¤0¿ « b ®g ì % > e * 7È/õ i p'Ç 6õ m º ú · 9...¤0¿ « b ®g ì % > e *...

16
᪤タᶫᾮ≧ᆅ┙ࡅ࠾ ⪏㟈⿵ᙉᑐ⟇㛵ᶍᆺᐇ㦂 Ᏹ㔝 ᕞᙪ 1 2 Ύᐑ 3 4 1 ṇဨ ὒᘓタᰴᘧ♫ ᢏ⾡◊✲ᡤ㸦329-2746 ᰣᮌ┴㑣㡲ሷཎᕷᅄ༊⏫1534-1E-mail: [email protected] 2 ṇဨ ᪩✄⏣Ꮫᐈဨ⣭◊✲ဨ ⌮ᕤᏛ⾡㝔⥲◊✲ᡤ㸦169-8555 ᮾி㒔᪂ᐟ༊ಖ3-4-1E-mail: [email protected] 3 ᪩✄⏣Ꮫᩍᤵ 㐀⌮ᕤᏛ㒊♫⎔ቃᕤᏛ⛉㸦169-8555 ᮾி㒔᪂ᐟ༊ಖ3-4-1E-mail: [email protected] 4 ṇဨ ὒᘓタᰴᘧ♫ ᢏ⾡◊✲ᡤ㸦329-2746 ᰣᮌ┴㑣㡲ሷཎᕷᅄ༊⏫1534-1E-mail: [email protected] ᾮ≧ᆅ┙᪤タᶫ㸪ᆅ㟈⿕࡞ࡁࡇࡍ㐣ཤ㟈⅏ࡗ࡞ 㸪⌧⾜ᇶ‽せồᛶ⬟‶㊊࠸࡞ࡋ᪩ᛴ⿵࡞ᙉᑐ⟇ㅮᚲせ࠶ࡀ㸬ᮏ◊✲㸪ᾮ≧ ᑐ⟇ᕤᕤἲᆅ┙ᨵⰋᕤἲᑐ㇟㸪౪⏝ࡀ࡞ࡋࡣࡓ࠸࡞㏻ไ㝈 㐺⏝ᕤἲ࠸ࡘ㸪ᶍᆺᐇ㦂ࡢࡑຠᯝドࡓࡋ㸬ᐇ㦂⤖ᯝ㸪ᶫᛂ⟅ኚ ᢚไ࠺࠸㸪ᕤἲࡉ♧ࡀ⫼ࡋࡔࡓᚋᆅ┙ỿୗ㔞࡞ࡃࡁ 㸪㏵ࡢࡑᑐ⟇⾜ᚲせ࠶ࡀࡓࡗᆅ┙ᨵⰋᕤἲ࠸ࡘ㸪≉ᶫᨵⰋ యᅖᕤἲ࠸ࡘᶫᨵⰋయࡗ࡞㏫ຠᯝ⬟ᛶ♧၀Key Words : bridge abutment, liquefaction, seismic strengthening measures, ground anchor, soil im- provement, shaking table test 1. ࡌࡣ ᾮ≧ᆅ┙ࡅ࠾ᶫᱱ㟈⅏ ⿕࡞ࡁⓎ⏕ࡓࡁ1964 ᖺ᪂₲ᆅ㟈ⴠᶫ ࡌࡣ1995 ᖺරᗜ┴༡㒊ᆅ㟈࠸࠾ᾮ≧ᮺᇶ♏ᦆയ㸪ࡢࡑࡓᦆയ㒊ᵓ ⴠᶫ➼࠶ࡀ⿕ᐖศᯒࡉ࡞ࡀ㸪⥭ᛴ㏻ ᙺᢸᶫᱱ࠸࡞ࡁ≧ἣ㸪ே ᩆ῭ጞ⥭ᛴ≀㈨ேဨ㍺ࡢ࡞ࡃࡋ㸪⅏ᐖ ᪧ⯆άᖜࡌ⏕ࡀ2011 ᖺⓎ⏕ࡓࡋᮾᆅ᪉ኴᖹὒἈᆅ㟈࠸࠾㸪ᾮ≧ ഃ᪉ὶᇶ♏⿕ࡢ」Ⓨ⏕㸬ᆅ㟈 ᦆയ≉ᇶ♏➼ᆅ୰㒊⏕ሙ㸪ᶫᶵ⬟ᅇࡏࡉᚲせ࿘㎶ఫẸ⏕ࡢ࡞ࡁᙳ㡪㸬ⴭ⪅ 㸪⊩ 1),2) 㸪ᾮ≧ᆅ┙≉ᾮ≧ ᒙ㠀ᾮ≧ᒙᒙቃ⏺ࡅ࠾ᶫᱱᮺᇶ♏⿕ࡢᐖ╔ ✲◊ࡋ┠ ࡓࡁ ࡤ࠼3),4) ⴭ⪅ࢢࡣ➼⏝ࡓ࠸⪏㟈⿵ᙉᑐ⟇㛵◊✲ 5)~11) 㸪⊩ 12) ≉ᶫ࠸࠾ㄢ㢟ከ㌾ᙅᆅ┙ࡅ࠾ᑐ⟇࠸ࡘ㸪ᅵᮌ◊✲ᡤ 2010 ഃ᪉⛣ᑐ⟇⟇ᐃ ウ㸦 ࡢࡑ2 13) Ⓨห㸪ᶫ ᆅ㟈ᣲ࠸ࡘゝཬ࠸࡞࠸㐨㊰ᶫ ♧᪉᭩ 14) ࠸࠾㸪ᶫᆅ㟈⛣㛫ᶫ⬮㒊➼ᙳ㡪㸪⪏㟈ᛶ ࡏࡉ࠸ࡋグ㍕ࡢࡑ࡞࠺୰㸪 2016 ᖺ⇃ᮏᆅ㟈࠸࠾⛣ࡢ⫼ࡧ㠃ᆅ┙ ỿୗ㏻ไ㝈Ⓨ⏕㸪᪤タᶫᾮ≧ ᑐ⟇ᕤࡣ❧☜ࡢ-1 ᪤タᶫᱱᘓタᚋ⤒ࡢ㐣ᖺ 15) ᅵᮌᏛㄽ㞟㻭㻝䠄ᵓ㐀䞉ᆅ㟈ᕤᏛ䠅㻘 㼂㼛㼘㻚 㻣㻠㻘 㻺㼛㻚 㻠䠄ᆅ㟈ᕤᏛㄽ㞟➨㻟㻣ᕳ䠅㻘 㻵㼋㻞㻢㻣㻙㻵㼋㻞㻤㻞㻘 㻞㻜㻝㻤㻚 4-1

Upload: others

Post on 13-Mar-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

1 2 3 4

1 329-2746 1534-1E-mail: [email protected]

2 169-8555 3-4-1E-mail: [email protected]

3 169-8555 3-4-1E-mail: [email protected]

4 329-2746 1534-1E-mail: [email protected]

Key Words : bridge abutment, liquefaction, seismic strengthening measures, ground anchor, soil im-provement, shaking table test

1.

19641995

2011

1),2)

3),4)

5)~11)

12)

20102 13)

14)

2016

-1 15)

4-1

Page 2: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

-115)

40

16)

17) 18)

-2

2.

(1)2

2514) 2

-2N 50

N 103.75 m N 5 18.0

m N 25 11.0 m0.89 s

III2

I 0.3 II 0.214)

20 m

4000 kN10.0 m RC T

1.8 m2.0 m 8.0 m18.0 m 24

2 m 4 3.2 m6 800 mm 31.5

m

(2)

1/30 -11G 19)

-1 19)

0.00 10203040

SPTN-valueStratums

Laye

rs

1

Sand

10

5

-

-

c

33

o kN/m2( )50

2

Gra

vel

-3.75

Gra

vel

3

4

-21.75

-32.75

Gra

vel

33

36

25 -

50 -

30

1000

020

0060

0020

00

80005200

5001300

800L=31.50m

4500

1000

016

900

500

mm

301 10.75 12.82

3030

1.5 164.321 10.5 5.480.75 12.824.5 4,436,5532.5 4,930

4-2

Page 3: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

-3(d) Case4

(c) Case3

(b) Case2

(a) Case1

4-3

Page 4: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

11 0.5

(3)-3

Case1Case2

Case3 Case4-1

6 mm

22 mm

25 mm 2 mm24

(a) (b) Case2

-1

-2

120.2%

90 N/mm2

Case220)

-1(b)

630

1.5 mm1.38 kN -2

Case3 Case4

21),22)

21),22)

Case4

-4 Case3 Case4

(a) Case3 (b) Case4

-3

6

6 2

mm

4-4

Page 5: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

Case33 m

Case41.5 m

Case3 Case4

Case3 Case4 -4-3

Case3Case4

1931.3 kN/m2

705.5 MN/m2

-2 66

80%100 mm

50%

50% 80%-5

5.5 m4.0 m

1.5 m 1.4 m

-2 6

(a) 50% 98 kN/m2 RL20 0.105

(b) 80% 98 kN/m2 RL20 0.175-5 6

(a) (b) 2

-4

-4 2

Case1 Case2 2Case3 Case4 2

[email protected]

4.0m

G s (g/cm3) 2.654e max 0.897e min 0.547U c 1.45U c' 1.00

D 50 (mm) 0.28

4-5

Page 6: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

(a) 2 I

(b) 2 II

-6

(4)14) 2

I 2011EW (I – I

– 2) 2 II 1995NS

(II – I – 1) 2III

I-6

I II

(5)-7

-8

-5

-3Case4

-3 -7 -8 N S2

2 Case1N Case2

S

-7

-8

-5

Case3 Case4AH-01

-3 Case1 Case3

-1000-500

0500

1000

0 5 10 15 20

Acc

. (G

al)

Time (s)

Max 480.31 Gal Min -794.79 Gal

-1000-500

0500

1000

0 0.5 1 1.5 2 2.5

Acc

. (G

al)

Time (s)

Max 588.14 Gal Min -812.02 Gal

mm

mm

4-6

Page 7: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

3. FLIP

(1)

FLIP23)

FLIP

24)

Case1 -9 Case3-10 Case4

-11 -10 -11

-3N Meyerhof

N FLIP 25)

-10 Case3

26)

25)

27)

400,000 kN/m2

Case4

-11

-11 Case4

-9 Case1

-3

G ma K ma mG mK n K W f h max p

(t/m3) (kN/m2) (kN/m2) (kN/m2) (°) (°)50% 1.8 68,765 179,328 0.5 0.33 0.45 2.2×106 36.5 0.2450% 2.0 68,765 179,328 0.5 0.33 0.45 2.2×106 36.5 0.24 28 0.005 1.1 0.47 1 1.47

80% 2.0 114,830 299,459 0.5 0.33 0.45 2.2×106 41.2 0.24

S 1 W1 P 1 P 2 C 1

4-7

Page 8: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

wilson =1.4 Rayleigh=0 =0.001 FLIP

Rayleigh 1

(2)

1.5 m 1.5 m

6 mm 1 m

1 mm

1 mm

Case1

Case1 6 mm

(3)

-4 Case3 1.5 m 6 mm

2 3 m2 I 6.0 mm

II 4.2 mm Case41.5 m I 2.9 mm II 2.1 mm

Case3 3 m Case41.5 m

Case3 Case4

-12 -15

2 Case3

I

Case4

-4

(a) (b)

-12 Case3 I

(a) (b)

-13 Case3 II

(a) (b)

-14 Case4 I

(a) (b)

-15 Case4 II

Case1 Case4

1.5m 3m 1.5m

I 20 12 6.0 2.9

II 9.0 8.2 4.2 2.1

Case3

mm

4-8

Page 9: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

4.

(1)Case1 Case4

Case1NW-04

NW-06 -162 I

0.9

NW-0450 mm

2II

0.7 0.8I

(a) 2 I

(b) 2 II

-16

(2)-17

I Case1Case2 Case4

Case4Case3

1.4

Case1 Case3

Case1 19.3 Hz Case3 23.7 Hz

I Case1,2 Case3,4

II Case2 I

II

I IICase3 I

Case1II

Case1,2 Case3,4Case1 Case3

Case3Case4

Case4

-18 Case4SA-11 SA-12

Case3NA-11 Case4

Case3 Case4

Case4

NW-06 Max= 1.4 , Min= 0.0

-0.50

0.51

1.5

0 2 4 6 8 10

u /

v'

t (s)

NW-04 Max= 1.0 , Min= 0.0

-0.50

0.51

1.5

0 2 4 6 8 10

u /

v'

t (s)

NW-06 Max= 1.4 , Min= 0.0

-0.50

0.51

1.5

0 2 4 6 8 10

u /

v'

t (s)

NW-04 Max= 0.8 , Min= 0.0

-0.50

0.51

1.5

0 2 4 6 8 10

u /

v'

t (s)

4-9

Page 10: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

(a) 2 I

(a) 2 I

(b) 2 II

(b) 2 II

Case1 NA-05 Max= 448 , Min= -399

-800

-4000

400800

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case2 SA-05 Max= 392 , Min= -172

-800

-400

0

400

800

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case3 NA-05 Max= 626 , Min= -530

-1000

-500

0

500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case4 SA-05 Max= 134 , Min= -160

-1000

-500

0

500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case1,2 AH-01 Max= 869 , Min= -552

-800

-400

0

400

800

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case3,4 AH-01 Max= 828 , Min= -575

-1000

-500

0

500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case4 SA-12 Max= 622 , Min= -732

-1000

-500

0

500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case4 SA-11 Max= 362 , Min= -376

-1000-500

0500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case3 NA-11 Max= 358 , Min= -269

-1000-500

0500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case1 NA-05 Max= 559 , Min= -511

-1000

-5000

5001000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case2 SA-05 Max= 508 , Min= -472

-1000-500

0500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case3 NA-05 Max= 570 , Min= -548

-1000-500

0500

1000

0 2 4 6 8 10A

cc (G

al)

t (s)

Case4 SA-05 Max= 146 , Min= -126

-1000-500

0500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case1,2 AH-01 Max= 892 , Min= -748

-1000

-500

0

500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case3,4 AH-01 Max= 1,109 , Min= -754

-1000

-500

0

500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case4 SA-12 Max= 912 , Min= -933

-1000-500

0500

1000

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case4 SA-11 Max= 493 , Min= -839

-1500-750

0750

1500

0 2 4 6 8 10

Acc

(Gal

)

t (s)

Case3 NA-11 Max= 277 , Min= -239

-1500-750

0750

1500

0 2 4 6 8 10

Acc

(Gal

)

t (s)

-17

-18

4-10

Page 11: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

(a) 2 I (b) 2 II

-19

Case1 NDH-01 Max= 1.5 , Min= -24.1

-40

-20

0

20

0 2 4 6 8 10

Dis

p-h

(mm

)

t (s)

Case2 SDH-01 Max= 3.7 , Min= -2.2

-40

-20

0

20

0 2 4 6 8 10

Dis

p-h

(mm

)

t (s)

Case2 SDH-01 Max= 1.2 , Min= -1.9

-10

-5

0

5

0 2 4 6 8 10

Dis

p-h

(mm

)

t (s)

Case3 NDH-01 Max= 1.5 , Min= -20.6

-40

-20

0

20

0 2 4 6 8 10

Dis

p-h

(mm

)

t (s)

Case4 SDH-01 Max= 1.4 , Min= -35.4

-40

-20

0

20

0 2 4 6 8 10

Dis

p-h

(mm

)

t (s)

Case4 SDH-01 Max= 2.7 , Min= -2.8

-10

-5

0

5

0 2 4 6 8 10D

isp-

h (m

m)

t (s)

1

1(a) Case1

(b) Case2-20

mm

Case1 NDH-01 Filter: Max= 1.1 , Min= -4.4

-10

-5

0

5

0 2 4 6 8 10

Dis

p-h

(mm

)

t (s)

Case3 NDH-01 Filter: Max= 2.1 , Min= -4.1

-10

-5

0

5

0 2 4 6 8 10

Dis

p-h

(mm

)

t (s)

4-11

Page 12: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

-6 Case4

(3)-19

II Case1 Case340 Hz

II Case1Case3

I Case1

20 mmCase2 1/10

Case3 Case1Case1

Case310 mm

10 mm Case1Case4 Case1

1.5

II Case1 Case2Case4 Case2 I

Case4 I

-20

1

1

(c) Case3

(d) Case4-20

4-12

Page 13: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

Case2

Case3 Case4

Case4

I-6

II I

2

II I

(4)-21 -22

-21

69.32 N m95.46 N m

I

Case2Case1

Case4

Case3 Case1

(a) Case1 (b) Case2

(c) Case3 (d) Case4

-21 2 I

(a) Case1 (b) Case2

(c) Case3 (d) Case4

-22 2 II

-400-2000200400

Bending Moment ( )

-400-2000200400

Bending Moment ( )

-400-2000200400

Bending Moment ( )

-400-2000200400

Bending Moment ( )

-1000100

Bending Moment ( )

-1000100

Bending Moment ( )

-1000100

Bending Moment ( )

-1000100

Bending Moment ( )

-400-2000200400

Bending Moment ( )

-400-2000200400

Bending Moment ( )

-400-2000200400

Bending Moment ( )

-400-2000200400

Bending Moment ( )

-1000100

Bending Moment ( )

-1000100

Bending Moment ( )

-1000100

Bending Moment ( )

-1000100

Bending Moment ( )

(N m) (N m) (N m) (N m)

(N m) (N m) (N m) (N m)

(N m) (N m) (N m) (N m)

(N m) (N m) (N m) (N m)

4-13

Page 14: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

Case4 Case2 Case1

Case2 4 Case1

Case1 Case3 Case1Case3 Case2 Case4

II I Case1Case3 Case2Case4

II Case3,4 Case1,2Case2 4

Case1

-23 2 I

-24 2 II

(5)-23 -24

-23I Case1 Case2

Case2

Case3Case1

Case4

II

Case4

5.

1)Case4

Case4

2)Case2

2 I II

Case3Case1

Case1Case4 Case1

-2001004007001000

Earth Pressure (kPa)

-2001004007001000

Earth Pressure (kPa)

-200-1000100200

Earth Pressure (kPa)

-200-1000100200

Earth Pressure (kPa)

-2001004007001000

Earth Pressure (kPa)

-2001004007001000

Earth Pressure (kPa)

Case1 Case2 Case3 Case4

Case1 Case2 Case3 Case4

-200-1000100200

Earth Pressure (kPa)

-200-1000100200

Earth Pressure (kPa)

4-14

Page 15: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

3)I

II

Case2 Case4Case1

Case3 Case1

(C)15K06194

( )

1)

62 pp.75-84 1995.2) 1995

4 1 pp.5-22 2004.3)

A1Vol.68 No.4 pp.I_584-I_597 2012.

4)

A1Vol.70 No.4 pp.I_1004-I_1017 2014.

5)A1

Vol.69 No.1 pp.69-88 2013.6)

Vol.57A pp.63-74 2011.7)

17

pp.265-268 2014.8)

Vol.69 No.6 pp.22-27 2014.

9) An, T. X. and Kiyomiya, O. : Vibration behavior andseismic performance of an existing bridge retrofitted byground anchor, IABSE Conference, Rotterdam, 2013.

10) Trung, N. T., Kiyomiya, O., An, T. X. and Tuyet, N. T. :Dynamic behavior of a steel pipe sheet pile foundationduring liquefaction in the revetment, IALCCE Fourth In-ternational Symposium on Life-Cycle Civil Engineering,pp. 247-254, 2014.

11) Trung, N. T., Kiyomiya, O., An, T. and Yoshida, M. :Shaking table test on steel pipe pile foundation to lique-faction-induced lateral spreading in approach revetment

17pp. 525-532, 2014.

12)57 12

pp.55-56 2015.13)

2 4174 2010.14) ( ) V

2012.15) 25

822 2015.16) ( ) 21

2017.17)

http://www.jamp-hmp.jp/ 2017 8 1

18) 21 In-Cap http://jiban-kiso21.gr.jp/ 2017 8 1

19) Iai, S. : Similitude for shaking table tests on soil-fluidmodel in 1g gravitational field, Report of the Port andHarbour Research Institute, Vol. 27, No. 3, 1988.

20) ( )JGS4101-2012 2012.

21) ( )2004.

22) ( )2008.

23) Iai, S., Matsunaga, Y. and Kameoka, T. : Analysis of un-drained cyclic behavior of sand under anisotropic consol-idation, Soils and Foundations, Vol. 32, No. 2, pp. 16-20,1992.

24)FLIP

pp.247-256 1998.25) Hanlong Liu

FLIP

No.869 1997.26) Towhata, I. and Ishihara, K. : Modeling soil behavior un-

der principal stress axes rotation, Proc. of 5th Internation-al Conf. on Numerical Methods in Geomechanics, Nago-ya, Vol. 1, pp. 523-530, 1985.

27) Iai, S., Matsunaga, Y. and Kameoka, T. : Strain spaceplasticity model for cyclic mobility, Report of the Port

4-15

Page 16: ¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9...¤0¿ « b ®g ì % > E * 7È/õ I P'Ç 6õ M º ú · 9 ... 0

and Harbour Research Institute, Vol. 29, No. 4, pp. 27-56, 1990. (2017. 11. 2 2018. 1. 17 2018. 2. 17 )

SHAKING TABLE TEST FOR SEISMIC STRENGTHENING MEASURES OF EXISTING BRIDGE ABUTMENT IN LIQUEFIED GROUND

Kunihiko UNO, Tongxiang AN, Osamu KIYOMIYA and Ke BAI

It has been known that existing bridge abutment in liquefied ground suffered great damage during past earthquakes. Rapid countermeasures become necessary when bridge abutment can’t satisfy performance requirements of current standard. In this research, construction methods which can be conducted simulta-neously with transportation or with less restriction based on conventional liquefaction countermeasures, ground anchor method and soil improvement method are discussed, and shaking table test is conducted to verify the strengthening effect. The result showed that ground anchor method performed well at restraint towards displacement of bridge abutment. However, additional countermeasures are still needed to be concerned for great settlement of the back ground. For soil improvement method, especially for the case when bridge abutment is enclosed by soil improvement body, proper space need to be established to avoid the risk of adverse effect.

4-16