msmemon.webs.com€¦  · web viewthe study of body sizes and other ... suppose that you are...

30
ANTHROPOMETRY The study of body sizes and other associated characteristics is generally referred to as anthropometry. While the term typically refers to static space dimensions, such as length, width, and shape, other important anthropometric measurements include the weights and inertial properties of body parts. Anthropometric measurements are essential when designing devices and/or systems to fit the users or employees. For example, almost everyone would expect doors in building to be well above 6 feet (1.83 m) tall, because we are well aware that many people exceed 6 feet in height. But how large should the diameter of a screwdriver handle be, if you want the human hand, including fingers and the thumb, to surround the circumference? Or suppose that you are designing eye-glasses and you want the hinges outboard of the glass frames to be slightly smaller than the width of the human head just above the ears. What size do you need? Clearly, people who design products for the human body need to know something about the wide variety of body sizes which are possible, and that is what this section of the chapter is about. The word ‘anthropometry’ means measurement of the human body. It is derived from the Greek words ‘anthropos’ (man) and ‘metron’ (measure). Anthropometric data are used in ergonomics to specify the physical dimensions of workspaces, equipment, furniture and clothing to ensure that physical mismatches between the dimensions of equipment and products and the corresponding user dimensions are avoided. Much of the collected anthropometric data has been taken from selected subpopulations, rather than the population as a whole, partly because many studies were originally directed at some specific design question asked by clothing or footwear manufacturers. A great deal of the data was obtained for the military to help determine the sizes of uniforms and properly design equipment. A historical note is that anthropometrists originally used tape measures and other devices to make direct measurements of people. Since that process was very time consuming, it was largely dropped in favor of working extensively with photographic records. The use of

Upload: vungoc

Post on 29-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

ANTHROPOMETRY

The study of body sizes and other associated characteristics is generally referred to as anthropometry. While the term typically refers to static space dimensions, such as length, width, and shape, other important anthropometric measurements include the weights and inertial properties of body parts. Anthropometric measurements are essential when designing devices and/or systems to fit the users or employees. For example, almost everyone would expect doors in building to be well above 6 feet (1.83 m) tall, because we are well aware that many people exceed 6 feet in height. But how large should the diameter of a screwdriver handle be, if you want the human hand, including fingers and the thumb, to surround the circumference? Or suppose that you are designing eye-glasses and you want the hinges outboard of the glass frames to be slightly smaller than the width of the human head just above the ears. What size do you need? Clearly, people who design products for the human body need to know something about the wide variety of body sizes which are possible, and that is what this section of the chapter is about.

The word ‘anthropometry’ means measurement of the human body. It is derived from the Greek words ‘anthropos’ (man) and ‘metron’ (measure). Anthropometric data are used in ergonomics to specify the physical dimensions of workspaces, equipment, furniture and clothing to ensure that physical mismatches between the dimensions of equipment and products and the corresponding user dimensions are avoided.

Much of the collected anthropometric data has been taken from selected subpopulations, rather than the population as a whole, partly because many studies were originally directed at some specific design question asked by clothing or footwear manufacturers. A great deal of the data was obtained for the military to help determine the sizes of uniforms and properly design equipment.

A historical note is that anthropometrists originally used tape measures and other devices to make direct measurements of people. Since that process was very time consuming, it was largely dropped in favor of working extensively with photographic records. The use of photographs for measurement also improved the repeatability of measurements because all measurements were made on a flat surface. More recently, the use of laser scanning devices, interfaced with computer data collection software, has greatly reduced the time needed to collect information on body shapes. This potentially revolutionary development is already leading to new applications of anthropometric data.

PREDICTING THE STATURE OF PEOPLE

People from a specified population vary in height from person to person following a normal (or Gaussian) distribution (see Figure 2.6).

The latter figure shows a bell-shaped curve obtained when the stature of British men (in millimeters) was plotted versus the relative frequency of each height for the population. Below that bell curve is a percentile scale, ranging from the first percentile to 99th percentile. These two points correspond to heights of approximately 1,575 mm and 1,900 mm. The median (50th percentile height) is about 1,743 mm. Figure 2.7 shows the cumulative normal function for the various heights. Here, the lower line in this figure represents the z-values of standardized normal variation or standard deviations. The tail of the normal distribution to the right of a z score of 1.96 has an area of 2.5%. Accordingly, a range of z-values between -1.96 and +1.96 describes a 95% confidence interval around the mean. For the data shown, 95% of the population falls in the interval from 1,600 to 1,889 mm. The range from z = -1.64 to z = +1.64 corresponds to the middle 90% of the population, and sizes ranging from 1,629 mm to 1,855 mm.

Designers often use such data to fit their designs to selected populations. This approach is especially likely to be useful when designers have some control over the subpopulations. For example, in military settings, pilot candidates who are unusually tall or short can be screened out.

One major complicating issue is that anthropometric measurements show consistent variation between members of different ethnic groups, between genders, and over time. NASA and other organizations have attempted to document ethnic and other differences in stature data. Much of the information they have assembled shows that human stature has been increasing worldwide since the mid-1800s. The average heights of military personnel worldwide have shown dramatic increases from about 1,715 mm during the early part of this century to 1,775 mm (or slightly more) in 1980. That increase represents a rate of growth in the human stature of about 1 mm a year. Although the accuracy of some of the older records may be debatable, nearly all countries with records going back very far have shown a continual upward trend in stature. Many people attribute this worldwide change to better diets. Those data also tend to show ethnic differences.

For example, Norwegian and Danish statures have tended to be the greatest of many reported in the world. Among Europeans, the stature of the French tends to be the smallest historically. The stature of the Japanese tends to be very much smaller than those of European nationalities during the early part of the 20th century, but this is changing quickly. An interesting note is that since the 1980s, the number of females in the U.S. military has increased significantly. Consequently, the rate of increase in the mean height of U.S. military personnel has been slowed. The roles of gender and other factors are explored in more detail in the following section.

ESTIMATING BODY DIMENSIONS

Figures 2.8 and 2.9 respectively provide numerous measurements of different parts of men and women. Note that these measurement units are given as proportions of the person’s height (H) in meters. These figures also provide adjustments for differences among Nordic, Mediterranean or U.S. nationalities. NASA and other organizations have published volumes of reference data that are more precise than the approximations provided in these two figures.

Since the body sizes in Figures 2.8 and 2.9 are related to height, it is interesting to note that height changes with age. Children grow and older people shrink. But child growth differs between the genders.

PREDICTING THE SEGMENT MASS OF THE HUMAN BODY

Human physical activities normally involve movement. The larger the mass of the body part that is moved, the greater the forces needed to move it. For this and other reasons it is often useful to be able to predict the mass of different segments of the body. Some of the work at NASA provides an empirical basis for predicting those mass magnitudes. They made traditional body mass measurements and then ran statistical regression analyses in which they predicted the weight of the specific body segments as a function of the person’s overall body weight (W).

Anthropometry and its uses in ergonomics

As a rule of thumb, if we take the smallest female and the tallest male in a population, the male will be 30–40% taller, 100% heavier and 500% stronger (Grieve and Pheasant, 1982). Clearly, the natural variation of human populations has implications for the way almost all products and devices are designed. Some obvious examples are clothes, furniture and automobiles. The approach of ergonomics is to consider product dimensions in human terms in view of the constraints placed on their design by body size variability. For example, a seat should be no higher than the popliteal height of a short user and no deeper than the distance from the buttocks to the knees.

Body size and proportion vary greatly between different populations, a fact that designers must never lose sight of when designing for an international market. A US manufacturer hoping to export to Central and South America or South-east Asia would need to consider in what ways product dimensions optimised for a large US (and probably male) user-group would suit Mexican or Vietnamese users; the latter belong to one of the smallest populations in the world. Ashby (1979) illustrated the importance of anthropometric considerations in design as follows:

If a piece of equipment was designed to fit 90% of the male US population, it would fit roughly 90% of Germans, 80% of Frenchmen, 65% of Italians, 45% of

Japanese, 25% of Thais and 10% of Vietnamese.

It is usually impracticable and expensive to design products individually to suit the requirements of every user. Most are mass-produced and designed to fit a wide range of users: the bespoke tailor, the dressmaker and the cobbler are perhaps the only remaining examples of truly user-oriented designers in Western industrial societies.

Types of anthropometric data

1. Structural anthropometric data

Structural anthropometric data are measurements of the bodily dimensions of subjects in fixed (static) positions. Measurements are made from one clearly identifiable anatomical landmark to another or to a fixed point in space (e.g. the height of the knuckles above the floor, the height of the popliteal fossa (back of the knee) above the floor, and so on). Some examples of the use of structural anthropometric data are to specify furniture dimensions and ranges of adjustment and to determine ranges of clothing sizes. Figure 3.2 shows structural variables that are known to be important in the design of vehicles, products, workspaces and clothing. Figure 3.3 shows examples of vehicle dimensions that would require user anthropometry to be specified.

2. Functional anthropometric data

Functional anthropometric data are collected to describe the movement of a body part with respect to a fixed reference point. For example, data are available concerning the maximum forward reach of standing subjects. The area swept out by the movement of the hand can be used to describe ‘workspace envelopes’, zones of easy or maximum reach around an operator. These can be

used to optimise the layout of controls in panel design. The size and shape of the workspace envelope depends on the degree of bodily constraint imposed on the operator. The size of the workspace envelope increases with the number of unconstrained joints. For example, the area of reach of a seated operator is greater if the spine is unencumbered by a backrest and can flex, extend and rotate. Standing reach is also greater if the spine is unconstrained and greater still if there is adequate foot space to enable one or both feet to be moved. Somewhat counterintuitively, one way to increase a worker’s functional hand reach is to provide more space for the feet.

Generally speaking, fewer functional than structural anthropometric data are available. Although clinicians have long been interested in determining normal ranges of joint movement in healthy individuals to assist in assessment of patients, these data are not always quantified or even directly applicable to design problems. However, existing functional anthropometric data are useful for designing workspaces and positioning objects within them, particularly in the design of aircraft cockpits, crane cabs, vehicle interiors and complex control panels in the process industries (Figure 3.4).

3. Newtonian anthropometric data

Newtonian anthropometric data are used in mechanical analysis of the loads on the human body. The body is regarded as an assemblage of linked segments of known length and mass (sometimes expressed as a percentage of stature and body weight). Ranges of the appropriate angles to be subtended by adjacent links are also given to enable suitable ranges of working postures to be defined. This enables designers to specify those regions of the workspace in which displays and controls may be most optimally positioned. Newtonian data may be used to compare the load on the spine due to different lifting techniques. Data on strength are also available (Table 3.13).

Applying statistics to design

Statistical information about body size is not, in itself, directly applicable to a design problem. First, the designer has to analyse in what ways (if any) anthropometric mismatches might occur and then decide which anthropometric data might be appropriate to the problem. In other words, the designer has to develop some clear ideas about what constitutes an appropriate match between user and product dimensions. Next, a suitable percentile has to be chosen. In many design applications, mismatches occur only at one extreme (only very tall or very short people are affected, for example) and the solution is to select either a maximum or a minimum dimension. If the design accommodates people at the appropriate extreme of the anthropometric range, less-extreme people will be accommodated.

Minimum dimensions

A high percentile value of an appropriate anthropometric dimension is chosen. When designing a doorway, for example, sufficient head room for very tall people has to be provided and the 95th or 99th percentile (male) stature could be used to specify a minimum height. The doorway should be no lower than this minimum value and additional allowance would have to be made for the increase in stature caused by items of clothing such as the heels of shoes, protective headgear, etc.

Seat breadth is also determined using a minimum dimension: the width of a seat must be no narrower than the largest hip width in the target population (Figure 3.7). Minimum dimensions are used to specify the placement of controls on machines, door handles, etc. Controls must be sufficiently high off the ground that tall operators can reach them without stooping – i.e. no lower than the 95th percentile standing knuckle height. In the case of door handles, the maximum vertical reach of a

small child might also be considered (to prevent young children opening doors when unsupervised).

Circulation space must be provided in offices, factories and storerooms to allow for ingress and egress of personnel and to prevent collisions. In a female or mixed-sex workforce, the body width of a pregnant women would be used to determine the minimum . About 60 cm of clearance space is needed for passages, the separation of machines and the distance of furniture from walls or other objects in a room.

Maximum dimensions

A low percentile is chosen in determining the maximum height of a door latch so that the smallest adult in a population will be able to reach it. The latch must be no higher than the maximum vertical grip reach of

a small person. The height of non-adjustable seats used in public transport systems and auditoria is also determined using this principle: the seat must be low enough so that a short person can rest the feet on the floor when using it. Thus, the seat height must be no higher than the 1st percentile or 5th percentile popliteal height in the population. Figure 3.8 gives examples of some maximum allowable dimensions.

Cost–benefit analysis

Sometimes it is not necessary to use anthropometric data because there may be no costs incurred in designing to suit everyone (a doorway or entrance is a hole and the bigger it is, the less building materials are used). However, there are often trade-offs between the additional costs of designing to suit a wide range of people and the number of people who will ultimately benefit.

Let us suppose that the minimum height of a car interior has to be specified. Increases in roof height increase wind resistance and construction cost but provide head clearance for tall drivers. Thus, there are both costs and benefits of building cars with plenty of headroom for the occupants.

Anthropometric data must always be used in a cautious manner and with a sound appreciation of the design requirements and the practical considerations. In particular, the designer should try to predict the consequences of a mismatch – how serious they would be and who would be affected. The height of the

handle of a door leading to a fire escape in an apartment block dramatises the seriousness of such mismatches – it is essential that a very wide range of users, including children, be able to reach and operate the handle in an emergency. The design of passenger seats for urban transportation systems is also important, although somewhat more mundane. Because the seats are used regularly by a very wide range of users, even small imperfections will affect the comfort of a very large number of people every day. When using anthropometric data, the selection of a suitable cut-off point depends on the consequences of an anthropometric mismatch and the cost of designing for a wide range of people. One of the ergonomist’s most important tasks is to predict and evaluate what any mismatches are going to be like. It is not normally sufficient only to specify the required dimensions without considering other aspects such as usability and misuse.

Applications of anthropometry in design

Table 3.14 gives examples of some common anthropometric variables and how they are used in ergonomics.

Static work: Design for standing and seated workers

Humans are designed to stand on two legs, but they are not designed to stand still. Standing is the position of choice for many tasks in industry but it can lead to discomfort if insufficient rest is provided or if unnecessary postural load is placed on the body. Some advantages of the standing work position are given in Table 4.1.In everyday life, people rarely stand still for any length of time – if not walking or moving, they adopt a variety of resting positions that vary depending on the culture (Hewes, 1957; Bridger et al., 1994). Table 4.2 summarises some behaviours associated with unconstrained standing. In most occupational settings where people engage in ‘industrial standing’, they are denied the opportunity to practise these behaviours by the design of their workspaces and the design of their jobs.

Prolonged daily standing is known to be associated with low back pain. Where possible, jobs that require people to stand still for prolonged periods without some external form of aid or support must be redesigned to allow more movement or to allow the work to be done in a combination of standing and sitting postures.

FUNDAMENTAL ASPECTS OF SITTING AND STANDING

Anatomy of standing

The pelvis is held in an anteriorly tilted position by the iliopsoas muscles and the hip joint is free to extend as happens during the stance phase of gait. The trunk and head are rotated until they are vertically above the legs. This is achieved by extension of the lumbar and cervical spines and is why the vertically held spine is ‘S’ shaped in humans whereas in quadrupeds it is ‘C’ shaped and held horizontal to the ground.

Bones and joints In the erect posture, the line of gravity of superincumbent body parts passes through the

lumbar, sacral and hip joints and in front of the knee and ankle joints. This places an extension torque around the knee joint, which is resisted because the joint is already fully extended. The flexion torque around the ankle is resisted by the plantar flexors.

Muscles and ligaments A person standing erect under the influence of gravity is never in a state of passive equilibrium.

The body can be conceived of as a pillar of segments stacked one on top of the other and linked by joints. It is momentarily balanced when the resultant of all forces acting on it is zero. The system is designed to minimise any displacement of the line of action beyond the base of support described by the position of the feet. Compensatory mechanisms come into play to maintain balance immediately this happens.Muscles and ligaments play a stabilising role by means of the active and passive torques they exert around joints to correct small, fleeting displacements of the lines of action away from the joints. A ‘good’ posture may be defined as one in which destabilising moments are minimised and the posture is maintained by the resistance of the relatively incompressible bones (as well as interleaved soft tissues such as the intervertebral discs).When the body is pulled ‘off-balance’ by the requirements of badly designed jobs or workspaces, the anti-gravity muscles come into play and a new equilibrium position is established but with the associated cost of isometric muscle activity.

The erector spinae muscles These are the main extensors of the trunk. They are also used to control flexion. In relaxed

standing, very little muscle activity occurs since the lumbar lordosis minimises the trunk flexion moment. When the trunk is flexed even slightly forwards or when a weight is held in front of the body, the erector spinae muscles come into play. Work situations that set up static loading of these muscles include

• Working with the hands and arms held away from the body• Holding a tool or a weight• Standing with the trunk flexed to reach for work objects placed too far away or inaccessible

owing to a lack of foot space

The leg muscles The soleus and gastrocnemius muscles are true postural muscles in the sense that they are always

‘switched on’ when standing. When a person is leaning forward, the activity of the gastrocnemius muscle increases. Prolonged standing causes significant localised leg muscle fatigue and is one of the causes of leg discomfort.

The abdominal muscles There is very little abdominal muscle activity in standing and even less in sitting (Burdorf et al.,

1993). These muscles may help to maintain a proper relationship between the thorax and pelvis by preventing excessive anterior pelvic tilt and hyperlordosis. The abdominals can prevent trunk extension, caused, for example, by loads placed high on the back (or when putting on a backpack, for example) or when walking down steep hills.

The hamstring and gluteal muscles The hamstring and gluteal muscles are hip extensors. The gluteal muscles exhibit hypertrophy in

humans and their function is to stop the trunk from ‘jack-knifing’ forwards over the legs, unlike in quadrupeds where the trunk is already ‘jack-knifed’ and the gluteals are used for locomotion. The gluteals are, however, used for locomotion in climbing ladders or stairs. Activity in the hamstrings is slight in the standing position but increases when the stander leans forward, holds a weight or pulls.

The iliopsoas muscles Psoas major and iliacus are hip flexors and are constantly active in normal standing as they

prevent extension of the hip joint (the trunk ‘jack-knifing’ backwards over the legs, or loss of lumbar lordosis if the head position is maintained). The iliopsoas muscles act against the hip extensors.

The adductors and abductors of the hip When a person is standing on two feet, these muscles provide lateral stability, preventing

translation of the pelvis in the frontal plane. When a person standing on one foot (and also during the stance phase of gait) the pelvis tends to tilt in the direction of the unsupported side. The hip abductors on the side of the supporting leg contract to keep the pelvis level.

Physiology of standing

The increase in energy expenditure when a person changes from a supine to a standing position is only about 8% (Grandjean, 1980). However, erect standing imposes a hydrostatic handicap that makes humans liable to peripheral circulatory collapse. Peak plantar (foot) pressures of 137 (kilopascals) kPa exceed the normal systolic pressure of 17 kPa, resulting in occlusion of blood flow through the foot (Cavanagh et al., 1987). Walking and fidgeting temporarily reduce the pressure, allowing fresh blood to pervade the tissues. Venous and circulatory insufficiencies in the lower limbs also contribute to the discomfort that results from prolonged standing. It has been shown that venous reflux is more common in symptom-free surgeons (who stand for long periods) than in a comparison group who experience discomfort in standing.Prolonged standing causes physiological changes including peripheral pooling of blood, a decrease in stroke volume and increases in heart rate, diastolic and mean arterial pressure, peripheral resistance and thoracic impedance. Standing up from a supine position is accompanied by an increase in the dimensions of the nasal passages.

SittingWhen a person flexes the hip and knee joint to sit down, the iliopsoas muscles immediately shorten and the hip extensors lengthen (Link et al., 1990; Bridger et al., 1992). The balance of antagonistic muscle forces, which keep the pelvis in its anteriorly tilted position, is changed and the pelvis tilts posteriorly almost immediately and continues in proportion to the flexion at the hip. In order to maintain the head erect, the lumbar spine flexes to compensate for the tilting pelvis and the lumbar lordosis diminishes and eventually disappears (Figure 4.1).The spine of a person seated erect exhibits greatly diminished lumbar curvature (mean angle of curvature of 34 degrees compared to 47 degrees in standing, according to Lord et al., 1997). The flexion moment about the lumbar spine is increased, putting the posterior spinal ligaments under

tension and causing the intervertebral discs to be ‘wedged’ anteriorly and to protrude into the intervertebral foramen (Keegan, 1953; Figure 4.2). The mechanical effect of the flexion moment is an increase in the pressure in the intervertebral discs.

An ergonomic approach to workstation designErgonomic workstation design encourages good posture. Figure 4.4 presents a framework for posture. It emphasises the role of three classes of variables (Table 4.3).

Clearly, ‘ergonomically designed’ furniture cannot be bought off the shelf. Decisions about the appropriateness and relative advantages of different designs can only be made after considering the characteristics of users and the requirements of their jobs (Figure 4.5). Indeed, van Dieen et al. (2001) in a study of word processing, CAD work and reading found that trunk loading and trunk kinematics were more affected by the task carried out than the chair that was sat in.

Characteristics of users and workspace/equipment designOne of the most basic considerations in workstation design is the anthropometric fit between users and furniture (Figure 4.6). Designers typically design to ensure that 90% of users will be accommodated. Problems can therefore occur with extremely tall, short or obese individuals and special arrangements may need to be made to accommodate them. Much office furniture is designed around a desk height of approximately 73 cm and assumes provision of a height-adjustable chair. This ensures, within limits, that

1. Short users can raise their chair heights such that the desk height approximates their sitting elbow height.

2. The desk is not so high that the chair height exceeds the popliteal height of a short person in order to achieve (1).

3. The desk is high enough that tall users can approximate desk and elbow heights and still have space under the desk for their legs (i.e. they do not have to lower their chairs too much).

Immediately, it can be seen that with fixed desk heights, there are conflicting requirements in trying to accommodate both tall and short users.

Spinal problems in standingLow back pain is common in standing workers and a number of authors have suggested reasons for this. In extended postures (e.g. when standing with a pronounced lumbar lordosis) the facet joints may begin to take on some of the compressive load. If the lumbar intervertebral discs are degenerated, the space between adjacent vertebrae decreases and the load on the facet joints increases even more. Adams and Hutton (1985) suggest that excessive facet joint loading may be a causal factor in the incidence of osteoarthritis. Bough et al. (1990) have shown that degeneration of the facet joints is a source of low back and sciatic pain.Both Adams and Hutton and Yang and King (1984) suggest that excessive loading of the facet joints stresses the soft tissues around the joint and causes low back pain. For these reasons, excessive lumbar lordosis should be avoided when standing. Extrapolating from this, any workspace or task factors that require workers to arch the back more than they would normally do should be designed out. Low back pain can also be caused by muscular fatigue if a standing person has to work with the trunk inclined forwards (when doing the washing-up or ironing, for example). In standing, the workspace must be designed to prevent workers from having to stand with excessive lumbar lordosis or having to adopt forward-flexed working positions.

Spinal problems in sittingSitting has a number of advantages over standing as a working position. Static, low-level activity of the soleus and tibialis anterior muscles is required in standing and these muscles can fatigue. Because the lower limbs drain blood against gravity, pooling may occur when someone stands still for long periods, causing swelling at the ankles. In extreme circumstances, reduced return of blood to the heart may cause a drop in blood pressure and the person may faint. The hydrostatic head that has tobe overcome to return blood to the heart from the lower limbs is less in sitting than in standing, if the seat is correctly designed.Despite the popular myth that occupational sitting is a risk factor for low back pain, the evidence suggests that sitting at work, in itself, is quite harmless (Hartvigsen et al., 2000). However, prolonged

sitting at work (more than 95% of the day) is associated with back pain (Hoggendoorn et al., 2000). Further, many people with bad backs gravitate towards sedentary work. Poor design of workstations may then exacerbate their problems. In a study at the Eastman Kodak Company in New York, 35% of sedentary workers visited the medical department with complaints of low back pain over a 10-year period. People with existing low back problems often cannot tolerate the sitting position for more than a few hours over the workday.It is generally accepted that flexed sitting postures should be avoided because of the posterior protrusion of the discs caused by anterior wedging strain. Mandal (1981, 1991) has criticised the ‘90-degree’ concept in seat design, stating that the slumped, flexed posture is inevitable if seats are designed in this way. Mandal has suggested that seats should be higher and should have a forward tilt to reduce the amount of hip flexion needed to use them.

Health hazards and anthropometric mismatchesAnthropometric mismatches can have serious consequences for health and efficiency because of the way they increase the postural load on the body (Figure 4.7). Short users, for example, may have to raise seat heights beyond popliteal height in order to gain access to the desk. As a consequence, the feet no longer rest firmly on the floor and the floor cannot be used by the legs as a fulcrum for stabilising and shifting the weight of the upper body. The load of stabilisation is now transferred to the muscles of the trunk. The weight of the legs, instead of being borne by the feet, is borne by the underside of the thigh. This can restrict blood flow and is particularly undesirable for those with varicose veins. It can also cause a condition known as ‘lipoatrophia semicircularis’ (band-like circular depressions and isolated atrophy of subcutaneous fatty tissue on the thighs). Hermans et al. (1999) found postural differences between lipoatrophia semicircularis sufferers and non-sufferers – static sitting postures, less use of lumbar support, chair too high and higher pressures at the seat surface. When seats are too high, the feet can no longer be used to extend the base of support beyond the base of the chair. This makes activities such as reaching and picking up heavy objects more hazardous. Continuous compensatory movements of body parts may be necessary to maintain stability. This hastens fatigue.An alternative to raising the chair is for the short user to work with the elbows below desk height, increasing the static loading of the upper body, particularly the shoulder girdle as the elbows are held in an elevated position. Computer and type- writer keyboards increase the effective work surface height, hence the use of sliding keyboard drawers for programmers.Tall users may find desk heights of approximately 70–75 cm too low since, even with the chair at its lowest level, the distance between the eyes and the work surface may be too great for comfortable viewing, causing the user to slump over the desk when writing.Lack of footspace may also be a problem for tall workers. Mandal (1981, 1991) has called for an increase in desk heights to overcome these problems and to account for the increasing height of the population. Short users can be given footrests as standard equipment to ensure anthropometric fit. This is similar to the industrial practice of designing high benches to suit taller standing workers and providing raised platforms for those of lesser height.

Height-adjustable desks have been proposed (Ostberg et al., 1984) for use with height-adjustable chairs in order to increase the range of users accommodated by a workstation. The correct way to adjust one of these workstations is as follows (Starr, 1983):1. First adjust the chair height so that the feet are resting firmly on the floor.2. Adjust the work surface height for comfortable access to the desktop or keyboard.