ndash[( x ndash 3)2 ndash 9] ndash 9

= ndash( x ndash 3)2

Therefore the maximum point is (3 0)

x 0 3 4

f ( x) ndash9 0 ndash1

f (x )

x 0

ndash1

ndash9

(3 0)

4

10 (a) x( x ndash 2) 983102 0

0 2x

f (x )

The range of values of x is x 983100 0 or x 983102 2

(b) ( x ndash 3)( x ndash 4) 983100 0

0 43

x

f (x )

The range of values of x is 3 983100 x 983100 4

(c) x2 ndash 3 x ndash 4 983086 0

( x ndash 4)( x + 1) 983086 0

4 ndash1 0 x

f (x )

The range of values of x is x 983084 ndash1 or x 983086 4

(d) 2 x2 + 5 x ndash 3 983084 0

(2 x ndash 1)( x + 3) 983084 0

1 ndash

2 ndash3 0

x

f (x )

The range of values of x is ndash3 983084 x 983084 1mdash2

(e) ( x ndash 3)( x + 2) 983100 ndash4

x2 ndash x ndash 6 983100 ndash4

x2 ndash x ndash 2 983100 0

( x ndash 2)( x + 1) 983100 0

ndash1 20 x

f (x )

The range of values of x is ndash1 983100 x 983100 2

(f) (2 x ndash 1)( x ndash 3) 983100 4( x ndash 3)

2 x2 ndash 6 x ndash x + 3 983100 4 x ndash 12

2 x2 ndash 11 x + 15 983100 0

( x ndash 3)(2 x ndash 5) 983100 0

5 ndash

2

30 x

f (x )

The range of values of x is5mdash2

983100 x 983100 3

(g) x2 + 4

ndashndashndashndashndashndash5

983100 2 x ndash 1

x2 + 4 983100 5(2 x ndash 1)

x2 + 4 983100 10 x ndash 5

x2 ndash 10 x + 9 983100 0

( x ndash 1)( x ndash 9) 983100 0

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 516

5

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

910 x

f (x )

The range of values of x is 1 983100 x 983100 9

(h) x (1 ndash 4 x) 983084 5 x ndash 8

x ndash 4 x2 ndash 5 x + 8 983084 0

ndash 4 x2 ndash 4 x + 8 983084 0

x2 + x ndash 2 983086 0

( x + 2)( x ndash 1) 983086 0

1 ndash2 0 x

f (x )

The range of values of x is x 983084 ndash2 or x 983086 1

1 (a) x-coordinate of the maximum part =1 + 7

ndashndashndashndashndash2

= 4

Therefore the equation of the axis of symmetry

is x = 4

(b) f ( x) = p ndash ( x + q)2

= 5 ndash ( x ndash 4)2

2 f ( x) = 2 x2 ndash 16 x + k 2 + 2k + 1

= 2( x2 ndash 8 x) + k 2 + 2k + 1

= 2983091 x2 ndash 8 x + 983089 8mdash2 983090

2

ndash 983089 8mdash2 983090

2

983092 + k 2 + 2k + 1

= 2[( x ndash 4)2 ndash 16] + k 2 + 2k + 1

= 2( x ndash 4)2 ndash 32 + k 2 + 2k + 1

= 2( x ndash 4)2 + k 2 + 2k ndash 31

Given minimum value = ndash28

there4 k 2 + 2k ndash 31 = ndash28

k 2 + 2k ndash 3 = 0

(k + 3)(k ndash 1) = 0 k = ndash3 1

3 (a) f ( x) = 2( x ndash 3)2 + k

p is the x-coordinate of the minimum point

Therefore p = 3

(b) k is the minimum value of f ( x)

Therefore k = ndash4

(c) The equation of the axis of symmetry is x = 3

4 f ( x) = 3 x2 ndash 2 x + p

a = 3 b = ndash2 c = p

Since the graph does not intersect the x-axis

b2 ndash 4ac lt 0

(ndash2)2 ndash 4(3)( p) lt 0

4 ndash 12 p lt 0

4 lt 12 p

13

lt p

p gt13

5 f ( x) = 2 x2 ndash 12 x + 5

= 2( x2 ndash 6 x) + 5

= 2[( x ndash 3)2 ndash 32] + 5

= 2( x ndash 3)2 ndash 18 + 5

= 2( x ndash 3)2 ndash 13

there4 p = 2 q = ndash3 ndashr + 1 = ndash13

r = 14

6 (a) f ( x) = ndash x2 + 6 px + 1 ndash 4 p2

= ndash( x2 ndash 6 px) + 1 ndash 4 p2

= ndash983091 x2 ndash 6 px + 983089 6 p ndashndashndash

2 983090

2

ndash 983089 6 p ndashndashndash

2 983090

2

983092 + 1 ndash 4 p2

= ndash[( x ndash 3 p)2 ndash 9 p2] + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 9 p2 + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 1 + 5 p2

The maximum value given is q2 ndash p

Therefore q2 ndash p = 1 + 5 p2

5 p2 + p + 1 = q2

(b) x = 3 is symmetrical axis 3 p = 3

p = 1

Substitute p = 1 into 5 p2 + p + 1 = q2

5(1)2 + 1 + 1 = q2

q2 = 7

q = plusmn9831059831067 Hence p = 1 q = plusmn9831059831067

7 4t (t + 1) ndash 3t 2 + 12 983086 0

4t 2 + 4t ndash 3t 2 + 12 983086 0

t 2 + 4t + 12 983086 0

(t + 2)(t + 6) 983086 0

0 ndash2 ndash6x

f (x )

The range of values of t is t 983084 ndash6 or t 983086 ndash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 616

6

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 x-coordinate of maximum point = ndash 4 + 0 ndashndashndashndashndashndash

2 = ndash2

Equation of the axis of symmetry is x = ndash2

2 Let x be the x-coordinate of A

0 + x

ndashndashndashndashndash2

= 3

x = 6

The coordinates of A are (6 4)

3 Let x be the x-coordinate of A

x + 6 ndashndashndashndashndash

2 = 2

x = 4 ndash 6

x = ndash2

The coordinates of A are (ndash2 0)

4 x-coordinate of A =0 + 8

ndashndashndashndashndash2

= 4

Let C be the centre of OB

4

5

A

C O

AC 2

= OA2

ndash OC 2

= 52 ndash 42

= 9

AC = 3

The coordinates of A are (4 3)

5 x-coordinate of minimum point =0 + 4

ndashndashndashndashndash2

= 2

x-coordinate of minimum point for the image is ndash2

6 (a) y = ( x ndash p)2 + q and minimum point is (2 ndash1)

Hence p = 2 and q = ndash1

(b) y = ( x ndash 2)2 ndash 1

When y = 0

( x ndash 2)2 ndash 1 = 0

( x ndash 2)2 = 1

x ndash 2 = plusmn1

x = plusmn1 + 2

= 1 3

Hence A is (1 0) and B is (3 0)

7 f ( x) = 2k + 1 ndash 983089 x + 1mdash2 p983090

2

Given (ndash1 k ) is the maximum point

Therefore 2k + 1 = k

k = ndash1

x +1mdash2 p = 0 when x = ndash1

ndash1 + 1mdash2 p = 0

1mdash2 p = 1

p = 2

8 Given ( p 2q) is the minimum point of

y = 2 x2 ndash 4 x + 5

= 2( x2 ndash 2 x) + 5

= 2( x2 ndash 2 x + 12 ndash 12) + 5

= 2[( x ndash 1)2 ndash 1] + 5

= 2( x ndash 1)2 ndash 2 + 5

= 2( x ndash 1)2 + 3

2q = 3

q =3mdash2

p ndash 1 = 0

p = 1

9 (a) Since (1 4) is the point on y = x2 ndash 2kx + 1

substitute x = 1 y = 4 into the equation

4 = 12 ndash 2k (1) + 1

2k = ndash2

k = ndash1

(b) y = x2 ndash 2(ndash1) x + 1

= x2 + 2 x + 1

= ( x + 1)2

Minimum value of y is 0

10 f ( x) = ndash x2 ndash 8 x + k ndash 1

= ndash( x2 + 8 x) + k ndash 1

= ndash( x2 + 8 x + 42 ndash 42) + k ndash 1

= ndash[( x + 4)2 ndash 16] + k ndash 1

= ndash( x + 4)2 + 16 + k ndash 1

= ndash( x + 4)2 + 15 + k

Since 13 is the maximum value

then 15 + k = 13

k = ndash2

11 f ( x) = 2 x2 ndash 6 x + 7

= 2( x2 ndash 3 x) + 7

= 2983091 x2 ndash 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 + 7

= 2983091983089 x ndash3mdash2 983090

2

ndash9mdash4 983092 + 7

= 2983089 x ndash3mdash2 983090

2

ndash9mdash2

+ 7

= 2983089 x ndash3mdash2 983090

2

+5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 716

7

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

The minimum point is (3mdash2

5mdash2

)

x ndash1 0 3

f ( x) 15 7 7

ndash ndash

3

5322

0

7

15

x

f (x )

ndash1

The range is5mdash2

983100 f ( x) 983100 15

12 f ( x) = 5 ndash 4 x ndash 2 x2

= ndash2 x2 ndash 4 x + 5

= ndash2( x2 + 2 x) + 5

= ndash2( x2 + 2 x + 12 ndash 12) + 5

= ndash2[( x + 1)2 ndash 1] + 5

= ndash2( x + 1)2 + 2 + 5

= ndash2( x + 1)2 + 7

When f ( x) = ndash1

ndash2( x + 1)2 + 7 = ndash1

ndash2( x + 1)2 = ndash8

( x + 1)2 = 4

x + 1 = plusmn2

x = plusmn2 ndash 1

= ndash3 or 1

13 y = ( x ndash 3)2 ndash 4

Minimum point is (3 ndash4)

x ndash1 0 1 5 6

y 12 5 0 0 5

x 0 1 5 6

5

12

ndash1

(3 ndash4)

y

The range is ndash 4983100 y 983100 12

14 y = ndash x2 + 4 x ndash 5

= ndash( x2 ndash 4 x) ndash 5

= ndash( x2 ndash 4 x + 22 ndash 22) ndash 5

= ndash [( x ndash 2)2 ndash 4] ndash 5

= ndash( x ndash 2)2 + 4 ndash 5

= ndash( x ndash 2)2 ndash 1

Maximum point is (2 ndash1)

x ndash1 0 3

y ndash10 ndash5 ndash2

x

0 3(2 ndash1)

ndash1

ndash5

ndash10

y

The range is ndash10 983100 y 983100 ndash1

15 y = 9 ndash ( x ndash 3)2Maximum point is (3 9)

x ndash1 0 6 7

y 7 0 0 7

x

y

0 ndash1 6

(3 9)

7

7

The range is 0 983100 y 983100 9

16 3 x2 983084 x

3 x2

ndash x 983084 0 x(3 x ndash 1)983084 0

ndash

13

0 x

f (x )

The range is 0 983084 x 983084 1mdash3

17 3 x ndash x

2

ndashndashndashndashndashndash2 983084 1

3 x ndash x2 983084 2

ndash x2 + 3 x ndash 2 983084 0

x2 ndash 3 x + 2 983086 0

( x ndash 1)( x ndash 2) 983086 0

20 x

f (x )

1

The range is x 983084

1 or x 983086

2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 816

8

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

18 Given that x ndash 2 y = 1

there4 x = 1 + 2 y 983089

Substitute 983089 into y + 3983102 2 xy

y + 3983102 2(1 + 2 y) y

y + 3983102 2 y + 4 y2

0983102 4 y2 + y ndash 3

0983102 (4 y ndash 3)( y + 1)

3 ndash

4

0 y

f (y )

ndash1

The range is ndash1 983100 y 983100 3mdash4

19 f ( x) 983084 0

5 x2 ndash 4 x ndash 1 983084 0

(5 x + 1)( x ndash 1) 983084 0

1 ndash ndash

5

0 x

f (x )

1

The range is ndash1mdash5

983084 x 983084 1

20 g( x) 983086 0

4 x2 ndash 9 983086 0(2 x + 3)(2 x ndash 3) 983086 0

3 ndash ndash

23 ndash

2

0 x

g (x )

The range is x 983084 ndash3mdash2

or x 983086 3mdash2

21 (a) Since y = 3 x

2

ndash 9 x + t 983086

0 for all values of x andit does not have root when y = 0

Then b2 ndash 4ac 983084 0 for 3 x2 ndash 9 x + t = 0

(ndash9)2 ndash 4(3)(t ) 983084 0

81 ndash 12t 983084 0

ndash12t 983084 ndash81

t 983086 ndash81 ndashndashndashndash ndash12

t 983086 27

ndashndashndash4

(b) Let f ( x) = a( x ndash b)2 + c

f ( x) = a( x ndash 2)2 + 0

f ( x) = a( x ndash 2)2

Substitute x = 0 f ( x) = ndash3 into the equation

ndash3 = a(0 ndash 2)2

= 4a

a = ndash3mdash4

Hence the quadratic function is

f ( x) = ndash3mdash4

( x ndash 2)2

22 (a) Given 2 x2 ndash 3 y + 2 = 0

3 y = 2 x2 + 2

y =2 x2

ndashndashndash3

+2mdash3

983089

Substitute 983089 into y 983084 10

2 x2

ndashndashndash

3

+2mdash

3

983084 10

2 x2 + 2 983084 30

2 x2 ndash 28 983084 0

x2 ndash 14 983084 0

( x + 98310598310698310614 )( x ndash 98310598310698310614 ) 983084 0

14 ndash14

0 x

f (x )

The range is ndash98310598310698310614 983084 x 983084 98310598310698310614

(b) 2 x2 ndash 8 x ndash 10 = 2( x2 ndash 4 x) ndash 10

= 2( x2 ndash 4 x + 22 ndash 22) ndash 10

= 2[( x ndash 2)2 ndash 4] ndash 10

= 2( x ndash 2)2 ndash 8 ndash 10

= 2( x ndash 2)2 ndash 18

Therefore a = 2 b = ndash2 and c = ndash18

Hence the minimum value of 2 x2 ndash 8 x ndash 10 is

ndash18

23 5 ndash 2 x 983100 0 3 x2 ndash 4 x 983086 ndash1

3 x2

ndash 4 x + 1983086

0(3 x ndash 1)( x ndash 1) 983086 0

11 ndash

3

0 x

f (x )

x 983084 1mdash3

x 983086 1

ndash2 x 983100

ndash5 x 983102

ndash5 ndashndashndash ndash2

x 983102 5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 3: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 316

3

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(d) f ( x) = 10 ndash 2 x2

Therefore the maximum point is (0 10)

x ndash3 plusmn9831059831065 4

f ( x) ndash8 0 ndash22

f (x )

x

ndash8

10

ndash3 4 ndash 5 5 0

ndash22

(e) f ( x) = x( x + 2)

= x2 + 2 x

= x2 + 2 x + 12 ndash 12

= ( x + 1)2 ndash 1

Therefore the minimum point is (ndash1 ndash1)

x ndash 4 ndash2 0 2 f ( x) 8 0 0 8

f (x )

x

(ndash1ndash1) ndash4

8

ndash2 20

(f) f ( x) = ( x ndash 1)(2 x + 1)

= 2 x2

ndash x ndash 1 = 2983089 x2 ndash

xmdash2 983090 ndash 1

= 2983091 x2 ndash xmdash2

+ 983089 1mdash4 983090

2

ndash 983089 1mdash4 983090

2

983092 ndash 1

= 2983091983089 x ndash 1mdash4 983090

2

ndash1

ndashndashndash16 983092 ndash 1

= 2983089 x ndash 1mdash4 983090

2

ndash1mdash8

ndash 1

= 2983089 x ndash 1mdash4 983090

2

ndash9mdash8

Therefore the minimum point is (

1

mdash4 ndash

9

mdash8 )

x ndash1 ndash1mdash2

0 1 2

f ( x) 2 0 ndash1 0 5

f (x )

x

1 2ndash1 1

2ndash ndash

98ndashndash)14 ( ndash

2

0

5

ndash1

(g) f ( x) = ndash( x ndash 3)2 + 5

Therefore the maximum point is (3 5)

x ndash2 0 3 ndash 9831059831065 3 + 9831059831065 6

f ( x) ndash20 ndash 4 0 0 ndash4

f (x )

x

ndash2 ndash4

ndash20

(3 5)

63 + 53 ndash 50

(h) f ( x) = x2 + 4 x + 5

= x2 + 4 x + 22 ndash 22 + 5

= ( x + 2)2 + 1

Therefore the minimum point is (ndash2 1)

x ndash3 0 1 f ( x) 2 5 10

f (x )

x

(ndash2 1)

ndash3 1

2

5

10

0

(i) f ( x) = 2 x2 + 6 x ndash 8

= 2( x2

+ 3 x) ndash 8

= 2983091 x2 + 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 ndash 8

= 2983091983089 x +3mdash2 983090

2

ndash9mdash4 983092 ndash 8

= 2983089 x + 3mdash2 983090

2

ndash9mdash2

ndash 8

= 2983089 x + 3mdash2 983090

2

ndash25

ndashndashndash2

Therefore the minimum point is (ndash3mdash2

ndash25

ndashndashndash2

)

x ndash3 0 1 2 f ( x) ndash8 ndash8 0 12

ndash25

2ndashndash)3

2( ndash

f (x )

x

ndash3

12

ndash8

0 1 2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 416

4

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(j) f ( x) = ( x ndash 4)2

Therefore the minimum point is (4 0)

x 0 4 5

f ( x) 16 0 1

f (x )

x

4 501

16

(k) f ( x) = ndash x2 + 6 x ndash 9

= ndash( x2 ndash 6 x) ndash 9

= ndash( x2 ndash 6 x + 32 ndash 32) ndash 9

= ndash[( x ndash 3)2 ndash 9] ndash 9

= ndash( x ndash 3)2

Therefore the maximum point is (3 0)

x 0 3 4

f ( x) ndash9 0 ndash1

f (x )

x 0

ndash1

ndash9

(3 0)

4

10 (a) x( x ndash 2) 983102 0

0 2x

f (x )

The range of values of x is x 983100 0 or x 983102 2

(b) ( x ndash 3)( x ndash 4) 983100 0

0 43

x

f (x )

The range of values of x is 3 983100 x 983100 4

(c) x2 ndash 3 x ndash 4 983086 0

( x ndash 4)( x + 1) 983086 0

4 ndash1 0 x

f (x )

The range of values of x is x 983084 ndash1 or x 983086 4

(d) 2 x2 + 5 x ndash 3 983084 0

(2 x ndash 1)( x + 3) 983084 0

1 ndash

2 ndash3 0

x

f (x )

The range of values of x is ndash3 983084 x 983084 1mdash2

(e) ( x ndash 3)( x + 2) 983100 ndash4

x2 ndash x ndash 6 983100 ndash4

x2 ndash x ndash 2 983100 0

( x ndash 2)( x + 1) 983100 0

ndash1 20 x

f (x )

The range of values of x is ndash1 983100 x 983100 2

(f) (2 x ndash 1)( x ndash 3) 983100 4( x ndash 3)

2 x2 ndash 6 x ndash x + 3 983100 4 x ndash 12

2 x2 ndash 11 x + 15 983100 0

( x ndash 3)(2 x ndash 5) 983100 0

5 ndash

2

30 x

f (x )

The range of values of x is5mdash2

983100 x 983100 3

(g) x2 + 4

ndashndashndashndashndashndash5

983100 2 x ndash 1

x2 + 4 983100 5(2 x ndash 1)

x2 + 4 983100 10 x ndash 5

x2 ndash 10 x + 9 983100 0

( x ndash 1)( x ndash 9) 983100 0

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 516

5

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

910 x

f (x )

The range of values of x is 1 983100 x 983100 9

(h) x (1 ndash 4 x) 983084 5 x ndash 8

x ndash 4 x2 ndash 5 x + 8 983084 0

ndash 4 x2 ndash 4 x + 8 983084 0

x2 + x ndash 2 983086 0

( x + 2)( x ndash 1) 983086 0

1 ndash2 0 x

f (x )

The range of values of x is x 983084 ndash2 or x 983086 1

1 (a) x-coordinate of the maximum part =1 + 7

ndashndashndashndashndash2

= 4

Therefore the equation of the axis of symmetry

is x = 4

(b) f ( x) = p ndash ( x + q)2

= 5 ndash ( x ndash 4)2

2 f ( x) = 2 x2 ndash 16 x + k 2 + 2k + 1

= 2( x2 ndash 8 x) + k 2 + 2k + 1

= 2983091 x2 ndash 8 x + 983089 8mdash2 983090

2

ndash 983089 8mdash2 983090

2

983092 + k 2 + 2k + 1

= 2[( x ndash 4)2 ndash 16] + k 2 + 2k + 1

= 2( x ndash 4)2 ndash 32 + k 2 + 2k + 1

= 2( x ndash 4)2 + k 2 + 2k ndash 31

Given minimum value = ndash28

there4 k 2 + 2k ndash 31 = ndash28

k 2 + 2k ndash 3 = 0

(k + 3)(k ndash 1) = 0 k = ndash3 1

3 (a) f ( x) = 2( x ndash 3)2 + k

p is the x-coordinate of the minimum point

Therefore p = 3

(b) k is the minimum value of f ( x)

Therefore k = ndash4

(c) The equation of the axis of symmetry is x = 3

4 f ( x) = 3 x2 ndash 2 x + p

a = 3 b = ndash2 c = p

Since the graph does not intersect the x-axis

b2 ndash 4ac lt 0

(ndash2)2 ndash 4(3)( p) lt 0

4 ndash 12 p lt 0

4 lt 12 p

13

lt p

p gt13

5 f ( x) = 2 x2 ndash 12 x + 5

= 2( x2 ndash 6 x) + 5

= 2[( x ndash 3)2 ndash 32] + 5

= 2( x ndash 3)2 ndash 18 + 5

= 2( x ndash 3)2 ndash 13

there4 p = 2 q = ndash3 ndashr + 1 = ndash13

r = 14

6 (a) f ( x) = ndash x2 + 6 px + 1 ndash 4 p2

= ndash( x2 ndash 6 px) + 1 ndash 4 p2

= ndash983091 x2 ndash 6 px + 983089 6 p ndashndashndash

2 983090

2

ndash 983089 6 p ndashndashndash

2 983090

2

983092 + 1 ndash 4 p2

= ndash[( x ndash 3 p)2 ndash 9 p2] + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 9 p2 + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 1 + 5 p2

The maximum value given is q2 ndash p

Therefore q2 ndash p = 1 + 5 p2

5 p2 + p + 1 = q2

(b) x = 3 is symmetrical axis 3 p = 3

p = 1

Substitute p = 1 into 5 p2 + p + 1 = q2

5(1)2 + 1 + 1 = q2

q2 = 7

q = plusmn9831059831067 Hence p = 1 q = plusmn9831059831067

7 4t (t + 1) ndash 3t 2 + 12 983086 0

4t 2 + 4t ndash 3t 2 + 12 983086 0

t 2 + 4t + 12 983086 0

(t + 2)(t + 6) 983086 0

0 ndash2 ndash6x

f (x )

The range of values of t is t 983084 ndash6 or t 983086 ndash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 616

6

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 x-coordinate of maximum point = ndash 4 + 0 ndashndashndashndashndashndash

2 = ndash2

Equation of the axis of symmetry is x = ndash2

2 Let x be the x-coordinate of A

0 + x

ndashndashndashndashndash2

= 3

x = 6

The coordinates of A are (6 4)

3 Let x be the x-coordinate of A

x + 6 ndashndashndashndashndash

2 = 2

x = 4 ndash 6

x = ndash2

The coordinates of A are (ndash2 0)

4 x-coordinate of A =0 + 8

ndashndashndashndashndash2

= 4

Let C be the centre of OB

4

5

A

C O

AC 2

= OA2

ndash OC 2

= 52 ndash 42

= 9

AC = 3

The coordinates of A are (4 3)

5 x-coordinate of minimum point =0 + 4

ndashndashndashndashndash2

= 2

x-coordinate of minimum point for the image is ndash2

6 (a) y = ( x ndash p)2 + q and minimum point is (2 ndash1)

Hence p = 2 and q = ndash1

(b) y = ( x ndash 2)2 ndash 1

When y = 0

( x ndash 2)2 ndash 1 = 0

( x ndash 2)2 = 1

x ndash 2 = plusmn1

x = plusmn1 + 2

= 1 3

Hence A is (1 0) and B is (3 0)

7 f ( x) = 2k + 1 ndash 983089 x + 1mdash2 p983090

2

Given (ndash1 k ) is the maximum point

Therefore 2k + 1 = k

k = ndash1

x +1mdash2 p = 0 when x = ndash1

ndash1 + 1mdash2 p = 0

1mdash2 p = 1

p = 2

8 Given ( p 2q) is the minimum point of

y = 2 x2 ndash 4 x + 5

= 2( x2 ndash 2 x) + 5

= 2( x2 ndash 2 x + 12 ndash 12) + 5

= 2[( x ndash 1)2 ndash 1] + 5

= 2( x ndash 1)2 ndash 2 + 5

= 2( x ndash 1)2 + 3

2q = 3

q =3mdash2

p ndash 1 = 0

p = 1

9 (a) Since (1 4) is the point on y = x2 ndash 2kx + 1

substitute x = 1 y = 4 into the equation

4 = 12 ndash 2k (1) + 1

2k = ndash2

k = ndash1

(b) y = x2 ndash 2(ndash1) x + 1

= x2 + 2 x + 1

= ( x + 1)2

Minimum value of y is 0

10 f ( x) = ndash x2 ndash 8 x + k ndash 1

= ndash( x2 + 8 x) + k ndash 1

= ndash( x2 + 8 x + 42 ndash 42) + k ndash 1

= ndash[( x + 4)2 ndash 16] + k ndash 1

= ndash( x + 4)2 + 16 + k ndash 1

= ndash( x + 4)2 + 15 + k

Since 13 is the maximum value

then 15 + k = 13

k = ndash2

11 f ( x) = 2 x2 ndash 6 x + 7

= 2( x2 ndash 3 x) + 7

= 2983091 x2 ndash 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 + 7

= 2983091983089 x ndash3mdash2 983090

2

ndash9mdash4 983092 + 7

= 2983089 x ndash3mdash2 983090

2

ndash9mdash2

+ 7

= 2983089 x ndash3mdash2 983090

2

+5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 716

7

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

The minimum point is (3mdash2

5mdash2

)

x ndash1 0 3

f ( x) 15 7 7

ndash ndash

3

5322

0

7

15

x

f (x )

ndash1

The range is5mdash2

983100 f ( x) 983100 15

12 f ( x) = 5 ndash 4 x ndash 2 x2

= ndash2 x2 ndash 4 x + 5

= ndash2( x2 + 2 x) + 5

= ndash2( x2 + 2 x + 12 ndash 12) + 5

= ndash2[( x + 1)2 ndash 1] + 5

= ndash2( x + 1)2 + 2 + 5

= ndash2( x + 1)2 + 7

When f ( x) = ndash1

ndash2( x + 1)2 + 7 = ndash1

ndash2( x + 1)2 = ndash8

( x + 1)2 = 4

x + 1 = plusmn2

x = plusmn2 ndash 1

= ndash3 or 1

13 y = ( x ndash 3)2 ndash 4

Minimum point is (3 ndash4)

x ndash1 0 1 5 6

y 12 5 0 0 5

x 0 1 5 6

5

12

ndash1

(3 ndash4)

y

The range is ndash 4983100 y 983100 12

14 y = ndash x2 + 4 x ndash 5

= ndash( x2 ndash 4 x) ndash 5

= ndash( x2 ndash 4 x + 22 ndash 22) ndash 5

= ndash [( x ndash 2)2 ndash 4] ndash 5

= ndash( x ndash 2)2 + 4 ndash 5

= ndash( x ndash 2)2 ndash 1

Maximum point is (2 ndash1)

x ndash1 0 3

y ndash10 ndash5 ndash2

x

0 3(2 ndash1)

ndash1

ndash5

ndash10

y

The range is ndash10 983100 y 983100 ndash1

15 y = 9 ndash ( x ndash 3)2Maximum point is (3 9)

x ndash1 0 6 7

y 7 0 0 7

x

y

0 ndash1 6

(3 9)

7

7

The range is 0 983100 y 983100 9

16 3 x2 983084 x

3 x2

ndash x 983084 0 x(3 x ndash 1)983084 0

ndash

13

0 x

f (x )

The range is 0 983084 x 983084 1mdash3

17 3 x ndash x

2

ndashndashndashndashndashndash2 983084 1

3 x ndash x2 983084 2

ndash x2 + 3 x ndash 2 983084 0

x2 ndash 3 x + 2 983086 0

( x ndash 1)( x ndash 2) 983086 0

20 x

f (x )

1

The range is x 983084

1 or x 983086

2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 816

8

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

18 Given that x ndash 2 y = 1

there4 x = 1 + 2 y 983089

Substitute 983089 into y + 3983102 2 xy

y + 3983102 2(1 + 2 y) y

y + 3983102 2 y + 4 y2

0983102 4 y2 + y ndash 3

0983102 (4 y ndash 3)( y + 1)

3 ndash

4

0 y

f (y )

ndash1

The range is ndash1 983100 y 983100 3mdash4

19 f ( x) 983084 0

5 x2 ndash 4 x ndash 1 983084 0

(5 x + 1)( x ndash 1) 983084 0

1 ndash ndash

5

0 x

f (x )

1

The range is ndash1mdash5

983084 x 983084 1

20 g( x) 983086 0

4 x2 ndash 9 983086 0(2 x + 3)(2 x ndash 3) 983086 0

3 ndash ndash

23 ndash

2

0 x

g (x )

The range is x 983084 ndash3mdash2

or x 983086 3mdash2

21 (a) Since y = 3 x

2

ndash 9 x + t 983086

0 for all values of x andit does not have root when y = 0

Then b2 ndash 4ac 983084 0 for 3 x2 ndash 9 x + t = 0

(ndash9)2 ndash 4(3)(t ) 983084 0

81 ndash 12t 983084 0

ndash12t 983084 ndash81

t 983086 ndash81 ndashndashndashndash ndash12

t 983086 27

ndashndashndash4

(b) Let f ( x) = a( x ndash b)2 + c

f ( x) = a( x ndash 2)2 + 0

f ( x) = a( x ndash 2)2

Substitute x = 0 f ( x) = ndash3 into the equation

ndash3 = a(0 ndash 2)2

= 4a

a = ndash3mdash4

Hence the quadratic function is

f ( x) = ndash3mdash4

( x ndash 2)2

22 (a) Given 2 x2 ndash 3 y + 2 = 0

3 y = 2 x2 + 2

y =2 x2

ndashndashndash3

+2mdash3

983089

Substitute 983089 into y 983084 10

2 x2

ndashndashndash

3

+2mdash

3

983084 10

2 x2 + 2 983084 30

2 x2 ndash 28 983084 0

x2 ndash 14 983084 0

( x + 98310598310698310614 )( x ndash 98310598310698310614 ) 983084 0

14 ndash14

0 x

f (x )

The range is ndash98310598310698310614 983084 x 983084 98310598310698310614

(b) 2 x2 ndash 8 x ndash 10 = 2( x2 ndash 4 x) ndash 10

= 2( x2 ndash 4 x + 22 ndash 22) ndash 10

= 2[( x ndash 2)2 ndash 4] ndash 10

= 2( x ndash 2)2 ndash 8 ndash 10

= 2( x ndash 2)2 ndash 18

Therefore a = 2 b = ndash2 and c = ndash18

Hence the minimum value of 2 x2 ndash 8 x ndash 10 is

ndash18

23 5 ndash 2 x 983100 0 3 x2 ndash 4 x 983086 ndash1

3 x2

ndash 4 x + 1983086

0(3 x ndash 1)( x ndash 1) 983086 0

11 ndash

3

0 x

f (x )

x 983084 1mdash3

x 983086 1

ndash2 x 983100

ndash5 x 983102

ndash5 ndashndashndash ndash2

x 983102 5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 4: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 416

4

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(j) f ( x) = ( x ndash 4)2

Therefore the minimum point is (4 0)

x 0 4 5

f ( x) 16 0 1

f (x )

x

4 501

16

(k) f ( x) = ndash x2 + 6 x ndash 9

= ndash( x2 ndash 6 x) ndash 9

= ndash( x2 ndash 6 x + 32 ndash 32) ndash 9

= ndash[( x ndash 3)2 ndash 9] ndash 9

= ndash( x ndash 3)2

Therefore the maximum point is (3 0)

x 0 3 4

f ( x) ndash9 0 ndash1

f (x )

x 0

ndash1

ndash9

(3 0)

4

10 (a) x( x ndash 2) 983102 0

0 2x

f (x )

The range of values of x is x 983100 0 or x 983102 2

(b) ( x ndash 3)( x ndash 4) 983100 0

0 43

x

f (x )

The range of values of x is 3 983100 x 983100 4

(c) x2 ndash 3 x ndash 4 983086 0

( x ndash 4)( x + 1) 983086 0

4 ndash1 0 x

f (x )

The range of values of x is x 983084 ndash1 or x 983086 4

(d) 2 x2 + 5 x ndash 3 983084 0

(2 x ndash 1)( x + 3) 983084 0

1 ndash

2 ndash3 0

x

f (x )

The range of values of x is ndash3 983084 x 983084 1mdash2

(e) ( x ndash 3)( x + 2) 983100 ndash4

x2 ndash x ndash 6 983100 ndash4

x2 ndash x ndash 2 983100 0

( x ndash 2)( x + 1) 983100 0

ndash1 20 x

f (x )

The range of values of x is ndash1 983100 x 983100 2

(f) (2 x ndash 1)( x ndash 3) 983100 4( x ndash 3)

2 x2 ndash 6 x ndash x + 3 983100 4 x ndash 12

2 x2 ndash 11 x + 15 983100 0

( x ndash 3)(2 x ndash 5) 983100 0

5 ndash

2

30 x

f (x )

The range of values of x is5mdash2

983100 x 983100 3

(g) x2 + 4

ndashndashndashndashndashndash5

983100 2 x ndash 1

x2 + 4 983100 5(2 x ndash 1)

x2 + 4 983100 10 x ndash 5

x2 ndash 10 x + 9 983100 0

( x ndash 1)( x ndash 9) 983100 0

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 516

5

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

910 x

f (x )

The range of values of x is 1 983100 x 983100 9

(h) x (1 ndash 4 x) 983084 5 x ndash 8

x ndash 4 x2 ndash 5 x + 8 983084 0

ndash 4 x2 ndash 4 x + 8 983084 0

x2 + x ndash 2 983086 0

( x + 2)( x ndash 1) 983086 0

1 ndash2 0 x

f (x )

The range of values of x is x 983084 ndash2 or x 983086 1

1 (a) x-coordinate of the maximum part =1 + 7

ndashndashndashndashndash2

= 4

Therefore the equation of the axis of symmetry

is x = 4

(b) f ( x) = p ndash ( x + q)2

= 5 ndash ( x ndash 4)2

2 f ( x) = 2 x2 ndash 16 x + k 2 + 2k + 1

= 2( x2 ndash 8 x) + k 2 + 2k + 1

= 2983091 x2 ndash 8 x + 983089 8mdash2 983090

2

ndash 983089 8mdash2 983090

2

983092 + k 2 + 2k + 1

= 2[( x ndash 4)2 ndash 16] + k 2 + 2k + 1

= 2( x ndash 4)2 ndash 32 + k 2 + 2k + 1

= 2( x ndash 4)2 + k 2 + 2k ndash 31

Given minimum value = ndash28

there4 k 2 + 2k ndash 31 = ndash28

k 2 + 2k ndash 3 = 0

(k + 3)(k ndash 1) = 0 k = ndash3 1

3 (a) f ( x) = 2( x ndash 3)2 + k

p is the x-coordinate of the minimum point

Therefore p = 3

(b) k is the minimum value of f ( x)

Therefore k = ndash4

(c) The equation of the axis of symmetry is x = 3

4 f ( x) = 3 x2 ndash 2 x + p

a = 3 b = ndash2 c = p

Since the graph does not intersect the x-axis

b2 ndash 4ac lt 0

(ndash2)2 ndash 4(3)( p) lt 0

4 ndash 12 p lt 0

4 lt 12 p

13

lt p

p gt13

5 f ( x) = 2 x2 ndash 12 x + 5

= 2( x2 ndash 6 x) + 5

= 2[( x ndash 3)2 ndash 32] + 5

= 2( x ndash 3)2 ndash 18 + 5

= 2( x ndash 3)2 ndash 13

there4 p = 2 q = ndash3 ndashr + 1 = ndash13

r = 14

6 (a) f ( x) = ndash x2 + 6 px + 1 ndash 4 p2

= ndash( x2 ndash 6 px) + 1 ndash 4 p2

= ndash983091 x2 ndash 6 px + 983089 6 p ndashndashndash

2 983090

2

ndash 983089 6 p ndashndashndash

2 983090

2

983092 + 1 ndash 4 p2

= ndash[( x ndash 3 p)2 ndash 9 p2] + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 9 p2 + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 1 + 5 p2

The maximum value given is q2 ndash p

Therefore q2 ndash p = 1 + 5 p2

5 p2 + p + 1 = q2

(b) x = 3 is symmetrical axis 3 p = 3

p = 1

Substitute p = 1 into 5 p2 + p + 1 = q2

5(1)2 + 1 + 1 = q2

q2 = 7

q = plusmn9831059831067 Hence p = 1 q = plusmn9831059831067

7 4t (t + 1) ndash 3t 2 + 12 983086 0

4t 2 + 4t ndash 3t 2 + 12 983086 0

t 2 + 4t + 12 983086 0

(t + 2)(t + 6) 983086 0

0 ndash2 ndash6x

f (x )

The range of values of t is t 983084 ndash6 or t 983086 ndash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 616

6

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 x-coordinate of maximum point = ndash 4 + 0 ndashndashndashndashndashndash

2 = ndash2

Equation of the axis of symmetry is x = ndash2

2 Let x be the x-coordinate of A

0 + x

ndashndashndashndashndash2

= 3

x = 6

The coordinates of A are (6 4)

3 Let x be the x-coordinate of A

x + 6 ndashndashndashndashndash

2 = 2

x = 4 ndash 6

x = ndash2

The coordinates of A are (ndash2 0)

4 x-coordinate of A =0 + 8

ndashndashndashndashndash2

= 4

Let C be the centre of OB

4

5

A

C O

AC 2

= OA2

ndash OC 2

= 52 ndash 42

= 9

AC = 3

The coordinates of A are (4 3)

5 x-coordinate of minimum point =0 + 4

ndashndashndashndashndash2

= 2

x-coordinate of minimum point for the image is ndash2

6 (a) y = ( x ndash p)2 + q and minimum point is (2 ndash1)

Hence p = 2 and q = ndash1

(b) y = ( x ndash 2)2 ndash 1

When y = 0

( x ndash 2)2 ndash 1 = 0

( x ndash 2)2 = 1

x ndash 2 = plusmn1

x = plusmn1 + 2

= 1 3

Hence A is (1 0) and B is (3 0)

7 f ( x) = 2k + 1 ndash 983089 x + 1mdash2 p983090

2

Given (ndash1 k ) is the maximum point

Therefore 2k + 1 = k

k = ndash1

x +1mdash2 p = 0 when x = ndash1

ndash1 + 1mdash2 p = 0

1mdash2 p = 1

p = 2

8 Given ( p 2q) is the minimum point of

y = 2 x2 ndash 4 x + 5

= 2( x2 ndash 2 x) + 5

= 2( x2 ndash 2 x + 12 ndash 12) + 5

= 2[( x ndash 1)2 ndash 1] + 5

= 2( x ndash 1)2 ndash 2 + 5

= 2( x ndash 1)2 + 3

2q = 3

q =3mdash2

p ndash 1 = 0

p = 1

9 (a) Since (1 4) is the point on y = x2 ndash 2kx + 1

substitute x = 1 y = 4 into the equation

4 = 12 ndash 2k (1) + 1

2k = ndash2

k = ndash1

(b) y = x2 ndash 2(ndash1) x + 1

= x2 + 2 x + 1

= ( x + 1)2

Minimum value of y is 0

10 f ( x) = ndash x2 ndash 8 x + k ndash 1

= ndash( x2 + 8 x) + k ndash 1

= ndash( x2 + 8 x + 42 ndash 42) + k ndash 1

= ndash[( x + 4)2 ndash 16] + k ndash 1

= ndash( x + 4)2 + 16 + k ndash 1

= ndash( x + 4)2 + 15 + k

Since 13 is the maximum value

then 15 + k = 13

k = ndash2

11 f ( x) = 2 x2 ndash 6 x + 7

= 2( x2 ndash 3 x) + 7

= 2983091 x2 ndash 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 + 7

= 2983091983089 x ndash3mdash2 983090

2

ndash9mdash4 983092 + 7

= 2983089 x ndash3mdash2 983090

2

ndash9mdash2

+ 7

= 2983089 x ndash3mdash2 983090

2

+5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 716

7

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

The minimum point is (3mdash2

5mdash2

)

x ndash1 0 3

f ( x) 15 7 7

ndash ndash

3

5322

0

7

15

x

f (x )

ndash1

The range is5mdash2

983100 f ( x) 983100 15

12 f ( x) = 5 ndash 4 x ndash 2 x2

= ndash2 x2 ndash 4 x + 5

= ndash2( x2 + 2 x) + 5

= ndash2( x2 + 2 x + 12 ndash 12) + 5

= ndash2[( x + 1)2 ndash 1] + 5

= ndash2( x + 1)2 + 2 + 5

= ndash2( x + 1)2 + 7

When f ( x) = ndash1

ndash2( x + 1)2 + 7 = ndash1

ndash2( x + 1)2 = ndash8

( x + 1)2 = 4

x + 1 = plusmn2

x = plusmn2 ndash 1

= ndash3 or 1

13 y = ( x ndash 3)2 ndash 4

Minimum point is (3 ndash4)

x ndash1 0 1 5 6

y 12 5 0 0 5

x 0 1 5 6

5

12

ndash1

(3 ndash4)

y

The range is ndash 4983100 y 983100 12

14 y = ndash x2 + 4 x ndash 5

= ndash( x2 ndash 4 x) ndash 5

= ndash( x2 ndash 4 x + 22 ndash 22) ndash 5

= ndash [( x ndash 2)2 ndash 4] ndash 5

= ndash( x ndash 2)2 + 4 ndash 5

= ndash( x ndash 2)2 ndash 1

Maximum point is (2 ndash1)

x ndash1 0 3

y ndash10 ndash5 ndash2

x

0 3(2 ndash1)

ndash1

ndash5

ndash10

y

The range is ndash10 983100 y 983100 ndash1

15 y = 9 ndash ( x ndash 3)2Maximum point is (3 9)

x ndash1 0 6 7

y 7 0 0 7

x

y

0 ndash1 6

(3 9)

7

7

The range is 0 983100 y 983100 9

16 3 x2 983084 x

3 x2

ndash x 983084 0 x(3 x ndash 1)983084 0

ndash

13

0 x

f (x )

The range is 0 983084 x 983084 1mdash3

17 3 x ndash x

2

ndashndashndashndashndashndash2 983084 1

3 x ndash x2 983084 2

ndash x2 + 3 x ndash 2 983084 0

x2 ndash 3 x + 2 983086 0

( x ndash 1)( x ndash 2) 983086 0

20 x

f (x )

1

The range is x 983084

1 or x 983086

2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 816

8

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

18 Given that x ndash 2 y = 1

there4 x = 1 + 2 y 983089

Substitute 983089 into y + 3983102 2 xy

y + 3983102 2(1 + 2 y) y

y + 3983102 2 y + 4 y2

0983102 4 y2 + y ndash 3

0983102 (4 y ndash 3)( y + 1)

3 ndash

4

0 y

f (y )

ndash1

The range is ndash1 983100 y 983100 3mdash4

19 f ( x) 983084 0

5 x2 ndash 4 x ndash 1 983084 0

(5 x + 1)( x ndash 1) 983084 0

1 ndash ndash

5

0 x

f (x )

1

The range is ndash1mdash5

983084 x 983084 1

20 g( x) 983086 0

4 x2 ndash 9 983086 0(2 x + 3)(2 x ndash 3) 983086 0

3 ndash ndash

23 ndash

2

0 x

g (x )

The range is x 983084 ndash3mdash2

or x 983086 3mdash2

21 (a) Since y = 3 x

2

ndash 9 x + t 983086

0 for all values of x andit does not have root when y = 0

Then b2 ndash 4ac 983084 0 for 3 x2 ndash 9 x + t = 0

(ndash9)2 ndash 4(3)(t ) 983084 0

81 ndash 12t 983084 0

ndash12t 983084 ndash81

t 983086 ndash81 ndashndashndashndash ndash12

t 983086 27

ndashndashndash4

(b) Let f ( x) = a( x ndash b)2 + c

f ( x) = a( x ndash 2)2 + 0

f ( x) = a( x ndash 2)2

Substitute x = 0 f ( x) = ndash3 into the equation

ndash3 = a(0 ndash 2)2

= 4a

a = ndash3mdash4

Hence the quadratic function is

f ( x) = ndash3mdash4

( x ndash 2)2

22 (a) Given 2 x2 ndash 3 y + 2 = 0

3 y = 2 x2 + 2

y =2 x2

ndashndashndash3

+2mdash3

983089

Substitute 983089 into y 983084 10

2 x2

ndashndashndash

3

+2mdash

3

983084 10

2 x2 + 2 983084 30

2 x2 ndash 28 983084 0

x2 ndash 14 983084 0

( x + 98310598310698310614 )( x ndash 98310598310698310614 ) 983084 0

14 ndash14

0 x

f (x )

The range is ndash98310598310698310614 983084 x 983084 98310598310698310614

(b) 2 x2 ndash 8 x ndash 10 = 2( x2 ndash 4 x) ndash 10

= 2( x2 ndash 4 x + 22 ndash 22) ndash 10

= 2[( x ndash 2)2 ndash 4] ndash 10

= 2( x ndash 2)2 ndash 8 ndash 10

= 2( x ndash 2)2 ndash 18

Therefore a = 2 b = ndash2 and c = ndash18

Hence the minimum value of 2 x2 ndash 8 x ndash 10 is

ndash18

23 5 ndash 2 x 983100 0 3 x2 ndash 4 x 983086 ndash1

3 x2

ndash 4 x + 1983086

0(3 x ndash 1)( x ndash 1) 983086 0

11 ndash

3

0 x

f (x )

x 983084 1mdash3

x 983086 1

ndash2 x 983100

ndash5 x 983102

ndash5 ndashndashndash ndash2

x 983102 5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 5: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 516

5

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

910 x

f (x )

The range of values of x is 1 983100 x 983100 9

(h) x (1 ndash 4 x) 983084 5 x ndash 8

x ndash 4 x2 ndash 5 x + 8 983084 0

ndash 4 x2 ndash 4 x + 8 983084 0

x2 + x ndash 2 983086 0

( x + 2)( x ndash 1) 983086 0

1 ndash2 0 x

f (x )

The range of values of x is x 983084 ndash2 or x 983086 1

1 (a) x-coordinate of the maximum part =1 + 7

ndashndashndashndashndash2

= 4

Therefore the equation of the axis of symmetry

is x = 4

(b) f ( x) = p ndash ( x + q)2

= 5 ndash ( x ndash 4)2

2 f ( x) = 2 x2 ndash 16 x + k 2 + 2k + 1

= 2( x2 ndash 8 x) + k 2 + 2k + 1

= 2983091 x2 ndash 8 x + 983089 8mdash2 983090

2

ndash 983089 8mdash2 983090

2

983092 + k 2 + 2k + 1

= 2[( x ndash 4)2 ndash 16] + k 2 + 2k + 1

= 2( x ndash 4)2 ndash 32 + k 2 + 2k + 1

= 2( x ndash 4)2 + k 2 + 2k ndash 31

Given minimum value = ndash28

there4 k 2 + 2k ndash 31 = ndash28

k 2 + 2k ndash 3 = 0

(k + 3)(k ndash 1) = 0 k = ndash3 1

3 (a) f ( x) = 2( x ndash 3)2 + k

p is the x-coordinate of the minimum point

Therefore p = 3

(b) k is the minimum value of f ( x)

Therefore k = ndash4

(c) The equation of the axis of symmetry is x = 3

4 f ( x) = 3 x2 ndash 2 x + p

a = 3 b = ndash2 c = p

Since the graph does not intersect the x-axis

b2 ndash 4ac lt 0

(ndash2)2 ndash 4(3)( p) lt 0

4 ndash 12 p lt 0

4 lt 12 p

13

lt p

p gt13

5 f ( x) = 2 x2 ndash 12 x + 5

= 2( x2 ndash 6 x) + 5

= 2[( x ndash 3)2 ndash 32] + 5

= 2( x ndash 3)2 ndash 18 + 5

= 2( x ndash 3)2 ndash 13

there4 p = 2 q = ndash3 ndashr + 1 = ndash13

r = 14

6 (a) f ( x) = ndash x2 + 6 px + 1 ndash 4 p2

= ndash( x2 ndash 6 px) + 1 ndash 4 p2

= ndash983091 x2 ndash 6 px + 983089 6 p ndashndashndash

2 983090

2

ndash 983089 6 p ndashndashndash

2 983090

2

983092 + 1 ndash 4 p2

= ndash[( x ndash 3 p)2 ndash 9 p2] + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 9 p2 + 1 ndash 4 p2

= ndash ( x ndash 3 p)2 + 1 + 5 p2

The maximum value given is q2 ndash p

Therefore q2 ndash p = 1 + 5 p2

5 p2 + p + 1 = q2

(b) x = 3 is symmetrical axis 3 p = 3

p = 1

Substitute p = 1 into 5 p2 + p + 1 = q2

5(1)2 + 1 + 1 = q2

q2 = 7

q = plusmn9831059831067 Hence p = 1 q = plusmn9831059831067

7 4t (t + 1) ndash 3t 2 + 12 983086 0

4t 2 + 4t ndash 3t 2 + 12 983086 0

t 2 + 4t + 12 983086 0

(t + 2)(t + 6) 983086 0

0 ndash2 ndash6x

f (x )

The range of values of t is t 983084 ndash6 or t 983086 ndash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 616

6

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 x-coordinate of maximum point = ndash 4 + 0 ndashndashndashndashndashndash

2 = ndash2

Equation of the axis of symmetry is x = ndash2

2 Let x be the x-coordinate of A

0 + x

ndashndashndashndashndash2

= 3

x = 6

The coordinates of A are (6 4)

3 Let x be the x-coordinate of A

x + 6 ndashndashndashndashndash

2 = 2

x = 4 ndash 6

x = ndash2

The coordinates of A are (ndash2 0)

4 x-coordinate of A =0 + 8

ndashndashndashndashndash2

= 4

Let C be the centre of OB

4

5

A

C O

AC 2

= OA2

ndash OC 2

= 52 ndash 42

= 9

AC = 3

The coordinates of A are (4 3)

5 x-coordinate of minimum point =0 + 4

ndashndashndashndashndash2

= 2

x-coordinate of minimum point for the image is ndash2

6 (a) y = ( x ndash p)2 + q and minimum point is (2 ndash1)

Hence p = 2 and q = ndash1

(b) y = ( x ndash 2)2 ndash 1

When y = 0

( x ndash 2)2 ndash 1 = 0

( x ndash 2)2 = 1

x ndash 2 = plusmn1

x = plusmn1 + 2

= 1 3

Hence A is (1 0) and B is (3 0)

7 f ( x) = 2k + 1 ndash 983089 x + 1mdash2 p983090

2

Given (ndash1 k ) is the maximum point

Therefore 2k + 1 = k

k = ndash1

x +1mdash2 p = 0 when x = ndash1

ndash1 + 1mdash2 p = 0

1mdash2 p = 1

p = 2

8 Given ( p 2q) is the minimum point of

y = 2 x2 ndash 4 x + 5

= 2( x2 ndash 2 x) + 5

= 2( x2 ndash 2 x + 12 ndash 12) + 5

= 2[( x ndash 1)2 ndash 1] + 5

= 2( x ndash 1)2 ndash 2 + 5

= 2( x ndash 1)2 + 3

2q = 3

q =3mdash2

p ndash 1 = 0

p = 1

9 (a) Since (1 4) is the point on y = x2 ndash 2kx + 1

substitute x = 1 y = 4 into the equation

4 = 12 ndash 2k (1) + 1

2k = ndash2

k = ndash1

(b) y = x2 ndash 2(ndash1) x + 1

= x2 + 2 x + 1

= ( x + 1)2

Minimum value of y is 0

10 f ( x) = ndash x2 ndash 8 x + k ndash 1

= ndash( x2 + 8 x) + k ndash 1

= ndash( x2 + 8 x + 42 ndash 42) + k ndash 1

= ndash[( x + 4)2 ndash 16] + k ndash 1

= ndash( x + 4)2 + 16 + k ndash 1

= ndash( x + 4)2 + 15 + k

Since 13 is the maximum value

then 15 + k = 13

k = ndash2

11 f ( x) = 2 x2 ndash 6 x + 7

= 2( x2 ndash 3 x) + 7

= 2983091 x2 ndash 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 + 7

= 2983091983089 x ndash3mdash2 983090

2

ndash9mdash4 983092 + 7

= 2983089 x ndash3mdash2 983090

2

ndash9mdash2

+ 7

= 2983089 x ndash3mdash2 983090

2

+5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 716

7

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

The minimum point is (3mdash2

5mdash2

)

x ndash1 0 3

f ( x) 15 7 7

ndash ndash

3

5322

0

7

15

x

f (x )

ndash1

The range is5mdash2

983100 f ( x) 983100 15

12 f ( x) = 5 ndash 4 x ndash 2 x2

= ndash2 x2 ndash 4 x + 5

= ndash2( x2 + 2 x) + 5

= ndash2( x2 + 2 x + 12 ndash 12) + 5

= ndash2[( x + 1)2 ndash 1] + 5

= ndash2( x + 1)2 + 2 + 5

= ndash2( x + 1)2 + 7

When f ( x) = ndash1

ndash2( x + 1)2 + 7 = ndash1

ndash2( x + 1)2 = ndash8

( x + 1)2 = 4

x + 1 = plusmn2

x = plusmn2 ndash 1

= ndash3 or 1

13 y = ( x ndash 3)2 ndash 4

Minimum point is (3 ndash4)

x ndash1 0 1 5 6

y 12 5 0 0 5

x 0 1 5 6

5

12

ndash1

(3 ndash4)

y

The range is ndash 4983100 y 983100 12

14 y = ndash x2 + 4 x ndash 5

= ndash( x2 ndash 4 x) ndash 5

= ndash( x2 ndash 4 x + 22 ndash 22) ndash 5

= ndash [( x ndash 2)2 ndash 4] ndash 5

= ndash( x ndash 2)2 + 4 ndash 5

= ndash( x ndash 2)2 ndash 1

Maximum point is (2 ndash1)

x ndash1 0 3

y ndash10 ndash5 ndash2

x

0 3(2 ndash1)

ndash1

ndash5

ndash10

y

The range is ndash10 983100 y 983100 ndash1

15 y = 9 ndash ( x ndash 3)2Maximum point is (3 9)

x ndash1 0 6 7

y 7 0 0 7

x

y

0 ndash1 6

(3 9)

7

7

The range is 0 983100 y 983100 9

16 3 x2 983084 x

3 x2

ndash x 983084 0 x(3 x ndash 1)983084 0

ndash

13

0 x

f (x )

The range is 0 983084 x 983084 1mdash3

17 3 x ndash x

2

ndashndashndashndashndashndash2 983084 1

3 x ndash x2 983084 2

ndash x2 + 3 x ndash 2 983084 0

x2 ndash 3 x + 2 983086 0

( x ndash 1)( x ndash 2) 983086 0

20 x

f (x )

1

The range is x 983084

1 or x 983086

2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 816

8

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

18 Given that x ndash 2 y = 1

there4 x = 1 + 2 y 983089

Substitute 983089 into y + 3983102 2 xy

y + 3983102 2(1 + 2 y) y

y + 3983102 2 y + 4 y2

0983102 4 y2 + y ndash 3

0983102 (4 y ndash 3)( y + 1)

3 ndash

4

0 y

f (y )

ndash1

The range is ndash1 983100 y 983100 3mdash4

19 f ( x) 983084 0

5 x2 ndash 4 x ndash 1 983084 0

(5 x + 1)( x ndash 1) 983084 0

1 ndash ndash

5

0 x

f (x )

1

The range is ndash1mdash5

983084 x 983084 1

20 g( x) 983086 0

4 x2 ndash 9 983086 0(2 x + 3)(2 x ndash 3) 983086 0

3 ndash ndash

23 ndash

2

0 x

g (x )

The range is x 983084 ndash3mdash2

or x 983086 3mdash2

21 (a) Since y = 3 x

2

ndash 9 x + t 983086

0 for all values of x andit does not have root when y = 0

Then b2 ndash 4ac 983084 0 for 3 x2 ndash 9 x + t = 0

(ndash9)2 ndash 4(3)(t ) 983084 0

81 ndash 12t 983084 0

ndash12t 983084 ndash81

t 983086 ndash81 ndashndashndashndash ndash12

t 983086 27

ndashndashndash4

(b) Let f ( x) = a( x ndash b)2 + c

f ( x) = a( x ndash 2)2 + 0

f ( x) = a( x ndash 2)2

Substitute x = 0 f ( x) = ndash3 into the equation

ndash3 = a(0 ndash 2)2

= 4a

a = ndash3mdash4

Hence the quadratic function is

f ( x) = ndash3mdash4

( x ndash 2)2

22 (a) Given 2 x2 ndash 3 y + 2 = 0

3 y = 2 x2 + 2

y =2 x2

ndashndashndash3

+2mdash3

983089

Substitute 983089 into y 983084 10

2 x2

ndashndashndash

3

+2mdash

3

983084 10

2 x2 + 2 983084 30

2 x2 ndash 28 983084 0

x2 ndash 14 983084 0

( x + 98310598310698310614 )( x ndash 98310598310698310614 ) 983084 0

14 ndash14

0 x

f (x )

The range is ndash98310598310698310614 983084 x 983084 98310598310698310614

(b) 2 x2 ndash 8 x ndash 10 = 2( x2 ndash 4 x) ndash 10

= 2( x2 ndash 4 x + 22 ndash 22) ndash 10

= 2[( x ndash 2)2 ndash 4] ndash 10

= 2( x ndash 2)2 ndash 8 ndash 10

= 2( x ndash 2)2 ndash 18

Therefore a = 2 b = ndash2 and c = ndash18

Hence the minimum value of 2 x2 ndash 8 x ndash 10 is

ndash18

23 5 ndash 2 x 983100 0 3 x2 ndash 4 x 983086 ndash1

3 x2

ndash 4 x + 1983086

0(3 x ndash 1)( x ndash 1) 983086 0

11 ndash

3

0 x

f (x )

x 983084 1mdash3

x 983086 1

ndash2 x 983100

ndash5 x 983102

ndash5 ndashndashndash ndash2

x 983102 5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 6: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 616

6

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 x-coordinate of maximum point = ndash 4 + 0 ndashndashndashndashndashndash

2 = ndash2

Equation of the axis of symmetry is x = ndash2

2 Let x be the x-coordinate of A

0 + x

ndashndashndashndashndash2

= 3

x = 6

The coordinates of A are (6 4)

3 Let x be the x-coordinate of A

x + 6 ndashndashndashndashndash

2 = 2

x = 4 ndash 6

x = ndash2

The coordinates of A are (ndash2 0)

4 x-coordinate of A =0 + 8

ndashndashndashndashndash2

= 4

Let C be the centre of OB

4

5

A

C O

AC 2

= OA2

ndash OC 2

= 52 ndash 42

= 9

AC = 3

The coordinates of A are (4 3)

5 x-coordinate of minimum point =0 + 4

ndashndashndashndashndash2

= 2

x-coordinate of minimum point for the image is ndash2

6 (a) y = ( x ndash p)2 + q and minimum point is (2 ndash1)

Hence p = 2 and q = ndash1

(b) y = ( x ndash 2)2 ndash 1

When y = 0

( x ndash 2)2 ndash 1 = 0

( x ndash 2)2 = 1

x ndash 2 = plusmn1

x = plusmn1 + 2

= 1 3

Hence A is (1 0) and B is (3 0)

7 f ( x) = 2k + 1 ndash 983089 x + 1mdash2 p983090

2

Given (ndash1 k ) is the maximum point

Therefore 2k + 1 = k

k = ndash1

x +1mdash2 p = 0 when x = ndash1

ndash1 + 1mdash2 p = 0

1mdash2 p = 1

p = 2

8 Given ( p 2q) is the minimum point of

y = 2 x2 ndash 4 x + 5

= 2( x2 ndash 2 x) + 5

= 2( x2 ndash 2 x + 12 ndash 12) + 5

= 2[( x ndash 1)2 ndash 1] + 5

= 2( x ndash 1)2 ndash 2 + 5

= 2( x ndash 1)2 + 3

2q = 3

q =3mdash2

p ndash 1 = 0

p = 1

9 (a) Since (1 4) is the point on y = x2 ndash 2kx + 1

substitute x = 1 y = 4 into the equation

4 = 12 ndash 2k (1) + 1

2k = ndash2

k = ndash1

(b) y = x2 ndash 2(ndash1) x + 1

= x2 + 2 x + 1

= ( x + 1)2

Minimum value of y is 0

10 f ( x) = ndash x2 ndash 8 x + k ndash 1

= ndash( x2 + 8 x) + k ndash 1

= ndash( x2 + 8 x + 42 ndash 42) + k ndash 1

= ndash[( x + 4)2 ndash 16] + k ndash 1

= ndash( x + 4)2 + 16 + k ndash 1

= ndash( x + 4)2 + 15 + k

Since 13 is the maximum value

then 15 + k = 13

k = ndash2

11 f ( x) = 2 x2 ndash 6 x + 7

= 2( x2 ndash 3 x) + 7

= 2983091 x2 ndash 3 x + 983089 3mdash2 983090

2

ndash 983089 3mdash2 983090

2

983092 + 7

= 2983091983089 x ndash3mdash2 983090

2

ndash9mdash4 983092 + 7

= 2983089 x ndash3mdash2 983090

2

ndash9mdash2

+ 7

= 2983089 x ndash3mdash2 983090

2

+5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 716

7

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

The minimum point is (3mdash2

5mdash2

)

x ndash1 0 3

f ( x) 15 7 7

ndash ndash

3

5322

0

7

15

x

f (x )

ndash1

The range is5mdash2

983100 f ( x) 983100 15

12 f ( x) = 5 ndash 4 x ndash 2 x2

= ndash2 x2 ndash 4 x + 5

= ndash2( x2 + 2 x) + 5

= ndash2( x2 + 2 x + 12 ndash 12) + 5

= ndash2[( x + 1)2 ndash 1] + 5

= ndash2( x + 1)2 + 2 + 5

= ndash2( x + 1)2 + 7

When f ( x) = ndash1

ndash2( x + 1)2 + 7 = ndash1

ndash2( x + 1)2 = ndash8

( x + 1)2 = 4

x + 1 = plusmn2

x = plusmn2 ndash 1

= ndash3 or 1

13 y = ( x ndash 3)2 ndash 4

Minimum point is (3 ndash4)

x ndash1 0 1 5 6

y 12 5 0 0 5

x 0 1 5 6

5

12

ndash1

(3 ndash4)

y

The range is ndash 4983100 y 983100 12

14 y = ndash x2 + 4 x ndash 5

= ndash( x2 ndash 4 x) ndash 5

= ndash( x2 ndash 4 x + 22 ndash 22) ndash 5

= ndash [( x ndash 2)2 ndash 4] ndash 5

= ndash( x ndash 2)2 + 4 ndash 5

= ndash( x ndash 2)2 ndash 1

Maximum point is (2 ndash1)

x ndash1 0 3

y ndash10 ndash5 ndash2

x

0 3(2 ndash1)

ndash1

ndash5

ndash10

y

The range is ndash10 983100 y 983100 ndash1

15 y = 9 ndash ( x ndash 3)2Maximum point is (3 9)

x ndash1 0 6 7

y 7 0 0 7

x

y

0 ndash1 6

(3 9)

7

7

The range is 0 983100 y 983100 9

16 3 x2 983084 x

3 x2

ndash x 983084 0 x(3 x ndash 1)983084 0

ndash

13

0 x

f (x )

The range is 0 983084 x 983084 1mdash3

17 3 x ndash x

2

ndashndashndashndashndashndash2 983084 1

3 x ndash x2 983084 2

ndash x2 + 3 x ndash 2 983084 0

x2 ndash 3 x + 2 983086 0

( x ndash 1)( x ndash 2) 983086 0

20 x

f (x )

1

The range is x 983084

1 or x 983086

2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 816

8

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

18 Given that x ndash 2 y = 1

there4 x = 1 + 2 y 983089

Substitute 983089 into y + 3983102 2 xy

y + 3983102 2(1 + 2 y) y

y + 3983102 2 y + 4 y2

0983102 4 y2 + y ndash 3

0983102 (4 y ndash 3)( y + 1)

3 ndash

4

0 y

f (y )

ndash1

The range is ndash1 983100 y 983100 3mdash4

19 f ( x) 983084 0

5 x2 ndash 4 x ndash 1 983084 0

(5 x + 1)( x ndash 1) 983084 0

1 ndash ndash

5

0 x

f (x )

1

The range is ndash1mdash5

983084 x 983084 1

20 g( x) 983086 0

4 x2 ndash 9 983086 0(2 x + 3)(2 x ndash 3) 983086 0

3 ndash ndash

23 ndash

2

0 x

g (x )

The range is x 983084 ndash3mdash2

or x 983086 3mdash2

21 (a) Since y = 3 x

2

ndash 9 x + t 983086

0 for all values of x andit does not have root when y = 0

Then b2 ndash 4ac 983084 0 for 3 x2 ndash 9 x + t = 0

(ndash9)2 ndash 4(3)(t ) 983084 0

81 ndash 12t 983084 0

ndash12t 983084 ndash81

t 983086 ndash81 ndashndashndashndash ndash12

t 983086 27

ndashndashndash4

(b) Let f ( x) = a( x ndash b)2 + c

f ( x) = a( x ndash 2)2 + 0

f ( x) = a( x ndash 2)2

Substitute x = 0 f ( x) = ndash3 into the equation

ndash3 = a(0 ndash 2)2

= 4a

a = ndash3mdash4

Hence the quadratic function is

f ( x) = ndash3mdash4

( x ndash 2)2

22 (a) Given 2 x2 ndash 3 y + 2 = 0

3 y = 2 x2 + 2

y =2 x2

ndashndashndash3

+2mdash3

983089

Substitute 983089 into y 983084 10

2 x2

ndashndashndash

3

+2mdash

3

983084 10

2 x2 + 2 983084 30

2 x2 ndash 28 983084 0

x2 ndash 14 983084 0

( x + 98310598310698310614 )( x ndash 98310598310698310614 ) 983084 0

14 ndash14

0 x

f (x )

The range is ndash98310598310698310614 983084 x 983084 98310598310698310614

(b) 2 x2 ndash 8 x ndash 10 = 2( x2 ndash 4 x) ndash 10

= 2( x2 ndash 4 x + 22 ndash 22) ndash 10

= 2[( x ndash 2)2 ndash 4] ndash 10

= 2( x ndash 2)2 ndash 8 ndash 10

= 2( x ndash 2)2 ndash 18

Therefore a = 2 b = ndash2 and c = ndash18

Hence the minimum value of 2 x2 ndash 8 x ndash 10 is

ndash18

23 5 ndash 2 x 983100 0 3 x2 ndash 4 x 983086 ndash1

3 x2

ndash 4 x + 1983086

0(3 x ndash 1)( x ndash 1) 983086 0

11 ndash

3

0 x

f (x )

x 983084 1mdash3

x 983086 1

ndash2 x 983100

ndash5 x 983102

ndash5 ndashndashndash ndash2

x 983102 5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 7: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 716

7

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

The minimum point is (3mdash2

5mdash2

)

x ndash1 0 3

f ( x) 15 7 7

ndash ndash

3

5322

0

7

15

x

f (x )

ndash1

The range is5mdash2

983100 f ( x) 983100 15

12 f ( x) = 5 ndash 4 x ndash 2 x2

= ndash2 x2 ndash 4 x + 5

= ndash2( x2 + 2 x) + 5

= ndash2( x2 + 2 x + 12 ndash 12) + 5

= ndash2[( x + 1)2 ndash 1] + 5

= ndash2( x + 1)2 + 2 + 5

= ndash2( x + 1)2 + 7

When f ( x) = ndash1

ndash2( x + 1)2 + 7 = ndash1

ndash2( x + 1)2 = ndash8

( x + 1)2 = 4

x + 1 = plusmn2

x = plusmn2 ndash 1

= ndash3 or 1

13 y = ( x ndash 3)2 ndash 4

Minimum point is (3 ndash4)

x ndash1 0 1 5 6

y 12 5 0 0 5

x 0 1 5 6

5

12

ndash1

(3 ndash4)

y

The range is ndash 4983100 y 983100 12

14 y = ndash x2 + 4 x ndash 5

= ndash( x2 ndash 4 x) ndash 5

= ndash( x2 ndash 4 x + 22 ndash 22) ndash 5

= ndash [( x ndash 2)2 ndash 4] ndash 5

= ndash( x ndash 2)2 + 4 ndash 5

= ndash( x ndash 2)2 ndash 1

Maximum point is (2 ndash1)

x ndash1 0 3

y ndash10 ndash5 ndash2

x

0 3(2 ndash1)

ndash1

ndash5

ndash10

y

The range is ndash10 983100 y 983100 ndash1

15 y = 9 ndash ( x ndash 3)2Maximum point is (3 9)

x ndash1 0 6 7

y 7 0 0 7

x

y

0 ndash1 6

(3 9)

7

7

The range is 0 983100 y 983100 9

16 3 x2 983084 x

3 x2

ndash x 983084 0 x(3 x ndash 1)983084 0

ndash

13

0 x

f (x )

The range is 0 983084 x 983084 1mdash3

17 3 x ndash x

2

ndashndashndashndashndashndash2 983084 1

3 x ndash x2 983084 2

ndash x2 + 3 x ndash 2 983084 0

x2 ndash 3 x + 2 983086 0

( x ndash 1)( x ndash 2) 983086 0

20 x

f (x )

1

The range is x 983084

1 or x 983086

2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 816

8

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

18 Given that x ndash 2 y = 1

there4 x = 1 + 2 y 983089

Substitute 983089 into y + 3983102 2 xy

y + 3983102 2(1 + 2 y) y

y + 3983102 2 y + 4 y2

0983102 4 y2 + y ndash 3

0983102 (4 y ndash 3)( y + 1)

3 ndash

4

0 y

f (y )

ndash1

The range is ndash1 983100 y 983100 3mdash4

19 f ( x) 983084 0

5 x2 ndash 4 x ndash 1 983084 0

(5 x + 1)( x ndash 1) 983084 0

1 ndash ndash

5

0 x

f (x )

1

The range is ndash1mdash5

983084 x 983084 1

20 g( x) 983086 0

4 x2 ndash 9 983086 0(2 x + 3)(2 x ndash 3) 983086 0

3 ndash ndash

23 ndash

2

0 x

g (x )

The range is x 983084 ndash3mdash2

or x 983086 3mdash2

21 (a) Since y = 3 x

2

ndash 9 x + t 983086

0 for all values of x andit does not have root when y = 0

Then b2 ndash 4ac 983084 0 for 3 x2 ndash 9 x + t = 0

(ndash9)2 ndash 4(3)(t ) 983084 0

81 ndash 12t 983084 0

ndash12t 983084 ndash81

t 983086 ndash81 ndashndashndashndash ndash12

t 983086 27

ndashndashndash4

(b) Let f ( x) = a( x ndash b)2 + c

f ( x) = a( x ndash 2)2 + 0

f ( x) = a( x ndash 2)2

Substitute x = 0 f ( x) = ndash3 into the equation

ndash3 = a(0 ndash 2)2

= 4a

a = ndash3mdash4

Hence the quadratic function is

f ( x) = ndash3mdash4

( x ndash 2)2

22 (a) Given 2 x2 ndash 3 y + 2 = 0

3 y = 2 x2 + 2

y =2 x2

ndashndashndash3

+2mdash3

983089

Substitute 983089 into y 983084 10

2 x2

ndashndashndash

3

+2mdash

3

983084 10

2 x2 + 2 983084 30

2 x2 ndash 28 983084 0

x2 ndash 14 983084 0

( x + 98310598310698310614 )( x ndash 98310598310698310614 ) 983084 0

14 ndash14

0 x

f (x )

The range is ndash98310598310698310614 983084 x 983084 98310598310698310614

(b) 2 x2 ndash 8 x ndash 10 = 2( x2 ndash 4 x) ndash 10

= 2( x2 ndash 4 x + 22 ndash 22) ndash 10

= 2[( x ndash 2)2 ndash 4] ndash 10

= 2( x ndash 2)2 ndash 8 ndash 10

= 2( x ndash 2)2 ndash 18

Therefore a = 2 b = ndash2 and c = ndash18

Hence the minimum value of 2 x2 ndash 8 x ndash 10 is

ndash18

23 5 ndash 2 x 983100 0 3 x2 ndash 4 x 983086 ndash1

3 x2

ndash 4 x + 1983086

0(3 x ndash 1)( x ndash 1) 983086 0

11 ndash

3

0 x

f (x )

x 983084 1mdash3

x 983086 1

ndash2 x 983100

ndash5 x 983102

ndash5 ndashndashndash ndash2

x 983102 5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 8: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 816

8

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

18 Given that x ndash 2 y = 1

there4 x = 1 + 2 y 983089

Substitute 983089 into y + 3983102 2 xy

y + 3983102 2(1 + 2 y) y

y + 3983102 2 y + 4 y2

0983102 4 y2 + y ndash 3

0983102 (4 y ndash 3)( y + 1)

3 ndash

4

0 y

f (y )

ndash1

The range is ndash1 983100 y 983100 3mdash4

19 f ( x) 983084 0

5 x2 ndash 4 x ndash 1 983084 0

(5 x + 1)( x ndash 1) 983084 0

1 ndash ndash

5

0 x

f (x )

1

The range is ndash1mdash5

983084 x 983084 1

20 g( x) 983086 0

4 x2 ndash 9 983086 0(2 x + 3)(2 x ndash 3) 983086 0

3 ndash ndash

23 ndash

2

0 x

g (x )

The range is x 983084 ndash3mdash2

or x 983086 3mdash2

21 (a) Since y = 3 x

2

ndash 9 x + t 983086

0 for all values of x andit does not have root when y = 0

Then b2 ndash 4ac 983084 0 for 3 x2 ndash 9 x + t = 0

(ndash9)2 ndash 4(3)(t ) 983084 0

81 ndash 12t 983084 0

ndash12t 983084 ndash81

t 983086 ndash81 ndashndashndashndash ndash12

t 983086 27

ndashndashndash4

(b) Let f ( x) = a( x ndash b)2 + c

f ( x) = a( x ndash 2)2 + 0

f ( x) = a( x ndash 2)2

Substitute x = 0 f ( x) = ndash3 into the equation

ndash3 = a(0 ndash 2)2

= 4a

a = ndash3mdash4

Hence the quadratic function is

f ( x) = ndash3mdash4

( x ndash 2)2

22 (a) Given 2 x2 ndash 3 y + 2 = 0

3 y = 2 x2 + 2

y =2 x2

ndashndashndash3

+2mdash3

983089

Substitute 983089 into y 983084 10

2 x2

ndashndashndash

3

+2mdash

3

983084 10

2 x2 + 2 983084 30

2 x2 ndash 28 983084 0

x2 ndash 14 983084 0

( x + 98310598310698310614 )( x ndash 98310598310698310614 ) 983084 0

14 ndash14

0 x

f (x )

The range is ndash98310598310698310614 983084 x 983084 98310598310698310614

(b) 2 x2 ndash 8 x ndash 10 = 2( x2 ndash 4 x) ndash 10

= 2( x2 ndash 4 x + 22 ndash 22) ndash 10

= 2[( x ndash 2)2 ndash 4] ndash 10

= 2( x ndash 2)2 ndash 8 ndash 10

= 2( x ndash 2)2 ndash 18

Therefore a = 2 b = ndash2 and c = ndash18

Hence the minimum value of 2 x2 ndash 8 x ndash 10 is

ndash18

23 5 ndash 2 x 983100 0 3 x2 ndash 4 x 983086 ndash1

3 x2

ndash 4 x + 1983086

0(3 x ndash 1)( x ndash 1) 983086 0

11 ndash

3

0 x

f (x )

x 983084 1mdash3

x 983086 1

ndash2 x 983100

ndash5 x 983102

ndash5 ndashndashndash ndash2

x 983102 5mdash2

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 9: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 916

9

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

5ndash

2

1ndash

3

1

x 5mdash2

x x 11mdash3

The range is x 983102 5mdash2

24 5 983084 f ( x) 983084 9

5 983084 5 ndash 3 x + x2 983084 9

5 983084 5 ndash 3 x + x2 5 ndash 3 x + x2 983084 9

5 ndash 3 x + x2 ndash 9 983084 0

x2 ndash 3 x ndash 4 983084 0

( x ndash 4)( x + 1) 983084 0

4 ndash1 0 x

f (x )

ndash1 983084 x 983084 4

0 983084 x2 ndash 3 x

0 983084 x( x ndash 3)

30 x

f (x )

x 983084 0 x 983086 3

0 ndash1 43

x lt 0 x gt 3

ndash1 lt x lt 4

The range is ndash1983084

x 983084

0 or 3983084

x 983084

4

25 1 983102 x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x ndash 3 983086 ndash3

x2 + 3 x 983086 0

x( x + 3) 983086 0

ndash3 0 x

f (x )

x 983084 ndash3 x 983086 0

1 983102 x2 + 3 x ndash 3

0 983102 x2 + 3 x ndash 4

0 983102 ( x + 4)( x ndash 1)

1 ndash4 0 x

f (x )

ndash 4 983100 x 983100 1

ndash4

x lt ndash3 x gt 0

ndash4 x 1

ndash3 0 1

The range is ndash 4983100 x 983084 ndash3 or 0 983084 x 983100 1

26 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 10 983084 ndash 4 x2 + 5 x ndash 10 983086 4

x2 + 5 x ndash 14 983086 0

( x + 7)( x ndash 2) 983086 0

ndash7 20

x

f (x )

x 983084 ndash7 x 983086 2

x2 + 5 x ndash 6 983084 0

( x + 6)( x ndash 1) 983084 0

ndash6 10

x

f (x )

ndash6 983084 x 983084 1

The ranges are ndash6 lt x lt 1 x lt ndash7 x gt 2

27 f ( x) = (r + 1) x2 + 2rx + r ndash 3

Given that f ( x) does not intersect the x-axis

therefore b2 ndash 4ac 983084 0

(2r)2 ndash 4(r + 1)(r ndash 3) 983084 0

4r2 ndash 4(r2 ndash 2r ndash 3) 983084 0

4r2 ndash 4r2 + 8r + 12 983084 0

2r + 3 983084 0

r 983084 ndash3mdash2

28 Given that f ( x) = 9 ndash 6 x + 2 x2 does not have real root

when f ( x) = k

there4 9 ndash 6 x + 2 x2 = k

2 x2 ndash 6 x + 9 ndash k = 0

Use b2 ndash 4ac 983084 0

(ndash 6)2 ndash 4(2)(9 ndash k ) 983084 0

36 ndash 72 + 8k 983084 0

ndash36 + 8k 983084 0 8k 983084 36

k 983084 36

ndashndashndash8

k 983084 9mdash2

29 2 x2 + 10 x ndash 20 983100 8

ndash8 983100 2 x2 + 10 x ndash 20 983100 8

ndash8983100 2 x2 + 10 x ndash 20 2 x2 + 10 x ndash 20 983100 8

2 x2 + 10 x ndash 28 983100 0

x2 + 5 x ndash 14 983100 0

( x + 7)( x ndash 2) 983100 0

ndash7 20

x

f (x )

ndash7 983100 x 983100 2

0983100 2 x2 + 10 x ndash 12

0983100 x2 + 5 x ndash 6

0983100 ( x + 6)( x ndash 1)

ndash6 10

x

f (x )

x 983100 ndash6 x 983102 1

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 10: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1016

10

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

x ndash6 x 1

ndash7 x 2

ndash6 ndash7 1 2

The range is ndash7 983100 x 983100 ndash6 or 1 983100 x 983100 2

30 y = x2 + 5 x ndash 6

= x2 + 5 x + 983089 5mdash2 983090

2

ndash 983089 5mdash2 983090

2

ndash 6

= 983089 x + 5mdash2 983090

2

ndash25

ndashndashndash4

ndash 6

= 983089 x + 5mdash2 983090

2

ndash49

ndashndashndash4

The minimum point is (ndash5mdash2

ndash49

ndashndashndash4

)

x ndash13 ndash 6 0 1 3

y 98 0 ndash 6 0 18

x 0

ndash6 ndash13 ndash6

18

98

1 3

) ) ndash ndash ndash ndash

5

2

49

4

y

The range is ndash49

ndashndashndash4

983084 y 983084 98

31 y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + (2 ndash n) x + 16

= ndash[ x2 ndash (2 ndash n) x] + 16

= ndash983091 x2 ndash (2 ndash n) x + 983089 2 ndash n ndashndashndashndashndash

2 983090

2

ndash 983089 2 ndash n ndashndashndashndashndash

2 983090

2

983092 + 16

= ndash

983091983089 x ndash

2 ndash n ndashndashndashndashndash

2 983090

2

ndash

9830892 ndash n

ndashndashndashndashndash2 983090

2

983092 + 16

= ndash983089 x ndash 2 ndash n ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash n ndashndashndashndashndash

2 983090

2

+ 16

Since y = x2 ndash 3k and y = ndash x2 + 2 x ndash nx + 16 have the

same axis of symmetry that is x = 0

then ndash2 ndash n

ndashndashndashndashndash2

= 0

2 ndash n = 0

n = 2

The equation y = ndash x2 + 2 x ndash nx + 16

= ndash x2 + 2 x ndash 2 x + 16

= ndash983089 x ndash 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 983089 2 ndash 2 ndashndashndashndashndash

2 983090

2

+ 16

= ndash x2 + 16

When y = 0

ndash x2

+ 16 = 0 x2 = 16

x = plusmn98310598310698310616

= plusmn4

Therefore B = (4 0)

Substitute x = 4 y = 0 into y = x2 ndash 3k

0 = 42 ndash 3k

0 = 16 ndash 3k

k =16

ndashndashndash3

32 (a) y = ndash2[(3k ndash x)2 + n] ndash 10 has a maximum point

(4 11)

y = ndash2(3k ndash x)2 ndash 2n ndash 10

there4 3k ndash 4 = 0 and ndash2n ndash 10 = 11

k =4mdash3

ndash2n = 21

n = ndash21

ndashndashndash2

(b) Substitute k =4mdash3

and n = ndash21

ndashndashndash2

into

y = ndash2[(3k ndash x)2 + n] ndash 10

y = ndash2983091(4 ndash x)2 ndash21

ndashndashndash2 983092 ndash 10

= ndash2(4 ndash x)2 + 21 ndash 10

= ndash2(4 ndash x)2

+ 11 When y = 0

ndash2(4 ndash x)2 + 11= 0

2(4 ndash x)2 = 11

(4 ndash x)2 =11

ndashndashndash2

4 ndash x = plusmn98310598310698310698310611 ndashndashndash

2

x = 4 plusmn 98310598310698310698310611 ndashndashndash

2

= 4 ndash 98310598310698310698310611 ndashndashndash

2 4 + 98310598310698310698310611

ndashndashndash2

= 1655 6345

(c) y = ndash2(4 ndash x)2 + 11

The maximum point is (4 11)

x ndash1 0 5

y ndash39 ndash21 9

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 11: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1116

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 12: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1216

12

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

1 y = 3(2 x ndash 1)( x + 1) ndash x(4 x ndash 5) + 2

= 3(2 x2 + x ndash 1) ndash 4 x2 + 5 x + 2

= 6 x2 + 3 x ndash 3 ndash 4 x2 + 5 x + 2

= 2 x2 + 8 x ndash 1

= 2( x2 + 4 x) ndash 1

= 2( x2 + 4 x + 22 ndash 22) ndash 1

= 2[( x + 2)2 ndash 4] ndash 1

= 2( x + 2)2 ndash 8 ndash 1

= 2( x + 2)2 ndash 9

Since a = 2 983086 0 therefore the minimum value of

y is ndash9

When y = 0 2( x + 2)2 ndash 9 = 0

( x + 2)2 =9mdash2

x + 2 = plusmn9831059831069831069mdash2 x = plusmn9831059831069831069mdash2 ndash 2

= 9831059831069831069mdash2 ndash 2 or ndash9831059831069831069mdash2 ndash 2

= 01213 or ndash 4121

When x = 0 y = 2(2)2 ndash 9

= ndash1

The minimum point is (ndash2 ndash9)

ndash1 ndash4121

(ndash2 ndash9)

012130

y

x

2 5 983084 Area of rectangle ABCD 983084 21

5 983084 ( x + 3)( x ndash 1) 983084 21

5 983084 ( x + 3)( x ndash 1)

5 983084 x2 + 2 x ndash 3

0 983084 x2 + 2 x ndash 8

0 983084 ( x + 4)( x ndash 2)

0 ndash4 2

f (x )

x

x 983084 ndash 4 x gt 2

( x + 3)( x ndash 1) 983084 21

x2 + 2 x ndash 3 983084 21

x2 + 2 x ndash 24 983084 0

( x ndash 4)( x + 6) 983084 0

0 ndash6 4

f (x )

x

ndash 6 983084 x 983084 4

ndash4

ndash6 lt x lt 4

x lt ndash4 x gt 2

2

x

ndash6 4

The range is ndash 6983084 x 983084 ndash 4 or 2 983084 x 983084 4

3 (a) p =1 + 5

ndashndashndashndashndash2

= 3

(b) y = ( x ndash 1)( x ndash 5) = x2 ndash 6 x + 5

4 y = a( x ndash 2)2 + 1

Substitute x = 0 y = 9 into the equation

9 = a(ndash2)2 + 1

8 = 4a

a = 2

Therefore the quadratic function is

f ( x) = 2( x ndash 2)2 + 1

5 x2

+ (1 + k ) x ndash k 2

+ 1 = 0For quadratic equation to have real roots

b2 ndash 4ac 983102 0

(1 + k )2 ndash 4(1)(1 ndash k 2) 983102 0

1 + 2k + k 2 ndash 4 + 4k 2 983102 0

5k 2 + 2k ndash 3 983102 0

(5k ndash 3)(k + 1) 983102 0

0 ndash1 3 ndash

5

f (k )

k

The range of values of k is k 983100 ndash1 or k 983102 3mdash5

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 13: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1316

13

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

6 y = x2 + 7 x ndash 8 ndash 2k

For y to be positive for all real values of x there is

no roots for y = 0

Therefore b2 ndash 4ac 983084 0

72 ndash 4(1)(ndash8 ndash 2k ) 983084 0

49 + 32 + 8k 983084 0

8k 983084 ndash81

k 983084 ndash81

ndashndashndash8

Alternative

y = x2 + 7 x ndash 8 ndash 2k

= x2 + 7 x + 983089 7mdash2 983090

2

ndash 983089 7mdash2 983090

2

ndash 8 ndash 2k

= 983089 x +7mdash2 983090

2

ndash49

ndashndashndash4

ndash 8 ndash 2k

For y to be positive for all real values of x

ndash49

ndashndashndash4

ndash 8 ndash 2k 983086 0

ndash2k 983086 49

ndashndashndash4

+ 8

ndash2k 983086 81

ndashndashndash4

k 983084 ndash81

ndashndashndash8

7 Substitute x = 6 y = 0 into y = px2 + qx

0 = p(6)2 + q(6)

0 = 36 p + 6q

q + 6 p = 0 983089

y = px2 + qx

= p983089 x2 +q mdash p x983090

= p983091 x2 +q mdash p x + 983089

q ndashndashndash2 p 983090

2

ndash 983089q

ndashndashndash2 p 983090

2

983092

= p983091983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndashndash4 p2 983092

= p983089 x +q

ndashndashndash2 p 983090

2

ndashq2

ndashndashndash4 p

ndash q2

ndashndashndash4 p

= ndash12

q2 = 48 p

p =q2

ndashndashndash48

983090

Substitute 983090 into 983089

q + 6983089 q2

ndashndashndash48

983090 = 0

q +q2

mdash8

= 0

8q + q2 = 0

q(8 + q) = 0

q = 0 or q = ndash8

When q = 0 p =02

ndashndashndash48

= 0

When q = ndash8 p =(ndash8)2

ndashndashndashndashndash48

=64

ndashndashndash48

=4mdash3

Therefore the values of p =

4

mdash3 and q = ndash8

8 (2 ndash 3k ) x2 + x +3mdash4k = 0

b2 ndash 4ac = 12 ndash 4(2 ndash 3k )983089 3mdash4k 983090

= 1 ndash 6k + 9k 2

= 9k 2 ndash 6k + 1

= (3k ndash 1)2

Since (3k ndash 1)2 983102 0 for all values of k

therefore (2 ndash 3k ) x2 + x +3mdash4k = 0 has real roots for

all values of k

9 f ( x) = 3( x2 + 2mx + m2 + n)

= 3[( x + m)2 + n]

= 3( x + m)2 + 3n

The minimum point is (ndashm 3n)

Compare to A(t 3t 2)

there4 ndashm = t and 3n = 3t 2

m = ndasht n = t 2

10 (a) y = px2 + 8 x + 10 ndash p

When the graph does not intercept the x-axis

there are no roots for px2 + 8 x + 10 ndash p = 0 Therefore b2 ndash 4ac 983084 0

82 ndash 4 p(10 ndash p) 983084 0

64 ndash 40 p + 4 p2 983084 0

p2 ndash 10 p + 16 983084 0

( p ndash 2)( p ndash 8) 983084 0

2 8

Hence r = 2 and t = 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 14: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1416

14

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

(b) When p = 2

y = 2 x2 + 8 x + 8

= 2( x2 + 4 x) + 8

= 2( x2 + 4 x + 22 ndash 22) + 8

= 2[( x + 2)2 ndash 4] + 8

= 2( x + 2)2 ndash 8 + 8

= 2( x + 2)2

Therefore the minimum point is (ndash2 0)

When x = 0 y = 8

When y = 0 2( x + 2)2 = 0

x = ndash2

When p = 8

y = 8 x2 + 8 x + 2

= 8( x2 + x) + 2

= 8983091 x2 + x + 983089 1mdash2 983090

2

ndash 983089 1mdash2 983090

2

983092 + 2

= 8983091983089 x +1mdash2 983090

2

ndash1mdash4 983092 + 2

= 8983089 x +1mdash2 983090

2

ndash 2 + 2

= 8983089 x +1mdash2 983090

2

Therefore the minimum point is (ndash1mdash2

0)

When x = 0 y = 2

When y = 0 0 = 8983089 x + 1mdash2 983090

2

x = ndash1mdash2

0

2

8

1 ndash ndash

2

ndash2

y p = 2 p = 8

x

11 (a) f ( x) = 24 x ndash 4 x2 + r

= ndash 4 x2 + 24 x + r

= ndash 4( x2 ndash 6 x) + r

= ndash 4( x2 ndash 6 x + 32 ndash 32) + r

= ndash 4[( x ndash 3)2 ndash 9] + r

= ndash 4( x ndash 3)2 + 36 + r

Compare to f ( x) = p( x ndash q)2 + 16

Therefore p = ndash 4 q = 3 and 36 + r = 16

r = ndash20

(b) The turning point is (3 16)

(c) f ( x) = 24 x ndash 4 x2 ndash 20

When x = 0 f ( x) = ndash20

When f ( x) = 0 ndash 4( x ndash 3)2 + 16 = 0

4( x ndash 3)2 = 16

( x ndash 3)2 = 4

x ndash 3 = plusmn2

x = plusmn2 + 3

= ndash2 + 3 or 2 + 3

= 1 or 5

0 1

(3 16)

5

ndash20

y

x

12 (a) y = ndash| p( x ndash 3)2 + q|

Substitute x = 3 y = ndash5 into the equation

ndash5 = ndash| p(3 ndash 3)2 + q| 5 = |q| q = plusmn5

Substitute x = 4 y = 0 into the equation

0 = ndash| p(4 ndash 3)2 plusmn 5| p plusmn 5 = 0

p = 5

Therefore p = 5 q = ndash5 or p = ndash5 q = 5

(b) When x = 3 y = ndash5

For p = 5 q = ndash5

When x = 6 y = ndash|5(6 ndash 3)2 ndash 5| = ndash|40| = ndash40

Based on the graph the range of values of y is

ndash 40 983100 y 983100 0

For p = ndash5 q = 5

When x = 6 y = ndash| ndash5(6 ndash 3)2 + 5| = ndash| ndash 40| = ndash 40

Therefore the range of values of y is

ndash 40 983100 y 983100 0

13 (a) y = ndash2( x ndash 3)2 + 2k

= ndash x2 + 2 x + px ndash 8

= ndash x2 + (2 + p) x ndash 8

= ndash[ x2 ndash (2 + p) x] ndash 8

= ndash983091 x2 ndash (2 + p) x + 983089 2 + p ndashndashndashndashndash

2 9830902

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983091983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

ndash 983089 2 + p ndashndashndashndashndash

2 9830902

983092 ndash 8

= ndash983089 x ndash2 + p

ndashndashndashndashndash2 983090

2

+(2 + p)2

ndashndashndashndashndashndashndash4

ndash 8

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 15: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1516

15

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

Since the x-coordinate of the maximum point for

both the graphs are same

therefore2 + p

ndashndashndashndashndash2

= 3

p = 4

y = ndash x2 + 2 x + px ndash 8 becomes

y = ndash x2 + 2 x + 4 x ndash 8 y = ndash x2 + 6 x ndash 8

When y = 0

ndash x2 + 6 x ndash 8 = 0

x2 ndash 6 x + 8 = 0

( x ndash 2)( x ndash 4) = 0

x = 2 or 4

Hence A(2 0) and B(4 0)

Substitute x = 2 y = 0 into y = ndash2( x ndash 3)2 + 2k

0 = ndash2(2 ndash 3)2 + 2k

2k = 2

k = 1 Hence k = 1 and p = 4

(b) For y = ndash2( x ndash 3)2 + 2k

= ndash2( x ndash 3)2 + 2(1)

= ndash2( x ndash 3)2 + 2

Maximum value of the curve is 2

For y = ndash x2 + 2 x + px ndash 8

= ndash x2 + 2 x + 4 x ndash 8

= ndash x2 + 6 x ndash 8

When x = 3

y = ndash9 + 18 ndash 8

= 1

Maximum value of the curve is 1

14 Since 3 x2 983102 0 for all values of x

therefore3 x2

ndashndashndashndashndashndashndashndashndashndashndashndashndash(2 x ndash 1)( x + 4)

983100 0

(2 x ndash 1)( x + 4) 983100 0

0 ndash4 1 ndash

2

f (x )

x

Hence ndash 4983100 x 983100 1mdash2

15 Since x2 + 1 983086 0

therefore x2 + 3 x + 2 ndashndashndashndashndashndashndashndashndashndash

x2 + 1 983086 0

x2 + 3 x + 2 983086 0

( x + 1)( x + 2) 983086 0

0 ndash2 ndash1

f (x )

x

Hence x 983084 ndash2 x gt ndash1

16 ndash4

ndashndashndashndashndashndash1 ndash 3 x

983100 x

0 983100 x +4

ndashndashndashndashndashndash1 ndash 3 x

0 983100 x(1 ndash 3 x) + 4

ndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0983100

x ndash 3 x2 + 4

ndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

0 983100 ndash3 x2 + x + 4 ndashndashndashndashndashndashndashndashndashndashndash

1 ndash 3 x

0 983100 (ndash3 x + 4)( x + 1)

ndashndashndashndashndashndashndashndashndashndashndashndashndashndash1 ndash 3 x

For ndash3 x + 4 983102 0

4 983102 3 x

x 983100 4mdash3

For x + 1 983102 0

x 983102 ndash1

For 1 ndash 3 x 983086 0

ndash3 x 983086 ndash1

x 983084 1mdash3

ndash1 ndash + ndash +

1 4 ndash ndash

3

4x ndash

3

1x lt ndash

3

x ndash1

3

x

Therefore the range is ndash1 983100 x 983084 1mdash3

x 983102 4mdash3

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4

Page 16: 03[Anal Add Math CD]

8202019 03[Anal Add Math CD]

httpslidepdfcomreaderfull03anal-add-math-cd 1616

16

Additional Mathematics SPM Chapter 3

copy Penerbitan Pelangi Sdn Bhd

17 y2 ndash 9 = x

x = y2 ndash 9

When x = 0

y2 = 9

y = plusmn3

When y = 0

x = ndash9

When x = 7

7 = y2 ndash 9

y2 = 16

y = plusmn4

x ndash9 0 7

y 0 plusmn3 plusmn4

0 ndash9 7

ndash4 ndash3

34

y

x

The range of values of y is ndash 4 983100 y 983100 4