the renaissance of combinatorics: advances

73
A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals The Renaissance of Combinatorics: Advances – Algorithms – Applications Center of Combinatorics, Nankai University, Tianjin A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals Carsten Schneider RISC, J. Kepler University Linz, Austria 16. August 2010 RISC, J. Kepler University Linz Carsten Schneider

Upload: others

Post on 22-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Renaissance of Combinatorics: Advances

A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

The Renaissance of Combinatorics: Advances – Algorithms – Applications

Center of Combinatorics, Nankai University, Tianjin

A Symbolic Summation Toolboxto Evaluate 3–loop Feynman Integrals

Carsten SchneiderRISC, J. Kepler University Linz, Austria

16. August 2010

RISC, J. Kepler University Linz Carsten Schneider

Page 2: The Renaissance of Combinatorics: Advances

A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

The Renaissance of Combinatorics: Advances – Z’s Algorithm – Applications

Center of Combinatorics, Nankai University, Tianjin

A Symbolic Summation Toolboxto Evaluate 3–loop Feynman Integrals

Carsten SchneiderRISC, J. Kepler University Linz, Austria

16. August 2010

RISC, J. Kepler University Linz Carsten Schneider

Page 3: The Renaissance of Combinatorics: Advances

A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Evaluation of Feynman Integrals

Feynman diagrams

RISC, J. Kepler University Linz Carsten Schneider

Page 4: The Renaissance of Combinatorics: Advances

A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Evaluation of Feynman Integrals

Feynman diagrams

Φ(N, ε, x)dx

Feynman integrals

RISC, J. Kepler University Linz Carsten Schneider

Page 5: The Renaissance of Combinatorics: Advances

A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Evaluation of Feynman Integrals

Feynman diagrams

Φ(N, ε, x)dx

Feynman integrals

Reduction

multi-sums withinteger parameter N

RISC, J. Kepler University Linz Carsten Schneider

Page 6: The Renaissance of Combinatorics: Advances

A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Evaluation of Feynman Integrals

Feynman diagrams

Φ(N, ε, x)dx

Feynman integrals

Reduction

sum expressionsbeing processable by physicists

multi-sums withinteger parameter N

Sigma

RISC, J. Kepler University Linz Carsten Schneider

Page 7: The Renaissance of Combinatorics: Advances

A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Evaluation of Feynman Integrals

Feynman diagrams

Φ(N, ε, x)dx

Feynman integrals

Reduction

sum expressionsbeing processable by physicists

multi-sums withinteger parameter N

Sigma

RISC, J. Kepler University Linz Carsten Schneider

Page 8: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

A warm up example:

GIVEN F (N) =∞∑

k=0

∞∑

j=0

e−eγ

Γ(ε+ 1)×

×

(

Γ(k + 1)

Γ(k + 2 +N)

Γ( ε2)Γ(1− ε

2)Γ(j + 1− ε

2)Γ(j + 1 + ε

2)Γ(k + j + 1 +N)

Γ(j + 1− ε2)Γ(j + 2 +N)Γ(k + j + 2)

+Γ(k + 1)

Γ(k + 2 +N)

Γ(− ε2)Γ(1 + ε

2)Γ(j + 1 + ε)Γ(j + 1− ε

2)Γ(k + j + 1 + ε

2+N)

Γ(j + 1)Γ(j + 2 + ε2+N)Γ(k + j + 2 + ε

2)

︸ ︷︷ ︸

f(N, k, j)

)

.

Arose in the context ofI. Bierenbaum, J. Blumlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006

RISC, J. Kepler University Linz Carsten Schneider

Page 9: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

A warm up example:

GIVEN F (N) =∞∑

k=0

∞∑

j=0

e−eγ

Γ(ε+ 1)×

×

(

Γ(k + 1)

Γ(k + 2 +N)

Γ( ε2)Γ(1− ε

2)Γ(j + 1− ε

2)Γ(j + 1 + ε

2)Γ(k + j + 1 +N)

Γ(j + 1− ε2)Γ(j + 2 +N)Γ(k + j + 2)

+Γ(k + 1)

Γ(k + 2 +N)

Γ(− ε2)Γ(1 + ε

2)Γ(j + 1 + ε)Γ(j + 1− ε

2)Γ(k + j + 1 + ε

2+N)

Γ(j + 1)Γ(j + 2 + ε2+N)Γ(k + j + 2 + ε

2)

︸ ︷︷ ︸

f(N, k, j)

)

.

FIND the first coefficients of the ε-expansion

F (N) = F0(N) + εF1(N) + . . .

Arose in the context ofI. Bierenbaum, J. Blumlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006

RISC, J. Kepler University Linz Carsten Schneider

Page 10: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

A warm up example:

GIVEN F (N) =∞∑

k=0

∞∑

j=0

e−eγ

Γ(ε+ 1)×

×

(

Γ(k + 1)

Γ(k + 2 +N)

Γ( ε2)Γ(1− ε

2)Γ(j + 1− ε

2)Γ(j + 1 + ε

2)Γ(k + j + 1 +N)

Γ(j + 1− ε2)Γ(j + 2 +N)Γ(k + j + 2)

+Γ(k + 1)

Γ(k + 2 +N)

Γ(− ε2)Γ(1 + ε

2)Γ(j + 1 + ε)Γ(j + 1− ε

2)Γ(k + j + 1 + ε

2+N)

Γ(j + 1)Γ(j + 2 + ε2+N)Γ(k + j + 2 + ε

2)

︸ ︷︷ ︸

f(N, k, j)

)

.

Step 1: Compute the first coefficients of the ε-expansion

f(N, k, j) = f0(N, k, j) + εf1(N, k, j) + . . .

Arose in the context ofI. Bierenbaum, J. Blumlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006

RISC, J. Kepler University Linz Carsten Schneider

Page 11: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

A warm up example:

GIVEN F (N) =∞∑

k=0

∞∑

j=0

e−eγ

Γ(ε+ 1)×

×

(

Γ(k + 1)

Γ(k + 2 +N)

Γ( ε2)Γ(1− ε

2)Γ(j + 1− ε

2)Γ(j + 1 + ε

2)Γ(k + j + 1 +N)

Γ(j + 1− ε2)Γ(j + 2 +N)Γ(k + j + 2)

+Γ(k + 1)

Γ(k + 2 +N)

Γ(− ε2)Γ(1 + ε

2)Γ(j + 1 + ε)Γ(j + 1− ε

2)Γ(k + j + 1 + ε

2+N)

Γ(j + 1)Γ(j + 2 + ε2+N)Γ(k + j + 2 + ε

2)

︸ ︷︷ ︸

f(N, k, j)

)

.

Step 2: Simplify the sums in

∞∑

k=0

∞∑

j=0

f(N, k, j) =∞∑

k=0

∞∑

j=0

f0(N, k, j) + ε

∞∑

k=0

∞∑

j=0

f1(N, k, j) + . . .

Arose in the context ofI. Bierenbaum, J. Blumlein, and S. Klein, Evaluating two-loop massive operator matrix

elements with Mellin-Barnes integrals. 2006

RISC, J. Kepler University Linz Carsten Schneider

Page 12: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)where

S1(N) =

N∑

i=1

1

i(= HN )

RISC, J. Kepler University Linz Carsten Schneider

Page 13: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)a∑

j=0

f(N, k, j) = Sigma

RISC, J. Kepler University Linz Carsten Schneider

Page 14: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)a∑

j=0

f(N, k, j) = Sigma

FIND g(j):

f(N, k, j) = g(j + 1)− g(j)

RISC, J. Kepler University Linz Carsten Schneider

Page 15: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)a∑

j=0

f(N, k, j) = Sigma

FIND g(j):

f(N, k, j) = g(j + 1)− g(j)

Sigma (based on a refined version of M. Karr’s difference fields (1981))computes

g(j) =(j+k+1)(j+N+1)j!k!(j+k+N)!

(S1(j)−S1(j+k)−S1(j+N)+S1(j+k+N)

)

kN(j+k+1)!(j+N+1)!(k+N+1)!

RISC, J. Kepler University Linz Carsten Schneider

Page 16: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)a∑

j=0

f(N, k, j) = Sigma

FIND g(j):

f(N, k, j) = g(j + 1)− g(j)

Summing the telescoping equation over j from 0 to a gives

a∑

j=0

f(N, k, j) = g(a+ 1)− g(0)

RISC, J. Kepler University Linz Carsten Schneider

Page 17: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)

a∑

j=0

f(N, k, j) = (a+1)!(k−1)!(a+k+N+1)!(S1(a)−S1(a+k)−S1(a+N)+S1(a+k+N))N(a+k+1)!(a+N+1)!(k+N+1)!

+S1(k)+S1(N)−S1(k+N)kN(k+N+1)N ! + (2a+k+N+2)a!k!(a+k+N)!

(a+k+1)(a+N+1)(a+k+1)!(a+N+1)!(k+N+1)!︸ ︷︷ ︸

a → ∞

RISC, J. Kepler University Linz Carsten Schneider

Page 18: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)

∞∑

j=0

f(N, k, j) =S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !

RISC, J. Kepler University Linz Carsten Schneider

Page 19: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)

a∑

k=1

∞∑

j=0

f(N, k, j) =

a∑

k=1

S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !

RISC, J. Kepler University Linz Carsten Schneider

Page 20: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

TelescopingGIVEN

SUM(N) :=a∑

k=1

S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !︸ ︷︷ ︸

=: f(N, k)

.

FIND g(N, k):

g(N, k + 1)− g(N, k) = f(N, k)

for all 0 ≤ k ≤ N and all N ≥ 0.

no solution ©◦ ◦_

RISC, J. Kepler University Linz Carsten Schneider

Page 21: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Zeilberger’s creative telescoping paradigmGIVEN

SUM(N) :=a∑

k=1

S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !︸ ︷︷ ︸

=: f(N, k)

.

FIND g(N, k) and c0(N), c1(N):

g(N, k + 1)− g(N, k) = c0(N)f(N, k) + c1(N) f(N + 1, k)

for all 0 ≤ k ≤ N and all N ≥ 0.

RISC, J. Kepler University Linz Carsten Schneider

Page 22: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Zeilberger’s creative telescoping paradigmGIVEN

SUM(N) :=a∑

k=1

S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !︸ ︷︷ ︸

=: f(N, k)

.

FIND g(N, k) and c0(N), c1(N):

g(N, k + 1)− g(N, k) = c0(N)f(N, k) + c1(N) f(N + 1, k)

for all 0 ≤ k ≤ N and all N ≥ 0.

Sigma computes: c0(N) = −N , c1(N) = (N + 1)(N + 2) and

g(N, k) =kS1(k) + (−N − 1)S1(N)− kS1(k +N)− 2

(k +N + 1)N !(N + 1)2

RISC, J. Kepler University Linz Carsten Schneider

Page 23: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Zeilberger’s creative telescoping paradigmGIVEN

SUM(N) :=a∑

k=1

S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !︸ ︷︷ ︸

=: f(N, k)

.

FIND g(N, k) and c0(N), c1(N):

g(N, k + 1)− g(N, k) = c0(N)f(N, k) + c1(N) f(N + 1, k)

for all 0 ≤ k ≤ N and all N ≥ 0.

Summing this equation over k from 0 to a gives:

g(N, a+ 1)− g(N, 0) = c0(N)SUM(N) + c1(N)SUM(N + 1)

RISC, J. Kepler University Linz Carsten Schneider

Page 24: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Zeilberger’s creative telescoping paradigmGIVEN

SUM(N) :=a∑

k=1

S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !︸ ︷︷ ︸

=: f(N, k)

.

FIND g(N, k) and c0(N), c1(N):

g(N, k + 1)− g(N, k) = c0(N)f(N, k) + c1(N) f(N + 1, k)

for all 0 ≤ k ≤ N and all N ≥ 0.

Summing this equation over k from 0 to a gives: Sigma

g(N, a+ 1)− g(N, 0) = c0(N)SUM(N) + c1(N)SUM(N + 1)

|| ||

(a+1)(S1(a)+S1(N)−S1(a+N))(N+1)2(a+N+2)N ! −NSUM(N) + (1 +N)(2 +N)SUM(N + 1)

+ a(a+1)(N+1)3(a+N+1)(a+N+2)N !

RISC, J. Kepler University Linz Carsten Schneider

Page 25: The Renaissance of Combinatorics: Advances

Summation paradigms A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)

∞∑

k=1

∞∑

j=0

f(N, k, j) =

∞∑

k=1

S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !

=S1(N)2 + S2(N)

2N(N + 1)!

where

S2(N) =

N∑

i=1

1

i2

RISC, J. Kepler University Linz Carsten Schneider

Page 26: The Renaissance of Combinatorics: Advances

Sigma summation spiral A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

1. Creative telescoping (for the original version for hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

S(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;n: extra parameter

FIND a recurrence for S(n)

RISC, J. Kepler University Linz Carsten Schneider

Page 27: The Renaissance of Combinatorics: Advances

Sigma summation spiral A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

1. Creative telescoping (for the original version for hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

S(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;n: extra parameter

FIND a recurrence for S(n)

2. Recurrence solving

GIVEN a recurrence a0(n), . . . , ad(n), h(n):indefinite nested product-sum expressions.

a0(n)S(n) + · · ·+ ad(n)S(n + d) = h(n);

FIND all solutions expressible by indefinite nested products and sums(Abramov/Bronstein/Petkovsek/Schneider, in preparation)

RISC, J. Kepler University Linz Carsten Schneider

Page 28: The Renaissance of Combinatorics: Advances

Sigma summation spiral A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

1. Creative telescoping (for the original version for hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

S(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;n: extra parameter

FIND a recurrence for S(n)

2. Recurrence solving

GIVEN a recurrence a0(n), . . . , ad(n), h(n):indefinite nested product-sum expressions.

a0(n)S(n) + · · ·+ ad(n)S(n + d) = h(n);

FIND all solutions expressible by indefinite nested products and sums(Abramov/Bronstein/Petkovsek/Schneider, in preparation)

NOTE: By construction, the solutions are highly nested.

RISC, J. Kepler University Linz Carsten Schneider

Page 29: The Renaissance of Combinatorics: Advances

Sigma summation spiral A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

1. Creative telescoping (for the original version for hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

S(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;n: extra parameter

FIND a recurrence for S(n)

2. Recurrence solving

GIVEN a recurrence a0(n), . . . , ad(n), h(n):indefinite nested product-sum expressions.

a0(n)S(n) + · · ·+ ad(n)S(n + d) = h(n);

FIND all solutions expressible by indefinite nested products and sums(Abramov/Bronstein/Petkovsek/Schneider, in preparation)

3. Indefinite summation (by Sigma’s refined summation theory of ΠΣ∗-fields)

Simplify the solutions:

I The sums have minimal nested depth.

I No algebraic relations occur among the sums.RISC, J. Kepler University Linz Carsten Schneider

Page 30: The Renaissance of Combinatorics: Advances

Sigma summation spiral A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

1. Creative telescoping (for the original version for hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

S(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;n: extra parameter

FIND a recurrence for S(n)

2. Recurrence solving

GIVEN a recurrence a0(n), . . . , ad(n), h(n):indefinite nested product-sum expressions.

a0(n)S(n) + · · ·+ ad(n)S(n + d) = h(n);

FIND all solutions expressible by indefinite nested products and sums(Abramov/Bronstein/Petkovsek/Schneider, in preparation)

4. Find a “closed form”

S(n)=combined solutions.

RISC, J. Kepler University Linz Carsten Schneider

Page 31: The Renaissance of Combinatorics: Advances

Sigma summation spiral A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simplify the constant term:

∞∑

k=0

∞∑

j=0

f(N, k, j)︷ ︸︸ ︷

(k + 1)!(N + 1)!

(k + 1)(N + 1)(k +N + 1)!

(j + 1)!(j + k +N + 1)!

(j + k + 1)!(j +N + 1)!

×

2j+k+N+2(j+k+1)(j+N+1) − S1(j) + S1(j + k) + S1(j +N)− S1(j + k +N)

(j + 1)(j + k +N + 1)

∞∑

k=1

∞∑

j=0

f(N, k, j) =

∞∑

k=1

S1(k) + S1(N)− S1(k +N)

kN(k +N + 1)N !

=S1(N)2 + S2(N)

2N(N + 1)!

where

S2(N) =

N∑

i=1

1

i2Automatic machinery

RISC, J. Kepler University Linz Carsten Schneider

Page 32: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) s.t.

g(n, k + 1)− g(n, k) = f(n, k)

RISC, J. Kepler University Linz Carsten Schneider

Page 33: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n) s.t.

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + c1(n)f(n+ 1, k)

RISC, J. Kepler University Linz Carsten Schneider

Page 34: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n) s.t.

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c2(n)f(n+ 2, k)

RISC, J. Kepler University Linz Carsten Schneider

Page 35: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n) s.t.

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c3(n)f(n+ 3, k)

RISC, J. Kepler University Linz Carsten Schneider

Page 36: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n), c4(n) s.t.

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c4(n)f(n+ 4, k)

RISC, J. Kepler University Linz Carsten Schneider

Page 37: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n), c4(n), c5(n) s.t.

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c5(n)f(n+ 5, k)

©◦ ◦^ A solution implies a linear relation of the following sums:

g(n, a+ 1)− g(n, 0) = c0(n)

a∑

k=0

f(n, k) + · · · + c5(n)

a∑

k=0

f(n+ 5, k)

RISC, J. Kepler University Linz Carsten Schneider

Page 38: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n), c4(n)

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c4(n)f(n+ 4, k)

©◦ ◦_ No solution

RISC, J. Kepler University Linz Carsten Schneider

Page 39: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n), c4(n)

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c4(n)f(n+ 4, k)

©◦ ◦^ No solution implies that the sequences

〈f(n, a)〉a≥0, 〈a∑

k=0

f(n, k)〉a≥0, . . . , 〈a∑

k=0

f(n+ 4, k)〉a≥0

are algebraic independent over the field of rational sequences.

For more details see: Parameterized telescoping proves algebraic independence of sums. To appear in Annals of Combinatorics.

RISC, J. Kepler University Linz Carsten Schneider

Page 40: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n), c4(n)

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c4(n)f(n+ 4, k)

©◦ ◦^ No solution implies that the sequences

〈f(n, a)〉a≥0, 〈a∑

k=0

f(n, k)〉a≥0, . . . , 〈a∑

k=0

f(n+ 4, k)〉a≥0

are algebraic independent over the field of rational sequences.

Remark: For a = n we have

S(n) =n∑

k=0

(−1)k(n

k

)(5 k

n

)

= (−5)n

which satisfies S(n+ 1) + 5S(n) = 0.

RISC, J. Kepler University Linz Carsten Schneider

Page 41: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n), c4(n)

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c4(n)f(n+ 4, k)

©◦ ◦^ No solution implies that the sequences

〈f(n, a)〉a≥0, 〈a∑

k=0

f(n, k)〉a≥0, . . . , 〈a∑

k=0

f(n+ 4, k)〉a≥0

are algebraic independent over the field of rational sequences.

Remark: For a = n we have

S(n) =n∑

k=0

(−1)k(n

k

)(5 k

n

)

= (−5)n

which satisfies S(n+ 1) + 5S(n) = 0.

Any algorithm which searches a summand recurrence will fail to findthe optimal recurrence for S(n).

RISC, J. Kepler University Linz Carsten Schneider

Page 42: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n), c4(n)

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c4(n)f(n+ 4, k)

©◦ ◦^ No solution implies that the sequences

〈f(n, a)〉a≥0, 〈a∑

k=0

f(n, k)〉a≥0, . . . , 〈a∑

k=0

f(n+ 4, k)〉a≥0

are algebraic independent over the field of rational sequences.

Example: By Abramov’s criterion Z’s algorithm fails for any order with

f(n, k) =1

nk + 1(−1)k

(n+ 1

k

)(2n− 2k − 1

n− 1

)

Thus the following sequences are algebraic independent:

〈f(n, a)〉a≥0 and {〈

a∑

k=0

f(n+ i, k)〉a≥0 | i ≥ 0}

RISC, J. Kepler University Linz Carsten Schneider

Page 43: The Renaissance of Combinatorics: Advances

When Z’s algorithm fails A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Excursion: When Z’s algorithm failsGiven f(n, k) = (−1)k

(nk

)(5 kn

)(from Paule, Schorn 1995)

Find g(n, k) , c0(n), c1(n), c2(n), c3(n), c4(n)

g(n, k + 1)− g(n, k) = c0(n)f(n, k) + · · ·+ c4(n)f(n+ 4, k)

©◦ ◦^ No solution implies that the sequences

〈f(n, a)〉a≥0, 〈a∑

k=0

f(n, k)〉a≥0, . . . , 〈a∑

k=0

f(n+ 4, k)〉a≥0

are algebraic independent over the field of rational sequences.

Example: By a slight generalization (parametrized telescoping) it followsthat the harmonic numbers with its generalized versions

{〈

a∑

k=0

1

ki〉a≥0 | i ≥ 1}

are algebraic independent.

RISC, J. Kepler University Linz Carsten Schneider

Page 44: The Renaissance of Combinatorics: Advances

3–Loop calculations A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

1. Creative telescoping (for the original version for hypergeometric terms see Zeilberger’s algorithm (1991))

GIVEN a definite sum

S(n) =

n∑

k=0

f(n, k); f(n, k): indefinite nested product-sum in k;n: extra parameter

FIND a recurrence for S(n)

2. Recurrence solving

GIVEN a recurrence a0(n), . . . , ad(n), h(n):indefinite nested product-sum expressions.

a0(n)S(n) + · · ·+ ad(n)S(n + d) = h(n);

FIND all solutions expressible by indefinite nested products and sums(Abramov/Bronstein/Petkovsek/Schneider, in preparation)

4. Find a “closed form”

S(n)=combined solutions.

RISC, J. Kepler University Linz Carsten Schneider

Page 45: The Renaissance of Combinatorics: Advances

3–Loop calculations A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

“Background of our 3–loop computations”

I The following examples arise in the context of 2– and 3–loop massivesingle scale Feynman diagrams with operator insertion.

I These are related to the QCD anomalous dimensions and massiveoperator matrix elements.

I At 2-loop order all respective calculations are finished:

M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Nucl. Phys.B472 (1996) 611;I. Bierenbaum, J. Blumlein, S. Klein, Nucl. Phys. B780 (2007) 40;

I. Bierenbaum, J. Blumlein, S. Klein, C. Schneider, Nucl.Phys. B803 (2008)

and lead to representations in terms of harmonic sums.

RISC, J. Kepler University Linz Carsten Schneider

Page 46: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Example 1: All N-Results for 3–Loop Ladder Graphs

Joint work with J. Ablinger (RISC), J. Blumlein (DESY),A. Hasselhuhn (DESY), S. Klein (RWTH)

Consider, e.g., the diagram

(containing three massive fermion propagators)

Around 1000 sums have to be calculated

RISC, J. Kepler University Linz Carsten Schneider

Page 47: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

Simple sum

RISC, J. Kepler University Linz Carsten Schneider

Page 48: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

||

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

RISC, J. Kepler University Linz Carsten Schneider

Page 49: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

||

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

||(j + 1

r

)( (−1)r(−j +N − 2)!r!

(N + 1)(−j +N + r − 1)(−j +N + r)!+

(−1)N+r(j + 1)!(−j +N − 2)!(−j +N − 1)rr!

(N − 1)N(N + 1)(−j +N + r)!(−j − 1)r(2−N)j

)

RISC, J. Kepler University Linz Carsten Schneider

Page 50: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

||

N−2∑

j=0

j+1∑

r=0

(j + 1

r

)( (−1)r(−j +N − 2)!r!

(N + 1)(−j +N + r − 1)(−j +N + r)!+

(−1)N+r(j + 1)!(−j +N − 2)!(−j +N − 1)rr!

(N − 1)N(N + 1)(−j +N + r)!(−j − 1)r(2−N)j

)

RISC, J. Kepler University Linz Carsten Schneider

Page 51: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

||

N−2∑

j=0

j+1∑

r=0

(j + 1

r

)( (−1)r(−j +N − 2)!r!

(N + 1)(−j +N + r − 1)(−j +N + r)!+

(−1)N+r(j + 1)!(−j +N − 2)!(−j +N − 1)rr!

(N − 1)N(N + 1)(−j +N + r)!(−j − 1)r(2−N)j

)

||

( N2 −N + 1

(N − 1)2N2(N + 1)(2 −N)j+

j∑

i=1

(2−N)i(−i+N − 1)2(i+ 1)!

(N + 1)(2 −N)j+

(−1)j+N (−j − 2)(−j +N − 2)!

(j −N + 1)(N + 1)2N !

)

(j + 1)! −1

(N + 1)2(−j +N − 1)

RISC, J. Kepler University Linz Carsten Schneider

Page 52: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

||

N−2∑

j=0

(( N2 −N + 1

(N − 1)2N2(N + 1)(2 −N)j+

j∑

i=1

(2−N)i(−i+N − 1)2(i+ 1)!

(N + 1)(2 −N)j+

(−1)j+N (−j − 2)(−j +N − 2)!

(j −N + 1)(N + 1)2N !

)

(j + 1)!−1

(N + 1)2(−j +N − 1)

)

RISC, J. Kepler University Linz Carsten Schneider

Page 53: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

N−2∑

j=0

j+1∑

r=0

N−j+s−2∑

s=0

(−1)r+s(j+1r

)(−j+N+r−2

s

)(−j +N − 2)!r!

(N − s)(s+ 1)(−j +N + r)!

||

N−2∑

j=0

(( N2 −N + 1

(N − 1)2N2(N + 1)(2 −N)j+

j∑

i=1

(2−N)i(−i+N − 1)2(i+ 1)!

(N + 1)(2 −N)j+

(−1)j+N (−j − 2)(−j +N − 2)!

(j −N + 1)(N + 1)2N !

)

(j + 1)!−1

(N + 1)2(−j +N − 1)

)

||

−N2 −N − 1

N2(N + 1)3+

(−1)N(N2 +N + 1

)

N2(N + 1)3−

2S−2(N)

N + 1+

S1(N)

(N + 1)2+

S2(N)

−N − 1

Note: Sa(N) =∑N

i=1sign(a)i

i|a|, a ∈ Z \ {0}.

RISC, J. Kepler University Linz Carsten Schneider

Page 54: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

A typical sum

N−2∑

j=0

j+1∑

s=1

N+s−j−2∑

r=0

∞∑

σ=0

−2(−1)s+r(j+1s )(−j+N+s−2

r )(N−j)!(s−1)!σ!S1(r + 2)(N−r)(r+1)(r+2)(−j+N+σ+1)(−j+N+σ+2)(−j+N+s+σ)!

RISC, J. Kepler University Linz Carsten Schneider

Page 55: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

A typical sum

N−2∑

j=0

j+1∑

s=1

N+s−j−2∑

r=0

∞∑

σ=0

−2(−1)s+r(j+1s )(−j+N+s−2

r )(N−j)!(s−1)!σ!S1(r + 2)(N−r)(r+1)(r+2)(−j+N+σ+1)(−j+N+σ+2)(−j+N+s+σ)!

=

(2N2 + 6N + 5

)S−2(N)2

2(N + 1)(N + 2)+ S−2,−1,2(N) + S−2,1,−2(N)

+ . . .

where, e.g.,

S−2,1,−2(N) =N∑

i=1

(−1)ii∑

j=1

j∑

k=1

(−1)k

k2

j

i2Vermaseren 98;Blumlein/Kurth 99

RISC, J. Kepler University Linz Carsten Schneider

Page 56: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

A typical sum

N−2∑

j=0

j+1∑

s=1

N+s−j−2∑

r=0

∞∑

σ=0

−2(−1)s+r(j+1s )(−j+N+s−2

r )(N−j)!(s−1)!σ!S1(r + 2)(N−r)(r+1)(r+2)(−j+N+σ+1)(−j+N+σ+2)(−j+N+s+σ)!

=

(2N2 + 6N + 5

)S−2(N)2

2(N + 1)(N + 2)+ S−2,−1,2(N) + S−2,1,−2(N)

+ · · · − S2,1,1,1(−1, 2,1

2,−1;N) + S2,1,1,1(1,

1

2, 1, 2;N)

+ . . .

where, e.g., 145 S–sums occur

S2,1,1,1(1,1

2, 1, 2;N) =

N∑

i=1

i∑

j=1

(1

2

)j j∑

k=1

k∑

l=1

2l

l

k

j

i2S. Moch, P. Uwer, S. Weinzierl 02

RISC, J. Kepler University Linz Carsten Schneider

Page 57: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

⇓ Sigma.m

Around 1000 sums are calculated containing in total 533 S–sums

RISC, J. Kepler University Linz Carsten Schneider

Page 58: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

⇓ Sigma.m

Around 1000 sums are calculated containing in total 533 S–sums

⇓ J. Ablinger’s HarmonicSum.m

After elimination the following sums remain:

S−4(N), S−3(N), S−2(N), S1(N), S2(N), S3(N), S4(N), S−3,1(N),

S−2,1(N), S2,−2(N), S2,1(N), S3,1(N), S−2,1,1(N), S2,1,1(N)

RISC, J. Kepler University Linz Carsten Schneider

Page 59: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

For 3–loop ladder graphs we dealt (so far) with up to 6–fold sums. E.g.,

N∑

l=2

l∑

j=2

j∑

k=1

l−k∑

r=0

∞∑

n=0

∞∑

m=0

2(−1)j+k+l+r(k − 1)!(jk

)(lj

) (l−kr

)(Nl

)

(N − 1)N(k +m+ n+ r + 2)(k +m)!

(k +m− 1)!(N − j)!(l + r − 2)!(n + r + 1)! (k +m+ n+ r − 1)!

(−j +N + 2)!(k + r − 1)!(l + n+ r − 1)! (k +m+ n+ r + 1)!

=1

N(N + 1)(N + 2)

(

2((3− 2N+3

)− (−1)N

)ζ3

+ 16S1(N)3 + 4(2N+3)

(N+1)2(N+2)S1(N) + 8(2N+3)

(N+1)3(N+2)

−−56− 40N − 3N2 + 2S1(N) + 3NS1(N) +N2S1(N)

2(1 +N)(2 +N)S2(N)

+

(16+12N+N2

)

2(1+N) (2+N)S1(N)2 + 13(−3N − 17)S3(N)

− (−1)NS−3(N) + (−N − 3)S2,1(N)− 2(−1)NS−2,1(N)

+ 2N+4S1,2

(12 , 1, N

)+ 2N+3S1,1,1

(12 , 1, 1, N

))

RISC, J. Kepler University Linz Carsten Schneider

Page 60: The Renaissance of Combinatorics: Advances

Example 1: 3–loop ladder graphs A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

and ...

N−3∑

j=0

j∑

k=0

k∑

l=0

−j+N−3∑

q=0

−l+N−q−3∑

s=1

−l+N−q−s−3∑

r=0

(j+1k+1) (

k

l)(N−1j+2 )(

−j+N−3q )(−l+N−q−3

s ) (−l+N−q−s−3r )r!(−l+N−q−r−s−3)!(s−1)!

(−l+N−q−2)!( 2 (−1)−j+k−l+N−q−3(2S1(−j+N−1)−S1(−j+N−2)

−j+N−1 − (−1)−j+k−l+N−q−3S1(k)−j+N−1

(N − q − r − s− 2)(q + s+ 1)

− (−1)−j+k−l+N−q−3(S1(−l+N−q−2)+S1(−l+N−q−r−s−3)−2S1(r+s))(−j+N−1)(N−q−r−s−2)(q+s+1)

+2(−1)−j+k−l+N−q−3(S1(s − 1) − S1(r + s))

(−j +N − 1)(N − q − r − s− 2)(q + s+ 1)

)

= polynomial expression in terms of 49 harmonic sums and S–sums

RISC, J. Kepler University Linz Carsten Schneider

Page 61: The Renaissance of Combinatorics: Advances

Example 2: Nf Contributions A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Example 2: 3-Loop All N-Results for the Nf Contributions

Joint work with J. Ablinger (RISC), J. Blumlein (DESY),F. Wißbrock (DESY), S. Klein (RWTH)

E.g., for the diagram

768 sums are simplified.

RISC, J. Kepler University Linz Carsten Schneider

Page 62: The Renaissance of Combinatorics: Advances

Example 2: Nf Contributions A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Simple example:

N−2∑

j=1

j(j + 1)(j + 2)(N − j)(j − 1)!2(−j +N − 1)!2

−j +N − 1

=

(−N3 − 5N2 − 4N + 6

)(N !)2

(N − 1)2N2

+3

2

(N !)2(N3 + 6N2 + 11N + 6

)

(N − 1)N(2N + 1)(2NN

)

N∑

i=1

(2ii

)

i.

Not expressible in terms of harmonic sums or S-sums!

RISC, J. Kepler University Linz Carsten Schneider

Page 63: The Renaissance of Combinatorics: Advances

Example 2: Nf Contributions A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

The final expression is given in terms of 703 indefinite nested sums andproducts. Typical examples are:

N∑

i=1

i∑

j=1

(2jj

)

j

(2 ii

) ,

N∑

i=1

S1(i)

i∑

j=1

(2jj

)

j

(2ii

) ;

Sigma finds all algebraic relations among them. We get:

RISC, J. Kepler University Linz Carsten Schneider

Page 64: The Renaissance of Combinatorics: Advances

Example 2: Nf Contributions A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

−20S(1,N)4

27(N+1)(N+2)+

32(

6N3+61N2−21N+24

)

S1(N)3

81N2(N+1)(N+2)−

16(

48N5+746N4+2697N3+2746N2+1104N+240)

S1(N)2

81N2(N+1)2(N+2)2

+32(

264N7+4046N6+21591N5+52844N4+74856N3+66812N2+30576N+2640)

S1(N)

243N2(N+1)3(N+2)3

−4(

48N2+101N+96)

S2(N)2

9N(N+1)(N+2)−

32(

363N7+6758N6+41285N5+121235N4+190235N3+150758N2+46964N+2904)

243N(N+1)4(N+2)3

+(

−40S1(N)2

9(N+1)(N+2)+

32(

6N3+61N2−21N+24

)

S1(N)

27N2(N+1)(N+2)

−16(

124N5+198N4−2387N3

−6162N2−3632N−480

)

81N2(N+1)2(N+2)2

)

S2(N)+

+

(

−32(

9N3−623N2+894N+276

)

81N2(N+1)(N+2)−

160S1(N)27(N+1)(N+2)

)

S3(N) −8(

56N2+169N+112)

S4(N)

9N(N+1)(N+2)

+

(

64S1(N)3(N+1)(N+2)

−128

(

N3+9N2−10N−6

)

9N2(N+1)(N+2)

)

S2,1(N) +64S3,1(N)

3(N+1)(N+2)+

64(

3N2+7N+6)

3N(N+1)(N+2)S2,1,1(N)

+ ζ2(

8S1(N)2

3(N+1)(N+2)+

16(

3N3−N2+30N+12

)

S1(N)

9N2(N+1)(N+2)−

16(

3N3+2N2+17N+6)

9N(N+1)2(N+2)−

8(

4N2+9N+8)

S2(N)

3N(N+1)(N+2)

)

+

+ ζ3(

4489(N+1)(N+2)

−448S1(N)

9(N+1)(N+2)

)

RISC, J. Kepler University Linz Carsten Schneider

Page 65: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

The beginning of our story: A challenging email (7/2004)

From: Doron Zeilberger

To: Robin Pemantle, Herbert Wilf

CC:Carsten Schneider

Robin and Herb,

I am willing to bet that Carsten Schneider’s SIGMA package

for handling sums with harmonic numbers (among others)

can do it in a jiffy. I am Cc-ing this to Carsten.

Carsten: please do it, and Cc- the answer to me.

-Doron

RISC, J. Kepler University Linz Carsten Schneider

Page 66: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

The problem

From: Robin Pemantle [University of Pennsylvania]

To: herb wilf; doron zeilberger

Herb, Doron,

I have a sum that, when I evaluate numerically, looks suspiciously

like it comes out to exactly 1.

Is there a way I can automatically decide this?

The sum may be written in many ways, but one is:∞∑

j,k=1

S1(j)(S1(k + 1)− 1)

jk(k + 1)(j + k); S1(j) :=

j∑

i=1

1

i.

RISC, J. Kepler University Linz Carsten Schneider

Page 67: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

After one week of (hard) work Sigma found/proved:∞∑

j,k=1

S1(j)(S1(k + 1)− 1)

jk(k + 1)(j + k)= −4ζ(2)− 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5)

RISC, J. Kepler University Linz Carsten Schneider

Page 68: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

After one week of (hard) work Sigma found/proved:∞∑

j,k=1

S1(j)(S1(k + 1)− 1)

jk(k + 1)(j + k)= −4ζ(2)− 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5)

= 0.999222 . . .

RISC, J. Kepler University Linz Carsten Schneider

Page 69: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

After one week of (hard) work Sigma found/proved:∞∑

j,k=1

S1(j)(S1(k + 1)− 1)

jk(k + 1)(j + k)= −4ζ(2)− 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5)

= 0.999222 . . .

Doron’s reply: Wow, you (and your computer!) are wizhes!

I suggest that Carsten and Robin write a short Monthly paper,

that will serve, among other things, as a cautionary tale not to

confuse .99999 with 1,

RISC, J. Kepler University Linz Carsten Schneider

Page 70: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

After one week of (hard) work Sigma found/proved:∞∑

j,k=1

S1(j)(S1(k + 1)− 1)

jk(k + 1)(j + k)= −4ζ(2)− 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5)

= 0.999222 . . .

Doron’s reply: Wow, you (and your computer!) are wizhes!

I suggest that Carsten and Robin write a short Monthly paper,

that will serve, among other things, as a cautionary tale not to

confuse .99999 with 1,

and also the sad fact, that, at least for now, Carsten had to

cheat and use some human-previously-proved identities, and hence

the proof is not fully rigorous (from my point of view, since it

uses human mathematics).

RISC, J. Kepler University Linz Carsten Schneider

Page 71: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

After one week of (hard) work Sigma found/proved:∞∑

j,k=1

S1(j)(S1(k + 1)− 1)

jk(k + 1)(j + k)= −4ζ(2)− 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5)

= 0.999222 . . .

Doron’s reply: Wow, you (and your computer!) are wizhes!

I suggest that Carsten and Robin write a short Monthly paper,

that will serve, among other things, as a cautionary tale not to

confuse .99999 with 1,

and also the sad fact, that, at least for now, Carsten had to

cheat and use some human-previously-proved identities, and hence

the proof is not fully rigorous (from my point of view, since it

uses human mathematics).

Six years later: Now it is possible in a jiffy and without cheating!

RISC, J. Kepler University Linz Carsten Schneider

Page 72: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

After one week of (hard) work Sigma found/proved:∞∑

j,k=1

S1(j)(S1(k + 1)− 1)

jk(k + 1)(j + k)= −4ζ(2)− 2ζ(3) + 4ζ(2)ζ(3) + 2ζ(5)

= 0.999222 . . .

Doron’s reply: Wow, you (and your computer!) are wizhes!

I suggest that Carsten and Robin write a short Monthly paper,

that will serve, among other things, as a cautionary tale not to

confuse .99999 with 1,

and also the sad fact, that, at least for now, Carsten had to

cheat and use some human-previously-proved identities, and hence

the proof is not fully rigorous (from my point of view, since it

uses human mathematics).

Anyway, even though the bet was one sided, I still feel that

Robin and/or Herb owe me a free lunch (and they owe Carsten,

and his computer, a free dinner).

Best wishes

Doron

RISC, J. Kepler University Linz Carsten Schneider

Page 73: The Renaissance of Combinatorics: Advances

A challenging email A Symbolic Summation Toolbox to Evaluate 3–loop Feynman Integrals

Dear Doron,

happy birthdayand many free lunches and dinners in your future!(if possible Sigma and I try to help)

RISC, J. Kepler University Linz Carsten Schneider