03 example

Upload: metwally-naser

Post on 08-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/7/2019 03 example

    1/22

    ExampleReVISIOn 3

    It is required for the shown industrial building to :-

    4 ton ~Coil

    t30 ton

    4 .0

    3.0CraneCrane12 to n 12 to n1 15.0

    Bracing system for col. I

    3.05.0

    6.0 6.0

    1. Design col. 1 as a rolled col.2. Design an end gable of height 9.2 m" 2.5 m wall, window 1m, and end girts each l.9 m " , take into consideration all cases ofwind on the column.Spacing between end gables 6 m

    3. Design and draw a welded rafter splice used to join 2 parts of 6 m each to make the rafter.Rafter sec is LP.E 360

    1/11

  • 8/7/2019 03 example

    2/22

    Solution1- CoilLoads from crane girder on col. bracket

    'LL S I

    ______________ 12/t~0-------1-2~/i~0---Rx

    W dl = 0.2 t / mRn = .2 x 6 = 1 .2 ton

    Dead Load

    Live Load

    Lateral Shock

    PT = Rn + Ru ( 1 +I)=1 .2 + 16 x 1 .25 = 21 .2 tonR n = 12 + 12 x 2/6 = 16 ton Px =R;= 1 .6 tonRx = 1 .2 + 1 .2 x 2/6 = 1 .6 ton Pdl = 1.2ton

    Braking force BB = ( 12 + 12 ) 1 7 = 3.42ton

    ?1l1

  • 8/7/2019 03 example

    3/22

    Straininl action on the coL:

    Re\ISlOn 3

    Straining actions in plane are coming from Pr and Px and causes normal force and moment in plane.As there is no Hz member in the vertical bracing at the level of the crane girder, the brakingforce will cause moment out of plane.

    ColI

    4ton~ t30 ton

    B/2 3.42/2= 1.7 ton

    26mt32

    BMD~

    M in plane

    3.2 mt

    M out plane

    '32

    NFD

    32

    1/11

  • 8/7/2019 03 example

    4/22

    Choice of sec 3 - 3 :M, = =26 m t N= =9 ton My = 0 mt

    Check: My=

    Mx=26mt~

    ( Y )~ t~ ~

    Sec 3 - 3

    Assume f= = 1 .0 t/crrr' Sx = 26 x 100/ 1 .0 = =2600 cnr'Choose B.F.I.B 400 as sec is subjected to M, and My

    Lbin = 2 x 8 = 16 mLbout = =8.0 mAm==Lbx / r x= 1600117.1 = 93.5< 180Aout=Lby/ry=800/7.41 = = 107.9< 180A . m a x = =107.9> 100F e = = 7500 1 (107.9)2 = 0.643 t/cm ''F c a = = 9/198 = = .045 t/cm '

    Fbx = = Mx / s, = 2600 12 8 8 0 = =0.9 t / cm 2Luact = = 800 ern Lumax = = 20 bf / ~ Fy = = 20 x 30 1 ~2 .4 = 387 < 800Section is non com pact or slenderFJ = = - N 1A +M , / Sx = -.045 + 0.9 = .855F2 = = - N 1A - M , 1 Sx = = -.045 - 0.9 = =-0.945

    D w / t w = = ( 40 - 4 x 2 .4 ) / 1 .3 5 = 2 2 .5 < (1 90 / ~ F y ) x (2 + 'II ) ) = = Ill. 49C / tf= 1 5/2 .4 = =6.2 5 < 10.9Sec is non com pacta = M smaU/ M big = = - 9/2 6 = -.346Fltb = = 800 Af C , 1 (Lu d) = = 800 x 30 x 2 .4 x l.42 / (800 x 40) = 2 .55 > 1 .4

    Applying interaction equation:.07 + 1.0 x 0.9 /1.4 =0.71 < 1.2 " Case B " safe.

    4/n

  • 8/7/2019 03 example

    5/22

    Re\lSlOn .\

    Check sec 1 - 1 N = 30 tonM, = 20 mt My = 3.2 mt Mx=20mt

    ~~i~C OL b i n = 2 x 8 = 16 mLbout = 8.0 mA m = Lbx 1 rx = = 1600 1 17.1 = 93.5 < 180A o u t = = L b y 1 r y = 800 1 7.41 = 107.9 < 180Amax= 107.9> 100Fe = = 75001 (107.9)2 = = .643 t/cnr'F c a = 30/198 = .151 t/cm2

    My = 3.2 mt

    Sec 1 - 1Fca/Fc==.235>.15

    C r u x = 0.85 frame pennited to swayFca = .151Fex = 7500 1 " ! v x 2=7500 1 93.52 = .858

    Al = 1.031Cmy = I frame prevented with lateral load and hinged baseFca=.15IFey = 7500 j)\ ../ = 7500 1107.9 2 = .643

    Az = 1.3Fbx =M, 1 Sx =2000 12880 =0.7 t 1 cm2Fby = My 1 Sy = 320 1 721 = = 0.44 t 1 cnr'Fbcy = 1.4 t 1 cm2 "always Fbcy= 1.4 t 1 cm2"Luact = 800 em Lumax = 20 bf 1~ Fy = 20 x 30 1\f2.4 = = 387 < 800Section is non compact or slenderF J = - N 1A +M, 1 Sx = -0.15 + 0.7 = 0.55F 2 = = - N 1A - M, I Sx = -0.15 - 0.7 = -0.85

    D w l t w = (40 - 4 x 2.4 ) 1 1.35 = 22.5 < (190 I ((~Fy) x (2 + I ' ) ) = 90.8C It[= IS 12.4 =6.25 < 10.9Sec is non compacta = = Msmall 1Mt,ig = 0

  • 8/7/2019 03 example

    6/22

    RenslOn :;

    Cs= 1.75 + 1.05 a +.3 a:::= 1.75Fltb = 800 Af Cb / ( Lu d ) = 800 x 30 x 2.4 x 1 .75 I ( 800 x 40 ) = 3.15 > 1.4Fbc x = 1.4 t I cm '

    Applying interaction equation:.235 + 1.031 x.7 11.4 + 1.3 x 0.445/1.4 = 1.16 < 1.2 safe.

    h/11

  • 8/7/2019 03 example

    7/22

    ReVlSlOn 3

    2 - End gable column.1- The acting loads:

    h= 9.2 ma. Dead Load:

    1. Own weight 50 kg/m'.11 . Weight of the steel sheets We= 6 kg/m '.lll. Weight of the end girts wg= 20 kg/m'.

    Case of pressureb. Wind load:

    1. Inthis case the wind load will be a main load so it will be a case A11 . Wwmd = (C, x K x q) X Sj Hz Bl"'Qdng

    Ce= 0.8K = 1 .0 for h ~ 10mq= 70 kg/rrr' in Cairo

    2- The straining actions: 'Wine! Loa.e! c : = [ : : >a. Wx= due to wind load only

    Wx= Wwind= 0.8 x 1x 70 x 6 = 0.336 tim'il~1= Wx xh2 ?_~v = 0.336 x 9.2- / 8 = 3.55 mt

    A 8

    b. N= due to dead loads only v + X yN=wex(Sj xh)+o.w. x'h+wg x t number of girts j x S,N = 6 x (6 x 6.7) + 50 x 9.2 + 20 x (5) x 6 = 1.31 ton

    Choice of sec:M, = 3.55 mt N= 1.31 tonAssume f= 1.2 t/cnr' Sx= 3.55 x 100/ 1.2 = 296 crrr'Choose I.P.E 240

    Check:

    Lbin = 2.5 m "wall height"

    7111

  • 8/7/2019 03 example

    8/22

    Re\lSlOn ~

    Lbout= 9.2 mA m = Lby 1 fy = 250 12.69 = 92.9 < 180Aout= Lbx 1 r, =920 19.97 =92.3 < 180A m . a x = 93 < 100Fe = 1.4 - 6.5 X 10-5 (93)2 = 0.83 tJcm2Fca= 1.31/39.1 = .033 tJcm2Fca/Fe=.043 1.4

    ApplYing interaction equation:.043 + 1.0 x 1.09 11.4 =0.82 < 1 "case A" safe.

  • 8/7/2019 03 example

    9/22

    Re\lSlOn)

    Check on Case of Suctiona. Wind load:

    ni. Inthis case the wind load will be a main load so it will be a case AIV. Wwind= (C, x K x q) X SI Hz Bra~

    C;> 0.6K= 1.0 fo r h s10 mq = 70 kg/nr' in Cairo

    3- The straining actions:a. Wx= due to wind load onlyWx=Wwind=0.6 x Ix 70 x 6 = 0.25 tim'

    M = Wx X h2 = 0.25 X 9.22 /8 = 2.66 mtx 8

    b. N= due to dead loads only y . + X yN= We X (SI x h) + o.w. x h + Wg x (number of girts) x S]N=6x(6x6.7)+50x9.2+20 x(5)x6= 1.31 ton

    Choice of sec:Check on same section LP.E 240Check:

    Lbin = 2.5 m "wall height"L o o m = 9.2 mA . m = Lby / fy = 250 / 2.69 = 92.9 < 180A o u t = Lbx / fx = 920/9.97 = 92.3 < 180" - m a x = 93 < 100Fe = 1.4 - 6.5 x 10-5 (93)2 = 0.83 t/cm''Fea = 1.31/39.1 = .033 t/cnr'F e a / F e = .043 < .15 Al = 1.0

    Fbx = Mx / S x = 266 / 324 =0.82 t / cm2

    l. ba_

    9/n

  • 8/7/2019 03 example

    10/22

    Luact = 920 em in this case as the compression flange IS the Inside flangeUse knee bracing at every end girts to brace the compression flangeLuact = 250 ern "wall height"Lumax = 20 bf I \i Fy = 20 x 12/ v l 2 A = 154.9 < 250Section is non compact or slenderFI = -NIA +M, / S x = = -.033 + 0.82 = 0.79F2 = -NIA-M, / Sx= -.033 - 0.82 = -0.85\fI=F1/F2 =-.92>-1D;/t, = ( 24 - 4 x 0.98 ) / 0.62 = 32.38 < (190 / ((~Fy) x (2 + 'P ) = 115.3C/t[=6/0.98=6.125< 14.8Sec is non compactCb= 1.13F1tb=800AfCb/(Lud)=800x 12 xO.98x 1.13/(250x22)= 1.7> 1.4Fbcx = = 1.4 t / cm2Applving interaction equation:.043 + 1.0 x 0.82 I 1.4 = 0.62

  • 8/7/2019 03 example

    11/22

    Re\!SlOn 3

    3 - Welded splicethe best way to make a welded splice is as the type II but using weld instead of bolts

    As it was required to join parts of length 6m so use a splice at distance 6 m from col.At splice sec ;-

    Qact = Y -WT . X of splice = 6 - 0.5 x 6 = 3 tonM m a x = S x X Fbcx = 1.536 x 904 = 1388 cmt

    Lweld LweldI II 1I I II 0.8 h I II I II I

    Mmax

    iQactI, = 16270 cm4I w = 0.8 X 363 I 12 = 3110.4 ern"Mw = ( Iwl Ix) Mmax = 3110.4 116270 x 1388 = 266 cmtMf= Mmax - Mw = 1388 - 266 = 1122 cmt

    A- Flange splice: " weld subjected to shear"

    Lweld

    1 MflangeJ

    ~~~5==1"_4I ~c IT = Me I hI = 1122 I 36 = 31.16 tonAssume S = 6 mmLweld act = T I (x Sx 0.2 Fu ) + 2 S = 3 1 . 16 I ( 6 x 0.6 x 0.72 ) + 2 x 0.6 = 13.2 = 15 em

    11111

  • 8/7/2019 03 example

    12/22

    ReYlSlon 3

    B- Web splice: " weld subjected to shear and torsion moment ..10cm

    10.8 hI I " ,I JMwebI II I III I II 0.8 h I !I I I

    J J

    1 MwebIItQact

    Assume S = 6 rnm , 1hzweld = 10 em . Ivl weld = 0.8 hr= 28 cmProperties of weld:A wvl :: 28 x 0.6 :: 16.8 crrr'A whz= 2 x 10 x 0.6 = 12 cnr'A wtot = 12+ 16.8 =28.8 cm2X = ( 10 x 0.6 x 2 x ( 10 I 2 + 0.6) + 28 x 0.6 x 0.3) 128.8 = 2.5 emI, = 0.6 X 283 112 + 10 x 0.6 x 2 x (28 12 + 0.6 12 i= 3551.48 ern"Iy= 0.6 X 103 I 12 + 2 x 10 x 0.6 x ( 5.6 - 2.5 )2 + 28 x 0.6 x ( 2.5 - 0.3 )2 = 296.632 em"Ip:: 3551.48 + 296.632:: 3848.11 em"

    28 -

    bMweb Mweb+Qact ( b)

    x tQact tQactCheck on critical points:

    M, = 266 + 3 ( 10.6 - 2.5 ) = 290.3 cmtEach side is subjected to M, I 2 =290.3 12= 145.1 cmt and Qactl 2 = 3 12 =1.5 ton

    11111

  • 8/7/2019 03 example

    13/22

    RC\lSlOn 3

    Point 1 :Rx= O+MtYj IIp = 0+145x(14)/3848.11=0.52t/cm2R, = Q a c t 1Awvl + M, XI IIp = 1.51 16.8 + 145 x 2.5 13848.11 = 0.18 t/cm2R =." j (R} + R/) = ,j (0.182 + 0.5i) = 0.55

  • 8/7/2019 03 example

    14/22

    J

    "

    ---c'D ro,L~""..Ifor'_

    -t. 1r~

    8.H.l)

    F~ c. ~ (l'Tt.O r> 1 t : . . . t (f&) a b p - c " t h7 l'nv"- aA . i A o j - h ( _ ~c l V ' - ' 1 1 B.(Jj)& l idk

  • 8/7/2019 03 example

    15/22

  • 8/7/2019 03 example

    16/22

    -v f}ft

    \ ~ : : & e ~ 1J c o JI/ ~ // / /t-u,L.

    /

    ~tJ- t w O CA(t~ ~o, 0\.G\/'v\.L v . . - - C ~(lY)~ \ ~~~~Q j_~_ _ L

    , If"-'\clt = - Woll ~1.....

    ~Q c 1 { z: vVJl..SL

  • 8/7/2019 03 example

    17/22

    >~ ,.-1 vM x:: MJL + -HLL \\tl)M~ - ~ LL-- \0Q:: QdQ _+ R lL (\

  • 8/7/2019 03 example

    18/22

    - - - \

    ~\ C1 'v \ o-tO",l'tbeo,. ',,'Y '-.

    \- DL'":)\ DL = = 2t!t)L

    t

  • 8/7/2019 03 example

    19/22

    -...J-----1~ ~?xt c P d . + ~ )

    ! " ' \

    W{'_ ea"r " " . \ < C f.:~ ' m o _ U _ " ' JCV\ .1))0 r u,,\.lv'-l) 0

  • 8/7/2019 03 example

    20/22

    , I_) I J . . ' " *IP - II sIB

    ~\-

    1---------- .--------".,,-- or'" \pN\~~c.~\~~~ cltJ\~r~L- ~;_y~ I~ .92 --:->.r: 01 ~ / f:' I - cv~ . . J " . : L ..L \ -k;/ f ' ! .dL, ~/y~l"'yl d~ ; _ > Y . ' " J~I ~

    I -r ,. ~ Q/__;_/I_______ . . I '---------'

    t h zII h i1-c~~-\-~~\ ~ ~

    ) b O(,)'!- z h ,-, ---,----~- - .-+---1 \---; 1I \ / i1 - - - - - - - " - - - - - - - - I c < . ;> 1

    I l/,!_ _. - - - - - - - - 1 - - - - - - ; - ~ - - ~I '>(/1I I - : - .r=[~[~t~II~\ B(aciC 1j .J\ ~/ ~ r J ! _ ' k

    ,)y-?J\ V ~ J..:.l -\" /~ C \::>~ ~\ J;J j:> LV - cI

    MG'l..1.. -PoOY'- - - - - - I.>~ \ t: \ D t . U ~ c1w,c{ .J\ cf ~ -

    W\e.:z:z.. t'\OO'l' v~ .:)..;. :: ) . ~\- ~_; -

    J \ _ > _ , . ? J \ cbv ~ = 1 't4artjks \~~\ CYc_?)G *7 ,/ >Cr~J~ ~out sik pl~)

    ;' -( - , ~ L L

  • 8/7/2019 03 example

    21/22

    l;;)''"\)\ .~l?.l) v a : ~

    Ia c; '(j h qr _I \ J.f- _Ih z . ~ ~ bu c V _ '"

    \.-\_)~y\ ; . , . ; t (sIde. j;l"t ) e~d 31ft ore.V\dja.hlt C l : !0 ~ ~ ~~,("~-MQ.(j \ o " , d s O J0 1 -6J:)v c:t--'t-~ oF ; v _ , . { '8~.J\ cY r v ~ C4Je C A )

    LJ Mcv,.c. .( Lfh) c 7J_,o-/-> '~~Hi \D~ ~ '4=-Cb ; _ > ~ ; -

  • 8/7/2019 03 example

    22/22

    1. Design a typical secondary beam if the total dead load IS 400 kg/m (which includes the slab weightand the floor cover) and the live loads is 300 kg/rrr'. Choose an IPE section for this secondary beamand consider it to be simply supported on the main beam.

    2. If the sections chosen for the main beams are IPEs 500, design the bolted connection between asecondary beam and a main beam using ordinary bolts 16 mm in diameter and 80x8 connectingangles (connection A in Figure 2).

    3. Draw to scale I: 10 the above connection in different views.

    Question No.3 (20% of the maximum credit)An area 12 x 40 Inwill be covered with the frames shown in Figure 3. The spacing between the framesis 5.0 m. End gables arc provided with columns along the two ends of the area as shown in the figure. Themain frames are composed of simple beams resting on pendulum columns. In this way, the system isunstable and can not carry any lateral loads.1. Suggest a suitable bracing system thatwould provide stability for the frames

    against lateral loads and draw this system(scale 1 : 1 00) in different views. 6 m

    2 . If the wind pressure in this area is 100kg/nr', calculate the forces in all thevertical bracing members due to windload.

    3. Design suitable sections for the differentvertical bracing members.

    I I I I I

    6x2=12m

    . _--. --- * ------"" - - - .._ . _ . _ . _-. - - - . . . . . . . . . . . . . . . . . _ _ _ _.. - - - .. :Figure 3