02 ra41212 en20gla1_rl20_channel config_ppt

60
RA41212EN20GLA1 Channel Configuration 1

Upload: syed-zahid-shah

Post on 08-Aug-2015

225 views

Category:

Education


5 download

TRANSCRIPT

Page 1: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

1

Page 2: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

3

Page 3: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

4

Page 4: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

5

Page 5: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

6

A PICH is defined by its PHICH group number and an orthogonal sequence number within the group. A PHICH group is a set of PHICH transmitted in the same set of RE. For normal CP, 8 UEs can be addressed with 1 PHICH group

Page 6: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

7

Page 7: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

8

Page 8: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

9

Page 9: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

10

The earfcnDL must be 18000 lower than earfcnUl

E-UTRA Absolute Radio Frequency Channel Number in downlink.Supported Bands and related downlink EARFCNs are the following:Band 1 (2110-2170 MHz): 0 - 599Band 2 (1930-1990 MHz): 600 - 1199Band 3 (1805-1880 MHz): 1200 - 1949Band 4 (2110-2155 MHz): 1950 - 2399Band 5 (869-894 MHz): 2400 - 2649Band 6 (875-885 MHz): 2650 - 2749Band 7 (2620-2690 MHz): 2750 - 3449Band 8 (925-960 MHz): 3450 - 3799Band 9 (1844.9-1879.9 MHz): 3800 - 4149Band 10 (2110-2170 MHz): 4150 - 4749Band 12 (729.4-744.8 MHz): 5014 - 5167Band 14 (758-768 MHz): 5280 - 5379Band 17 (734.0-744.8 MHz): 5730 - 5837Band 18 (860-875 MHz): 5850 - 5999Band 19 (875-890 MHz): 6000 - 6149Band 20 (791-821 MHz): 6150 - 6449Band 24 (1526.0-1536.5 MHz and 1545.2-1555.5 MHz): 7710 - 7814 and 7902 -8004

Page 10: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

11

Page 11: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

12

Physical layer cell identity is used to differentiate neighbor cells . It consists of two parts; physical layer cell identity group and physical layer identity, and is calculated with the following formula:

physical layer cell identity = 3 x physical layer cell identity group + physical layer identity.

Guidance for configuration:

Neighbor cells should have different values, and in a three cell eNB all cells should have phyCellId which belongs to same physical layer cell identity group. For example, in a three cell eNB, good PhyCellIds values are 0, 1, 2

Page 12: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

13

Mod3 (PCI):

1.Mod 3 of the PCI is equal to the Physical Layer Cell Identity so if different then PSS signals are different which facilitates the cell search and synch procedure.

2. RS, carrying one of the 504 PCI has a frequency shift given by mod6(PCI) so collisions between RS are avoided up to 6 adjacent cells ( if 1Tx antenna). For 2Tx ant, # RS is doubled so to avoid collisions in adjacent cells: mod3(PCI) should be different.

Try to stick to (1) up to (4)If (i) is fulfilled then also (i+1) is fulfilled [for i = 2,3,4]If (i) is not fulfilled then also (i-1) is not fulfilled [for i=3,4]The lower the number the higher the priority, this means (1) has the highest priorityIf (4) is not fulfilled, delta_ss (grpAssigPUSCH) can be used to fix it.

With 2Tx configuration the cells of the same site should have different PCImod3, with 1Tx the PCImod6 should be different. This is to have frequency shift for RS of different cells, because cells of a given site are frame-synchronized in the sense that DL radio frame transmission starts at the same time instant in all the cells --> hence also RS symbols are transmitted at the same time instant. To avoid RS of different cells (of the same site) interfering in the DL, a frequency shift is applied.

The situation changes slightly for cells of different sites, where in RL10 FDD different sites are not in general frame-synchronized (except by chance). In TDD different sites must be frame-synchronized. But in FDD, the DL RS received from cells of two different sites have a random frame offset with respect to each other and hence the RS symbols may or may not overlap (interfere) in any given measurement position. But as you said, because of irregular cell shapes, it may well happen that there are spots where there is strong interference between RS received from cells of different sites, i.e. RS symbols collide in both time and frequency. If you have a TDD network, this scenario happens probably quite often. In these cases, perhaps depending on the SINR estimation method used by the particular receiver, the estimation result may be unreliable.

Page 13: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

14

Page 14: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

15

Subcarrier spacing= 15kHz; max. FFT size= 2048

Page 15: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

16

Page 16: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

17

Page 17: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

18

Cell ID:

One of 504 IDs detected from the index of PSS and the combination of two SSS segments

CP length:

Detected from the relative PSS-to-SSS time distance

TDD/FDD:

Detected from the relative PSS-to-SSS time distance

5ms timing:

Detected from PSS time position

10ms timing:

Detected from the interlaced SSS segments swapping:主同步信号是ZC序列。

ZC序列是频域序列,复值序列,特点是恒定幅度,循环移位的序列互相之间有很好的自/互相关特性。(产生出来的没有循环移位的序列称为基序列。)

相同序列循环移位相乘结果为0, 不同序列相乘结果为序列长度开根号的倒数,值很小。

辅同步信号是两个31位的二进制序列交织合并之后,再和主同步信号进行加扰产生的。

最下面一行:黄色和紫色就是两个二进制的序列,各31bit长。分别是由另一个m序列不同的循环移位(m0,m1)产生的。

中间一行:红色和蓝色,C0,C1也是两个二进制序列,31bit长,由一个m序列循环移位产生,但产生过程中包含着layer id的信息,即跟PSS的选择有关。

最上面一行:绿色和深蓝,第三条m序列,不同循环移位产生(m0, m1)

168个组的识别是通过m0,m1的组合(168种),这样产生的不同循环移位来区分的(36.211,P75)

Primary Synchronization Signal (PSS) (so called primary synchronization channel), random access preamble (PRACH) , HARQ ACK/NACK responses (PUCCH) and sounding reference signals(SRS). The ZC sequences are used in LTE because they provide an advantage of having a lower Peak-to-Average-Power (PAPR) ratio

Page 18: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

19

Page 19: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

20

Page 20: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

21

Frequency:

Occupies central 72 sub-carriers (excluding the DC)

Time:

TTI/scrambling period: 40ms

Duration: first 4 OFDM symbols in slot #1

TBS:

Fixed TB size of 40 bits (including 16 bit CRC)

Transmission Scheme:

QPSK, Tail Biting Convolutional Coding

TX diversity: none, SFBC, SFBC-FSTD depending on the number of cell-specific antenna ports

The System Frame Number is provided to synchronize the UE with eUTRAN

total SFN is 10 bit long

• eNodeB dynamically broadcast the 8 MSB of SFN to UE (i.e. inside MIB)

• UE implicitly can decode the 2 least significant bits from SFN to identify

the TTI for MIB de-interleaving

00 first radio frame

01 second radio frame

10 third radio frame

11 last (fourth) radio frame

Page 21: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

22

PBCH Structure:

Frequency:

- Occupies central 72 subcarriers (excluding DC)

Time:

- TTI / scrambling period: 40ms

- Duration: first OFDM symbols in slot #1

TBS:

- Fixed TB size of 40 bits (including 16 bit CRC)(MIB = 14 Bits / Spare Bits = 10 / CRC 16 Bits)

(Available bits in 40ms = 1920 in case of normal cyclic prefix)

Transmission Scheme:

- QPSK, Tail Biting Convolution Coding

- Tx diversity: none, SFBC (Space-Frequency Block code), SFBC-FSTD (Frequency Switched Transmit Diversity-SFBC) depending on the number of cell-specific antenna ports. In addition for decoding the CRC (Cyclic Redundancy Check) on each MIB is masked with a codeword representing the number of transmit antenna ports.

Page 22: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

23

Page 23: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

24

Start position depends on cell id

Distance between mini-CCE = 18 for 72 RB case

Nsc(rb) is the number of subcarriers in frequency domain for one resource block

See TS 36.211 for details

Page 24: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

25

Page 25: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

26

Page 26: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

27

The target error probability for a missed detection of a PDCCH is 10-2

Page 27: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

28

Page 28: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

29

The information fields are multiplexed according to the order they are listed in each DCI format. The first bit of each information field corresponds to MSB.

Page 29: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

30

Page 30: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

31

Page 31: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

32

Page 32: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

33

Page 33: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

34

Page 34: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

35

Page 35: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

36

Page 36: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

37

Page 37: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

38

Page 38: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

39

Page 39: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

40

Page 40: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

41

Page 41: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

42

Page 42: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

43

The UE shall report a type 1 report per bandwidth part 。

Type 1 report supports CQI feedback for the UE selected sub-bands

Type 2 report supports wideband CQI and PMI feedback.

Type 3 report supports RI feedback

Type 4 report supports wideband CQI

Page 43: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

44

Page 44: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

45

Page 45: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

46

Page 46: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

48

6 or more PRBs there are two sequences per group, for a given PRB allocation length.

With sequence hopping (RL30), there are 2x30=60 sequences for 6 or more PRBs

Page 47: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

49

Ndmrs2: cyclic time shift offset indicated in each scheduling grant

Hopping sequence is the same when initial seed cinit is the same

Page 48: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

50

Page 49: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

51

Page 50: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

52

Page 51: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

53

Page 52: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

54

Page 53: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

55

Page 54: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

56

Page 55: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

57

Page 56: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

58

Page 57: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

59

Page 58: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

60

Page 59: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

61

Page 60: 02 ra41212 en20gla1_rl20_channel config_ppt

RA41212EN20GLA1

Channel Configuration

62

Normal PHICH duration: PHICH uses the first OFDMA symbol of a a subframe. Extended duration: PHICH uses the first 3 OFDMA symbols of a subframe.

The maximum value of nCqiRb depends on ulChBw (in PRB) - if ulChBw is set to '5 MHz', nCqiRb is limited to 25- if ulChBw is set to '10 MHz', nCqiRb is limited to 50- if ulChBw is set to '15 MHz', nCqiRb is limited to 75- if ulChBw is set to '20 MHz', nCqiRb is not limited