001 earth pressure_part 1

Upload: sarwarrosun

Post on 05-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 001 Earth Pressure_Part 1

    1/18

    Earth Pressures

  • 8/15/2019 001 Earth Pressure_Part 1

    2/18

     Analysis and Design

    of Earth Retaining Structures

    • Distribution of vertical and lateral earth

    pressures must be estimated

    • Magnitude of earth pressure depends on

    state of strain in the soil behind the

    structure

  • 8/15/2019 001 Earth Pressure_Part 1

    3/18

    Earth Pressure Theory

    • The following 3 states are defined:

    - At rest state: elastic equilibrium with no lateral

    strain

    - Active state: plastic equilibrium with lateral

    expansion

    - Passive state: plastic equilibrium with lateral

    compression

  • 8/15/2019 001 Earth Pressure_Part 1

    4/18

     At-rest State

    • Lateral effective stress, sh' = Ko sv'

    • sv' = sv – u• Ko = coefficient of earth pressure at rest

    sh’ 

    sv’ 

    Groundlevel

    z

  • 8/15/2019 001 Earth Pressure_Part 1

    5/18

    Value of Ko

    • For normally consolidated soils,

    Ko = 1 – sinf'

    • For overconsolidated soils,

    Ko = (1 – sinf' ) (OCR)0.5

    • From elastic theory,

    Ko =

     

     

    1

  • 8/15/2019 001 Earth Pressure_Part 1

    6/18

    Rankine’s Earth Pressure Theory

    • In Rankine’s method, it is assumed that there is no

    friction or adhesion between soil and the back of the

    retaining structure. Therefore, the normal stress acting

    on the retaining structure will be a principal stress. If the

    back of the retaining structure is vertical and the soilsurface horizontal, the vertical and horizontal stresses

    throughout the retained soil mass will be principal

    stresses.

    • The horizontal stress can be calculated from the Mohr-

    Coulomb failure criterion.

  • 8/15/2019 001 Earth Pressure_Part 1

    7/18

     Active Earth Pressure: Granular Soil

    sv’ 

    sh’ 

    z

     A

    B

    • Initially, no movement of boundary AB

     At-rest state

    sv’  = z, assuming u = 0

    sh’ = Ko sv

    ’ = Ko z

    • Boundary AB moves away from element,

    No change in sv’ 

    Decrease in sh’  until it reaches a

    minimum value, sha’  , at failure

  • 8/15/2019 001 Earth Pressure_Part 1

    8/18

     Active Earth Pressure: Rankine’s Theory

    Granular Soil (c' = 0)

    s'

    Decreasing  h’ 

     At-rest state

     Active state

    sha’ 

    'σK 'σ vaha  

    )2/'45(tan

    'sin1

    'sin1 pressureearthactiveof tcoefficienK  2a   f 

  • 8/15/2019 001 Earth Pressure_Part 1

    9/18

    Passive Earth Pressure: Granular Soil

    sv’ 

    sh’ 

    z

     A

    B

    • Boundary AB moves towards element,

    No change in sv’ 

    Increase in sh’ until it reaches amaximum value, shp’  , at failure

  • 8/15/2019 001 Earth Pressure_Part 1

    10/18

    Passive Earth Pressure: Rankine’s Theory

    Granular Soil

    s’sv’ 

    increasing sh’ 

    shp’ 

    c' = 0

     At-rest statePassive state

  • 8/15/2019 001 Earth Pressure_Part 1

    11/18

    Passive Earth Pressure: Rankine’s Theory

    Granular Soil (c' = 0)

    'σK 'σ v php  

    )2/'45(tan'sin1

    'sin1

     pressureearth passiveof tcoefficienK 2

     p   f f 

  • 8/15/2019 001 Earth Pressure_Part 1

    12/18

    Earth Pressure Theory:

    Orientation of Failure Plane

    • In the active case, the

    failure plane is inclined at an

    angle of (45o + f'/2) to the

    horizontal.

    • In the passive case, the

    failure plane is inclined at an

    angle of (45o - f'/2) to the

    horizontal.

  • 8/15/2019 001 Earth Pressure_Part 1

    13/18

    Earth Pressure Theory:

    Orientation of Failure Plane

    • In the active case, the failure plane is inclined at an angle of (45o +

    f'/2) to the horizontal.

    • In the passive case, the failure plane is inclined at an angle of (45o -

    f'/2) to the horizontal.

  • 8/15/2019 001 Earth Pressure_Part 1

    14/18

    Mobilisation of Earth Pressure with Movement

    • Significantly higher movement is required to mobilise full passive pressure

    than to mobilise active pressure

    Towards

    soil

     Away

    from soil

    Kp

    Ko

    Ka

  • 8/15/2019 001 Earth Pressure_Part 1

    15/18

    Earth Pressure: c' – f' soil

    Rankine-Bell Equations

    •  Active case:

    • Passive case:  pv php K 2c''σK 'σ  

    c' s' tan f'

    avaha K 2c''σK 'σ  

    sv'sha' shp' s'

  • 8/15/2019 001 Earth Pressure_Part 1

    16/18

    Earth Pressure: c' – f' soil

    Rankine-Bell Equations

    •  Active case

     – When c‘ is greater than zero, sha'

    is zero at a specific depth, zo.

     – Within a depth zo, active earth

    pressure is negative.

    aK 2c'

    ava K 2c''σK   

    zo

  • 8/15/2019 001 Earth Pressure_Part 1

    17/18

    Earth Pressure Distribution

    • Effect of 

     – Groundwater level

     – Surcharge

     – Stratified soil

     – Sloping ground

  • 8/15/2019 001 Earth Pressure_Part 1

    18/18

    Influence of Sloping Ground

    'cos-coscos

    'cos-cos-cosK 

    22

    22

     a

    f     

    f     

    'cos-coscos

    'cos-coscosK  22

    22

      p

    f     

    f     

    H H

    3

    H

     Active pressure, pa = Ka sv' cos

    Where sv' = Hcos

     Active force, F A = Ka H2 cos

    Passive pressure, pp = Kp sv' cos

    Passive force, FP = Kp H2 cos

    21

    2

    1

    F A