© À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â....

19
ÐÍÊ-ÈÍÒÅÐÔÅÐÅÍÖÈß È ÏÀÒÎÃÅÍÅÇ ÂÈÐÓÑÀ ÃÐÈÏÏÀ À © À. Í. Ãîðøêîâ, 1, 2, * À. Â. Ïåòðîâà, 1 À. Â. Âàñèí 1, 3 1 Íàó÷íî-èññëåäîâàòåëüñêèé èíñòèòóò ãðèïïà Ìèíèñòåðñòâà çäðàâîîõðàíåíèÿ ÐÔ, Ñàíêò-Ïåòåðáóðã, 197376, 2 Èíñòèòóò öèòîëîãèè ÐÀÍ, Ñàíêò-Ïåòåðáóðã, 194064, è 3 Êàôåäðà ìîëåêóëÿðíîé áèîëîãèè Ñ.-Ïåòåðáóðãñêîãî ïîëèòåõíè÷åñêîãî óíèâåðñèòåòà Ïåòðà Âåëèêîãî, Ñàíêò-Ïåòåðáóðã, 195251; * ýëåêòðîííûé àäðåñ: [email protected] À. Í. Ãîðøêîâ è äð. ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À ßâëåíèå ÐÍÊ-èíòåðôåðåíöèè áûëî îòêðûòî â 90-å ãîäû XX â. â èññëåäîâàíèÿõ íà íåìàòîäå Caenor- habditis elegans. Òåðìèíîëîãè÷åñêè, èçíà÷àëüíî ÐÍÊ-èíòåðôåðåíöèÿ áûëà îïðåäåëåíà êàê ñåëåêòèâíàÿ äåãðàäàöèÿ ìÐÍÊ-òðàíñêðèïòà ïðè ïîÿâëåíèè â êëåòêàõ êîðîòêîé èíòåðôåðèðóþùåé ÐÍÊ (êèÐÍÊ) — êîðîòêîé (20—25 ï. í.) ýêçîãåííîé äâóõíèòåâîé ÐÍÊ, êîìïëåìåíòàðíîé ê åãî ýêçîííûì ó÷àñòêàì. Çà ïðîøåäøèå ñ òîãî âðåìåíè 2 äåñÿòèëåòèÿ ïîíÿòèå ÐÍÊ-èíòåðôåðåíöèè ïðèîáðåëî çíà÷èòåëüíî áîëåå øèðîêîå çíà÷åíèå; îíà áûëà îñìûñëåíà â êà÷åñòâå îäíîãî èç âàæíåéøèõ è óíèâåðñàëüíûõ çâåíüåâ ïîñòòðàíñêðèïöèîííîé ðåãóëÿöèè àêòèâíîñòè ãåíîâ, øèðîêî ðàñïðîñòðàíåííîé ñðåäè âñåõ ãðóïï ýóêà- ðèîò, à òàêæå âèðóñîâ. Íàñòîÿùèé îáçîð âêëþ÷àåò â ñåáÿ êðàòêóþ õàðàêòåðèñòèêó ðàçëè÷íûõ ìåõàíèç- ìîâ àíòèâèðóñíîé è ïðîâèðóñíîé ÐÍÊ-èíòåðôåðåíöèè; äàëåå ìû ðàññìàòðèâàåì çíà÷åíèå ÐÍÊ-èíòåð- ôåðåíöèè â áèîëîãèè âèðóñà ãðèïïà À, à òàêæå âîçìîæíîñòè è òðóäíîñòè èñïîëüçîâàíèÿ ÐÍÊ-èíòåðôå- ðåíöèè êàê íîâîé òåðàïåâòè÷åñêîé ñòðàòåãèè â áîðüáå ñ ãðèïïîì. Ê ë þ ÷ å â û å ñ ë î â à: ÐÍÊ-èíòåðôåðåíöèÿ, âèðóñ ãðèïïà À, ìèêðîÐÍÊ, êèÐÍÊ, èíòåðôåðîíîâûé îòâåò. Ï ð è í ÿ ò û å ñ î ê ð à ù å í è ÿ: ÂÃÀ — âèðóñ ãðèïïà À, ÂÃÑ — âèðóñ ãåïàòèòà Ñ, ÂÈ× — âèðóñ èì- ìóíîäåôèöèòà ÷åëîâåêà, ÎÐÑ — îòêðûòàÿ ðàìêà ñ÷èòûâàíèÿ, ï. í. — ïàðû íóêëåîòèäîâ, ÏÒÃÑ — ïîñò- òðàíñêðèïöèîííûé ãåííûé ñàéëåíñèíã, äíÐÍÊ — äâóõíèòåâàÿ ÐÍÊ, êèÐÍÊ — êîðîòêàÿ èíòåðôåðèðó- þùàÿ ÐÍÊ, êøÐÍÊ — êîðîòêàÿ øïèëå÷íàÿ ÐÍÊ, ìÐÍÊ — ìàòðè÷íàÿ ÐÍÊ, ÝÑÊ — ýìáðèîíàëüíûå ñòâîëîâûå êëåòêè, piÐÍÊ — Piwi-âçàèìîäåéñòâóþùàÿ ÐÍÊ, pri-miRNA — ïåðâè÷íûé ìèêðîÐÍÊ-òðàíñ- êðèïò, pre-miRNA — ïðåäøåñòâåííèê ìèêðîÐÍÊ, RdRp — ÐÍÊ-çàâèñèìàÿ ÐÍÊ-ïîëèìåðàçà, RISC — ÐÍÊ-èíäóöèðîâàííûé êîìïëåêñ ñàéëåíñèíãà, UTR — íåòðàíñëèðóåìàÿ îáëàñòü, MRE — ìèêðîÐÍÊ-óç- íàþùèé ýëåìåíò. Âèðóñ ãðèïïà À (ÂÃÀ), ðåãóëÿðíî âûçûâàþùèé ýïè- äåìèè è ïàíäåìèè, ÿâëÿåòñÿ ñåðüåçíîé ãëîáàëüíîé ìåäè- öèíñêîé ïðîáëåìîé. Ïðè òÿæåëîì òå÷åíèè áîëåçíè ÂÃÀ âûçûâàåò íå òîëüêî èíôåêöèþ ðåñïèðàòîðíîãî òðàêòà, íî è ñèñòåìíûå íàðóøåíèÿ, ñïîñîáíûå ñòàòü ïðè÷èíîé ñìåðòè. Èñïîëüçóåìûå ñïåöèôè÷åñêèå àíòè-ÂÃÀ ëåêàðñòâåí- íûå ñðåäñòâà íàïðàâëåíû íà áëîêèðîâàíèå ôóíêöèè äâóõ âèðóñíûõ áåëêîâ — íåéðàìèíèäàçû (ÍÀ) è èîííîãî êà- íàëà M2.  ïåðâîì ñëó÷àå èñïîëüçóþò îñåëüòàìèâèð è çàíàìèâèð, âî âòîðîì — ðåìàíòàäèí è àìàíòàäèí. Îäíà- êî ê íàñòîÿùåìó âðåìåíè âîçíèêëè øòàììû ÂÃÀ, óñòîé÷è- âûå ê ýòèì ãðóïïàì ëåêàðñòâ (Saladino et al., 2010; Jacob et al., 2016). Ïîÿâëåíèå òàêèõ øòàììîâ ñòèìóëèðóåò ïîèñê íîâûõ ñòðàòåãèé è ëåêàðñòâ, âëèÿþùèõ íå íà èíãèáèðîâà- íèå âèðóñíûõ áåëêîâ, à íà ïðèíöèïèàëüíî äðóãèå ìèøåíè. Îòêðûòèå áèîëîãè÷åñêîãî ôåíîìåíà ÐÍÊ-èíòåðôå- ðåíöèè (íàçûâàåìîãî òàêæå ïîñòòðàíñêðèïöèîííûì ãåí- íûì ñàéëåíñèíãîì — ÏÒÃÑ) îáíàðóæèëî íåèçâåñòíûå ðàíåå ñëîæíîñòü è ãëóáèíó âçàèìîäåéñòâèé âèðóñîâ è èíôèöèðîâàííûõ èìè êëåòîê, âîâëåêàþùèõ ìèêðîÐÍÊ êëåòîê-õîçÿåâ, ìèêðîÐÍÊ âèðóñîâ, à òàêæå (â íåêîòîðûõ ãðóïïàõ îðãàíèçìîâ) âèðóñíûå êîðîòêèå èíòåðôåðèðóþ- ùèå ÐÍÊ (êèÐÍÊ). Èäåè î ïåðñïåêòèâàõ òåðàïåâòè÷åñêî- ãî èñïîëüçîâàíèÿ ÐÍÊ-èíòåðôåðåíöèè äëÿ ïîäàâëåíèÿ ýêñïðåññèè «íåæåëàòåëüíûõ» ãåíîâ (ìóòàíòíûõ ãåíîâ, îíêîãåíîâ è âèðóñíûõ ãåíîâ) âîçíèêëè âñêîðå ïîñëå åå îòêðûòèÿ (Shuey et al., 2002; Coburn, Cullen, 2003). Ïîòåí- öèàë ÐÍÊ-èíòåðôåðåíöèè â áîðüáå ñ ÂÃÀ àêòèâíî èññëå- äóåòñÿ â ïîñëåäíåå äåñÿòèëåòèå. Ïîìèìî ñàéëåíñèíãà ãåíîâ ÂÃÀ ýêñïåðèìåíòàëüíî ðàçðàáàòûâàåòñÿ è ðÿä äðó- ãèõ àíòèâèðóñíûõ ïðèìåíåíèé ÐÍÊ-èíòåðôåðåíöèè — êèÐÍÊ-ñêðèíèíã íîâûõ êëåòî÷íûõ ìèøåíåé äëÿ òåðàïèè ãðèïïà, ñîçäàíèå àòòåíóèðîâàííûõ âàêöèí íîâîãî ïîêî- ëåíèÿ è òåðàïåâòè÷åñêàÿ êîìïåíñàöèÿ äåðåãóëÿöèè êëå- òî÷íûõ ìèêðîÐÍÊ ïðè èíôåêöèè ÂÃÀ. Öåëü íàñòîÿùåãî îáçîðà — îïèñàíèå îñíîâíûõ ìåõà- íèçìîâ ïðîâèðóñíîé è àíòèâèðóñíîé ÐÍÊ-èíòåðôåðåí- öèè, à òàêæå àíàëèç íåäàâíèõ ïóáëèêàöèé, îòðàæàþùèõ óñïåõè è òðóäíîñòè èñïîëüçîâàíèÿ ÐÍÊ-èíòåðôåðåíöèè êàê íîâîãî òåðàïåâòè÷åñêîãî ïîäõîäà â áîðüáå ñ âèðóñîì ãðèïïà. 2017 ÖÈÒÎËÎÃÈß Òîì 59, ¹8 515

Upload: others

Post on 11-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

ÐÍÊ-ÈÍÒÅÐÔÅÐÅÍÖÈß È ÏÀÒÎÃÅÍÅÇ ÂÈÐÓÑÀ ÃÐÈÏÏÀ À

© À. Í. Ãîðøêîâ,1, 2, * À. Â. Ïåòðîâà,1 À. Â. Âàñèí1, 3

1 Íàó÷íî-èññëåäîâàòåëüñêèé èíñòèòóò ãðèïïà Ìèíèñòåðñòâà çäðàâîîõðàíåíèÿ ÐÔ,Ñàíêò-Ïåòåðáóðã, 197376,

2 Èíñòèòóò öèòîëîãèè ÐÀÍ, Ñàíêò-Ïåòåðáóðã, 194064, è3 Êàôåäðà ìîëåêóëÿðíîé áèîëîãèè Ñ.-Ïåòåðáóðãñêîãî ïîëèòåõíè÷åñêîãî óíèâåðñèòåòà Ïåòðà Âåëèêîãî,

Ñàíêò-Ïåòåðáóðã, 195251;* ýëåêòðîííûé àäðåñ: [email protected]

À. Í. Ãîðøêîâ è äð.ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À

ßâëåíèå ÐÍÊ-èíòåðôåðåíöèè áûëî îòêðûòî â 90-å ãîäû XX â. â èññëåäîâàíèÿõ íà íåìàòîäå Caenor-habditis elegans. Òåðìèíîëîãè÷åñêè, èçíà÷àëüíî ÐÍÊ-èíòåðôåðåíöèÿ áûëà îïðåäåëåíà êàê ñåëåêòèâíàÿäåãðàäàöèÿ ìÐÍÊ-òðàíñêðèïòà ïðè ïîÿâëåíèè â êëåòêàõ êîðîòêîé èíòåðôåðèðóþùåé ÐÍÊ (êèÐÍÊ) —êîðîòêîé (20—25 ï. í.) ýêçîãåííîé äâóõíèòåâîé ÐÍÊ, êîìïëåìåíòàðíîé ê åãî ýêçîííûì ó÷àñòêàì. Çàïðîøåäøèå ñ òîãî âðåìåíè 2 äåñÿòèëåòèÿ ïîíÿòèå ÐÍÊ-èíòåðôåðåíöèè ïðèîáðåëî çíà÷èòåëüíî áîëååøèðîêîå çíà÷åíèå; îíà áûëà îñìûñëåíà â êà÷åñòâå îäíîãî èç âàæíåéøèõ è óíèâåðñàëüíûõ çâåíüåâïîñòòðàíñêðèïöèîííîé ðåãóëÿöèè àêòèâíîñòè ãåíîâ, øèðîêî ðàñïðîñòðàíåííîé ñðåäè âñåõ ãðóïï ýóêà-ðèîò, à òàêæå âèðóñîâ. Íàñòîÿùèé îáçîð âêëþ÷àåò â ñåáÿ êðàòêóþ õàðàêòåðèñòèêó ðàçëè÷íûõ ìåõàíèç-ìîâ àíòèâèðóñíîé è ïðîâèðóñíîé ÐÍÊ-èíòåðôåðåíöèè; äàëåå ìû ðàññìàòðèâàåì çíà÷åíèå ÐÍÊ-èíòåð-ôåðåíöèè â áèîëîãèè âèðóñà ãðèïïà À, à òàêæå âîçìîæíîñòè è òðóäíîñòè èñïîëüçîâàíèÿ ÐÍÊ-èíòåðôå-ðåíöèè êàê íîâîé òåðàïåâòè÷åñêîé ñòðàòåãèè â áîðüáå ñ ãðèïïîì.

Ê ë þ ÷ å â û å ñ ë î â à: ÐÍÊ-èíòåðôåðåíöèÿ, âèðóñ ãðèïïà À, ìèêðîÐÍÊ, êèÐÍÊ, èíòåðôåðîíîâûéîòâåò.

Ï ð è í ÿ ò û å ñ î ê ð à ù å í è ÿ: ÂÃÀ — âèðóñ ãðèïïà À, ÂÃÑ — âèðóñ ãåïàòèòà Ñ, ÂÈ× — âèðóñ èì-ìóíîäåôèöèòà ÷åëîâåêà, ÎÐÑ — îòêðûòàÿ ðàìêà ñ÷èòûâàíèÿ, ï. í. — ïàðû íóêëåîòèäîâ, ÏÒÃÑ — ïîñò-òðàíñêðèïöèîííûé ãåííûé ñàéëåíñèíã, äíÐÍÊ — äâóõíèòåâàÿ ÐÍÊ, êèÐÍÊ — êîðîòêàÿ èíòåðôåðèðó-þùàÿ ÐÍÊ, êøÐÍÊ — êîðîòêàÿ øïèëå÷íàÿ ÐÍÊ, ìÐÍÊ — ìàòðè÷íàÿ ÐÍÊ, ÝÑÊ — ýìáðèîíàëüíûåñòâîëîâûå êëåòêè, piÐÍÊ — Piwi-âçàèìîäåéñòâóþùàÿ ÐÍÊ, pri-miRNA — ïåðâè÷íûé ìèêðîÐÍÊ-òðàíñ-êðèïò, pre-miRNA — ïðåäøåñòâåííèê ìèêðîÐÍÊ, RdRp — ÐÍÊ-çàâèñèìàÿ ÐÍÊ-ïîëèìåðàçà, RISC —ÐÍÊ-èíäóöèðîâàííûé êîìïëåêñ ñàéëåíñèíãà, UTR — íåòðàíñëèðóåìàÿ îáëàñòü, MRE — ìèêðîÐÍÊ-óç-íàþùèé ýëåìåíò.

Âèðóñ ãðèïïà À (ÂÃÀ), ðåãóëÿðíî âûçûâàþùèé ýïè-äåìèè è ïàíäåìèè, ÿâëÿåòñÿ ñåðüåçíîé ãëîáàëüíîé ìåäè-öèíñêîé ïðîáëåìîé. Ïðè òÿæåëîì òå÷åíèè áîëåçíè ÂÃÀâûçûâàåò íå òîëüêî èíôåêöèþ ðåñïèðàòîðíîãî òðàêòà, íîè ñèñòåìíûå íàðóøåíèÿ, ñïîñîáíûå ñòàòü ïðè÷èíîéñìåðòè.

Èñïîëüçóåìûå ñïåöèôè÷åñêèå àíòè-ÂÃÀ ëåêàðñòâåí-íûå ñðåäñòâà íàïðàâëåíû íà áëîêèðîâàíèå ôóíêöèè äâóõâèðóñíûõ áåëêîâ — íåéðàìèíèäàçû (ÍÀ) è èîííîãî êà-íàëà M2.  ïåðâîì ñëó÷àå èñïîëüçóþò îñåëüòàìèâèð èçàíàìèâèð, âî âòîðîì — ðåìàíòàäèí è àìàíòàäèí. Îäíà-êî ê íàñòîÿùåìó âðåìåíè âîçíèêëè øòàììû ÂÃÀ, óñòîé÷è-âûå ê ýòèì ãðóïïàì ëåêàðñòâ (Saladino et al., 2010; Jacobet al., 2016). Ïîÿâëåíèå òàêèõ øòàììîâ ñòèìóëèðóåò ïîèñêíîâûõ ñòðàòåãèé è ëåêàðñòâ, âëèÿþùèõ íå íà èíãèáèðîâà-íèå âèðóñíûõ áåëêîâ, à íà ïðèíöèïèàëüíî äðóãèå ìèøåíè.

Îòêðûòèå áèîëîãè÷åñêîãî ôåíîìåíà ÐÍÊ-èíòåðôå-ðåíöèè (íàçûâàåìîãî òàêæå ïîñòòðàíñêðèïöèîííûì ãåí-íûì ñàéëåíñèíãîì — ÏÒÃÑ) îáíàðóæèëî íåèçâåñòíûåðàíåå ñëîæíîñòü è ãëóáèíó âçàèìîäåéñòâèé âèðóñîâ èèíôèöèðîâàííûõ èìè êëåòîê, âîâëåêàþùèõ ìèêðîÐÍÊ

êëåòîê-õîçÿåâ, ìèêðîÐÍÊ âèðóñîâ, à òàêæå (â íåêîòîðûõãðóïïàõ îðãàíèçìîâ) âèðóñíûå êîðîòêèå èíòåðôåðèðóþ-ùèå ÐÍÊ (êèÐÍÊ). Èäåè î ïåðñïåêòèâàõ òåðàïåâòè÷åñêî-ãî èñïîëüçîâàíèÿ ÐÍÊ-èíòåðôåðåíöèè äëÿ ïîäàâëåíèÿýêñïðåññèè «íåæåëàòåëüíûõ» ãåíîâ (ìóòàíòíûõ ãåíîâ,îíêîãåíîâ è âèðóñíûõ ãåíîâ) âîçíèêëè âñêîðå ïîñëå ååîòêðûòèÿ (Shuey et al., 2002; Coburn, Cullen, 2003). Ïîòåí-öèàë ÐÍÊ-èíòåðôåðåíöèè â áîðüáå ñ ÂÃÀ àêòèâíî èññëå-äóåòñÿ â ïîñëåäíåå äåñÿòèëåòèå. Ïîìèìî ñàéëåíñèíãàãåíîâ ÂÃÀ ýêñïåðèìåíòàëüíî ðàçðàáàòûâàåòñÿ è ðÿä äðó-ãèõ àíòèâèðóñíûõ ïðèìåíåíèé ÐÍÊ-èíòåðôåðåíöèè —êèÐÍÊ-ñêðèíèíã íîâûõ êëåòî÷íûõ ìèøåíåé äëÿ òåðàïèèãðèïïà, ñîçäàíèå àòòåíóèðîâàííûõ âàêöèí íîâîãî ïîêî-ëåíèÿ è òåðàïåâòè÷åñêàÿ êîìïåíñàöèÿ äåðåãóëÿöèè êëå-òî÷íûõ ìèêðîÐÍÊ ïðè èíôåêöèè ÂÃÀ.

Öåëü íàñòîÿùåãî îáçîðà — îïèñàíèå îñíîâíûõ ìåõà-íèçìîâ ïðîâèðóñíîé è àíòèâèðóñíîé ÐÍÊ-èíòåðôåðåí-öèè, à òàêæå àíàëèç íåäàâíèõ ïóáëèêàöèé, îòðàæàþùèõóñïåõè è òðóäíîñòè èñïîëüçîâàíèÿ ÐÍÊ-èíòåðôåðåíöèèêàê íîâîãî òåðàïåâòè÷åñêîãî ïîäõîäà â áîðüáå ñ âèðóñîìãðèïïà.

2 0 1 7 Ö È Ò Î Ë Î Ã È ß Ò î ì 59, ¹ 8

515

Page 2: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Æèçíåííûé öèêë âèðóñà ãðèïïà À

ÂÃÀ ÿâëÿåòñÿ îáîëî÷å÷íûì âèðóñîì èç ñåìåéñòâà Or-thomyxoviridae. ÂÃÀ èìååò ñåãìåíòèðîâàííûé ãåíîì, ñî-ñòîÿùèé èç 8 ñåãìåíòîâ ÐÍÊ ñ îòðèöàòåëüíîé ïîëÿðíî-ñòüþ. Ãåíîì ÂÃÀ êîäèðóåò ñëåäóþùèå âèðóñíûå áåëêè:ïîâåðõíîñòíûå ãëèêîïðîòåèíû ãåìàããëþòèíèí è íåéðà-ìèíèäàçó, èîííûé êàíàë M2, ìàòðèêñíûé áåëîê M1, íóê-ëåîïðîòåèí NP, ïîëèìåðàçíûé êèñëûé áåëîê PA, ïîëèìå-ðàçíûå îñíîâíûå áåëêè 1 è 2 (PB1 è PB2 ñîîòâåòñòâåííî),áåëîê PB1-F2 (õàðàêòåðíûé íå äëÿ âñåõ øòàììîâ ÂÃÀ),íåñòðóêòóðíûé áåëîê 1 (NS1) è 2 (NS2, íàçûâàåìûé òàê-æå áåëêîì ÿäåðíîãî ýêñïîðòà, NEP).

Æèçíåííûé öèêë ÂÃÀ â èíôèöèðîâàííûõ êëåòêàõèññëåäîâàëè íåîäíîêðàòíî (ñì. îáçîðû: Samji, 2009; Êè-ñåëåâ, 2011; Ùåëêàíîâ è äð., 2015). Êðàòêî, íà÷àëüíàÿòî÷êà öèêëà — àäñîðáöèÿ âèðóñà — îïîñðåäóåòñÿ âçàè-ìîäåéñòâèåì ñóáúåäèíèöû HA1 ãåìàããëþòèíèíà ñ îñòàò-êàìè N-àöåòèëíåéðàìèíîâîé (ñèàëîâîé) êèñëîòû, ëîêà-ëèçîâàííûìè íà ïîâåðõíîñòè êëåòîê-ìèøåíåé. Îñîáåí-íîñòè ýòîãî âçàèìîäåéñòâèÿ, ïðåæäå âñåãî ñâÿçûâàíèåHA1 ñ a2—3- èëè a2—6-ñèàëîçèäàìè, ïðåèìóùåñòâåííîîïðåäåëÿþò âèäîñïåöèôè÷íîñòü, òðîïèçì è â êîíå÷íîìèòîãå — ýïèäåìè÷åñêèé ïîòåíöèàë ðàçëè÷íûõ øòàììîâÂÃÀ.

Ïðîíèêíîâåíèå âèðóñà â êëåòêó ñâÿçàíî ñ ïðîöåññîìýíäîöèòîçà. Èçâåñòíî, ÷òî ýíäîöèòîç ÂÃÀ ìîæåò áûòüêàê êëàññè÷åñêèì êëàòðèíçàâèñèìûì, òàê è êëàòðèííåçà-âèñèìûì (ñ ó÷àñòèåì êàâåîë ëèáî ïîñðåäñòâîì ìàêðîïè-íîöèòîçà). Ýíäîöèòèðîâàííûå âèðèîíû ëîêàëèçóþòñÿ âýíäîñîìàõ, êîòîðûå òðàíñëîöèðóþòñÿ èç ñóáìåìáðàííîéâ ïåðèíóêëåàðíóþ îáëàñòü öèòîïëàçìû. Êëþ÷åâûì ñîáû-òèåì, íåîáõîäèìûì äëÿ âûõîäà âèðóñíûõ íóêëåîêàïñè-äîâ èç ýíäîñîì, ÿâëÿåòñÿ êîíôîðìàöèîííûé ïåðåõîäñóáúåäèíèöû HA2 ãåìàããëþòèíèíà â óñëîâèÿõ íèçêîãîpH ïîçäíåé ýíäîñîìû, ïðèâîäÿùèé ê ýêñïîíèðîâàíèþðàíåå ñêðûòîãî ïåïòèäà ñëèÿíèÿ è âñòðàèâàíèþ äàííîãîïåïòèäà â ìåìáðàíó ýíäîñîìû, ò. å. ê ñëèÿíèþ ìåìáðàíâèðèîíà è ýíäîñîìû. Îäíîâðåìåííî íèçêèé pH ýíäîñîìûîòêðûâàåò âèðóñíûé ïðîòîííûé êàíàë M2, ÷òî ïðèâîäèòê ïîíèæåíèþ pH âíóòðè âèðèîíà è îñâîáîæäåíèþ âèðóñ-íûõ ðèáîíóêëåîïðîòåèíîâ (ÐÍÏ) îò ìàòðèêñíîãî áåëêàM1.  èòîãå âèðóñíûå ÐÍÏ-êîìïëåêñû âûõîäÿò èç ïðî-ñâåòà ýíäîñîìû â öèòîçîëü è çàòåì òðàíñïîðòèðóþòñÿ âÿäðî. Òðàíñïîðò ÐÍÏ â ÿäðî îïîñðåäóåòñÿ íåñêîëüêèìèêàðèîôåðèíàìè, â ÷àñòíîñòè èìïîðòèíàìè aè b.

Òðàíñêðèïöèÿ âèðóñíûõ ÐÍÊ â ÿäðå îñóùåñòâëÿåòñÿâèðóñíîé ÐÍÊ-çàâèñèìîé ÐÍÊ-ïîëèìåðàçîé (RdRp) —ãåòåðîòðèìåðîì èç PA, PB1 è PB2. Äëÿ èíèöèàöèè òðàíñ-êðèïöèè íåîáõîäèì ïðîöåññ «êýï-ñíýò÷èíãà» («ïîõèùå-íèÿ êýïîâ»), â õîäå êîòîðîãî âèðóñíàÿ PB2 ñâÿçûâàåòñÿ ñêýïèðîâàííûì 5R-êîíöîì êëåòî÷íîé ìÐÍÊ, à PA îòðåçàåòêýï-ñòðóêòóðó è ïåðâûå 10—15 íóêëåîòèäîâ êëåòî÷íîéìÐÍÊ, êîòîðûå èñïîëüçóþòñÿ â êà÷åñòâå ïðàéìåðà äëÿïîñëåäóþùåé òðàíñêðèïöèè âèðóñíîé ìÐÍÊ. Íà 3R-êîíöåâèðóñíàÿ ìÐÍÊ ïîëó÷àåò ïîëèÀ-õâîñò çà ñ÷åò «ïðîáóê-ñîâêè» RdRp íà ïîëèU-ïîñëåäîâàòåëüíîñòè âèðóñíîéÐÍÊ. Äëÿ ýêñïîðòà âèðóñíûõ ìÐÍÊ èç ÿäðà èñïîëüçóåòñÿðÿä êëåòî÷íûõ áåëêîâ, â ÷àñòíîñòè TREX è NXF1/TAP.

Íà áîëåå ïîçäíèõ ñòàäèÿõ ÂÃÀ-èíôåêöèè RdRp ïåðå-êëþ÷àåòñÿ ñ òðàíñêðèïöèîííîé íà ðåïëèêàöèîííóþ àê-òèâíîñòü. Ðåïëèêàöèÿ âèðóñíûõ ÐÍÊ â îòëè÷èå îò òðàíñ-êðèïöèè íå òðåáóåò ïðàéìåðà è ôèíàëüíî ïðèâîäèò êñèíòåçó òî÷íûõ êîïèé âèðóñíîé ÐÍÊ, íå íåñóùèõ5R-êýï-ñòðóêòóðû è 3R-ïîëèÀ-õâîñòà.

Ñèíòåç âèðóñíûõ áåëêîâ ïðîèñõîäèò íà ðèáîñîìàõ âöèòîïëàçìå, ïîñëå ÷åãî áåëêîâûå êîìïîíåíòû ÐÍÏ-êîì-ïëåêñà íàïðàâëÿþòñÿ â ÿäðî äëÿ àññîöèàöèè ñî âíîâüñèíòåçèðîâàííûìè âèðóñíûìè ÐÍÊ, à ïîâåðõíîñòíûåáåëêè âèðóñà òðàíñïîðòèðóþòñÿ ïî ñåêðåòîðíîìó ïóòè,ãëèêîçèëèðóþòñÿ â àïïàðàòå Ãîëüäæè è âñòðàèâàþòñÿ âàïèêàëüíóþ ïëàçìàòè÷åñêóþ ìåìáðàíó. Ñîáðàííûå âÿäðå ÐÍÏ-êîìïëåêñû òàêæå äîñòàâëÿþòñÿ ê ìåñòàì ïî÷-êîâàíèÿ íîâûõ âèðèîíîâ íà àïèêàëüíîé ìåìáðàíå, ïðè-÷åì ñàéòàìè ñáîðêè è ïî÷êîâàíèÿ âèðóñíîãî ïîòîìñòâàÿâëÿþòñÿ ìåìáðàííûå ðàôòû, îáîãàùåííûå õîëåñòåðè-íîì. Âàæíåéøèì ôàêòîðîì â îòïî÷êîâûâàíèè âèðèîíîâîò ìåìáðàíû ÿâëÿåòñÿ ôåðìåíòàòèâíàÿ àêòèâíîñòü íåéðà-ìèíèäàçû, âûçûâàþùàÿ ðàñùåïëåíèå a-êåòîçèäíîé ñâÿçèìåæäó òåðìèíàëüíûì îñòàòêîì ñèàëîâîé êèñëîòû è ñëå-äóþùèì ìîíîñàõàðèäíûì îñòàòêîì. Ñ ïîìîùüþ ìóòàöè-îííîãî àíàëèçà áûëà îáíàðóæåíà òàêæå êëþ÷åâàÿ ðîëüöèòîïëàçìàòè÷åñêîãî õâîñòà áåëêà M2 è ìàòðèêñíîãîáåëêà M1 â ïðîöåññå ïî÷êîâàíèÿ äî÷åðíèõ âèðèîíîâÂÃÀ.

Íà âñåõ ýòàïàõ æèçíåííîãî öèêëà ÂÃÀ âèðóñ òåñíåé-øèì îáðàçîì âçàèìîäåéñòâóåò ñ áîëüøèì êîëè÷åñòâîìýôôåêòîðíûõ è ñèãíàëüíûõ áåëêîâûõ ñèñòåì èíôè-öèðîâàííîé êëåòêè, èñïîëüçóÿ è ïåðåñòðàèâàÿ èõ â öåëÿõñîáñòâåííîãî ðàçìíîæåíèÿ (Watanabe et al., 2010).  êà-÷åñòâå ïðèìåðîâ òàêèõ ñèñòåì ìîæíî íàçâàòü ìèòîãåíàê-òèâèðóåìûå ñèãíàëüíûå ïóòè (MAPK), ôîñôàòèäèë-èíî-çèòîëüíûé ñèãíàëüíûé ïóòü, ìíîãî÷èñëåííûå ìàëûåÃÒÔàçû è èõ ðåãóëÿòîðû, àêòèíîâûé è òóáóëèíîâûé êîì-ïîíåíòû öèòîñêåëåòà, ñèñòåìû âåçèêóëÿðíîãî òðàíñïîðòàè ñîðòèðîâêè è çíà÷èòåëüíîå êîëè÷åñòâî äðóãèõ áåëêî-âûõ ïëàòôîðì.  ÷àñòíîñòè, èçâåñòíî ìíîæåñòâî âçàèìî-äåéñòâèé âèðóñíîãî íåñòðóêòóðíîãî áåëêà NS1 ñ ðàçëè÷-íûìè êëåòî÷íûìè áåëêàìè, ïðèâîäÿùèõ ê ïîäàâëåíèþèíòåðôåðîíîâîãî îòâåòà êëåòêè, èíãèáèðîâàíèþ àïîïòî-çà è ê ïîäàâëåíèþ ñïëàéñèíãà è ýêñïîðòà èç ÿäðà êëåòî÷-íûõ ìÐÍÊ.

Çíà÷èòåëüíàÿ ÷àñòü êëåòî÷íûõ ãåíîâ, âîâëå÷åííûõ âðåïëèêàöèþ ÂÃÀ, ïîñòòðàíñêðèïöèîííî êîíòðîëèðóåòñÿìèêðîÐÍÊ. Ðåçêîå èçìåíåíèå ïðîôèëÿ äàííûõ êëåòî÷-íûõ ìèêðîÐÍÊ ÿâëÿåòñÿ âàæíîé ñòîðîíîé ïàòîãåíåçàÂÃÀ. Ñîîòâåòñòâåííî ïåðñïåêòèâû òåðàïåâòè÷åñêîãî èñ-ïîëüçîâàíèÿ ÐÍÊ-èíòåðôåðåíöèè ñâÿçàíû êàê ñ ÏÒÃÑâèðóñíûõ ãåíîâ ñ ïîìîùüþ ýêçîãåííî ââåäåííûõ ñèíòå-òè÷åñêèõ àíòèâèðóñíûõ êèÐÍÊ, òàê è ñ êîìïåíñàöèåéäåðåãóëÿöèè êëåòî÷íûõ ìèêðîÐÍÊ ïðè ãðèïïîçíîé èí-ôåêöèè.

Ìåõàíèçì ÐÍÊ-èíòåðôåðåíöèèè áèîãåíåç ìàëûõ èíòåðôåðèðóþùèõ ÐÍÊ

 íàñòîÿùåå âðåìÿ èçâåñòíû òðè îñíîâíûõ òèïà ìà-ëûõ èíòåðôåðèðóþùèõ ÐÍÊ — ìèêðîÐÍÊ, êîðîòêèå èí-òåðôåðèðóþùèå ÐÍÊ (êèÐÍÊ) è Piwi-âçàèìîäåéñòâóþ-ùèå ÐÍÊ (piÐÍÊ).

 ñîìàòè÷åñêèõ êëåòêàõ ïîçâîíî÷íûõ îñíîâíûì òè-ïîì ýíäîãåííûõ êîðîòêèõ ÐÍÊ, îïîñðåäóþùèõ ÏÒÃÑ,ÿâëÿþòñÿ ìèêðîÐÍÊ. ÌèêðîÐÍÊ ïðåäñòàâëÿþò ñîáîé êî-ðîòêèå (18—25 ï. í.) ÐÍÊ, êîäèðóåìûå ÿäåðíîé ÄÍÊ, àòàêæå ãåíîìàìè ìíîãèõ âèðóñîâ. Êëåòî÷íàÿ áåëêîâàÿ ìà-øèíåðèÿ, èñïîëüçóåìàÿ äëÿ ñèíòåçà è ïðîöåññèíãà ìèê-ðîÐÍÊ, ê íàñòîÿùåìó âðåìåíè äîñòàòî÷íî õîðîøî èçâå-ñòíà (Carthew, Sontheimer, 2009; Hammond, 2015). Ôîðìè-ðîâàíèå çðåëûõ ìèêðîÐÍÊ â êëåòêå ïðîèñõîäèò â

516 À. Í. Ãîðøêîâ è äð.

Page 3: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

íåñêîëüêî ñòàäèé. Ïåðâè÷íûé ìèêðîÐÍÊ-òðàíñêðèïò(pri-miRNA), òðàíñêðèáèðóåìûé îáû÷íî ÐÍÊ-ïîëèìåðà-çîé 2 (Lee et al., 2004), èìååò äëèíó îò íåñêîëüêèõ ñîòåíäî íåñêîëüêèõ äåñÿòêîâ òûñÿ÷ íóêëåîòèäîâ (Saini et al.,2007). Ìîëåêóëû pri-miRNA ñîäåðæàò îäíó èëè íåñêîëü-êî øïèëå÷íûõ ñòðóêòóð, êîòîðûå â äàëüíåéøåì ñòàíî-âÿòñÿ èñòî÷íèêàìè îòäåëüíûõ ìèêðîÐÍÊ (Lee et al.,2002). Ïðîöåññèíã pri-miRNA ñâÿçàí ñ åå ýíäîíóêëåàç-íûì ðàñùåïëåíèåì. Ïåðâàÿ ôàçà ðàñùåïëåíèÿ pri-miRNAïðîèñõîäèò â ÿäðå è îñóùåñòâëÿåòñÿ ñ ïîìîùüþ áåëêîâî-ãî êîìïëåêñà, íàçûâàåìîãî ìèêðîïðîöåññîðîì, ñîñòîÿ-ùåãî èç ÐÍÊàçà III-ïîäîáíîãî ôåðìåíòà Drosha èÐÍÊ-ñâÿçûâàþùåãî áåëêà DGCR8. DGCR8 óçíàåò ôëàí-êèðóþùèå îäíîíèòåâûå áàçàëüíûå ó÷àñòêè â øïèëå÷íûõñòðóêòóðàõ pri-miRNA è îïðåäåëÿåò ïðàâèëüíóþ ëîêàëè-çàöèþ êîìïëåêñà. Drosha ðàçðåçàåò äâóõöåïî÷å÷íóþ ÐÍÊøïèëüêè íà ðàññòîÿíèè 11 ï. í. îò íà÷àëà ñòåáëÿ (Gregoryet al., 2004; Han et al., 2006). Ðèáîíóêëåàçíàÿ àêòèâíîñòüDrosha ïðèâîäèò ê âûñâîáîæäåíèþ ïðåäøåñòâåííèêàìèêðîÐÍÊ (pre-miRNA) äëèíîé 60—100 íóêëåîòèäîâ,èìåþùåãî âòîðè÷íóþ ñòðóêòóðó «ñòåáåëü—ïåòëÿ» (Zenget al., 2005). Ñóùåñòâóåò òàêæå àëüòåðíàòèâíûé ïóòü áèî-ãåíåçà pre-miRNA, ñâÿçàííûé ñî ñïëàéñèíãîì ìèê-ðîÐÍÊ-êîäèðóþùèõ èíòðîíîâ (ìèðòðîíîâ) è íå âîâëåêà-þùèé êîìïëåêñà ìèêðîïðîöåññîðà (Ruby et al., 2007).

Pre-miRNA ýêñïîðòèðóþòñÿ â öèòîïëàçìó ïðè ó÷àñ-òèè ýêñïîðòèíà-5, àññîöèèðîâàííîãî ñ ìàëîé ÃÒÔàçîéRan (Yi et al., 2003). Íà âòîðîì ýòàïå ýíäîíóêëåàçíîãî ïðî-öåññèíãà ÐÍÊàçà III Dicer óäàëÿåò ïåòëåâóþ îáëàñòü, îñòàâ-ëÿÿ ÐÍÊ-äóïëåêñ äëèíîé 21—23 ï. í. (Hutvagner et al.,2001). Óçíàâàíèå è ñâÿçûâàíèå Dicer ñ pre-miRNA ïðîèñõî-äÿò ïðè ó÷àñòèè áåëêà TRBP (Chendrimada et al., 2005).

Ïîñëå îòðåçàíèÿ ïåòëè ìèêðîÐÍÊ-äóïëåêñ ñâÿçûâà-åòñÿ ñ áåëêàìè ñåìåéñòâà Argonaut (Ago), ôîðìèðóÿ êîì-ïëåêñ RISC (ÐÍÊ-èíäóöèðîâàííûé êîìïëåêñ ñàéëåíñèí-ãà) (Peters, Meister, 2007). Ñòàäèÿ àññîöèàöèè Ago ñ ìèê-ðîÐÍÊ-äóïëåêñîì ÿâëÿåòñÿ êðàòêîâðåìåííîé, òàê êàêN-äîìåí áåëêîâ Ago îáëàäàåò ãåëèêàçíîé àêòèâíîñòüþ èîáåñïå÷èâàåò áûñòðîå ðàçìàòûâàíèå äâóõíèòåâîé ìèê-ðîÐÍÊ (Kwak, Tomari, 2012). Ïîñëå ðàçäåëåíèÿ îäíà èçíèòåé («ïàññàæèðñêàÿ íèòü») óäàëÿåòñÿ èç êîìïëåêñà, àäðóãàÿ («âåäóùàÿ íèòü») â êîìïëåêñå ñ Ago îïîñðåäóåòñàéëåíñèíã öåëåâûõ ãåíîâ.

Ñâÿçûâàíèå ìèêðîÐÍÊ â ñîñòàâå êîìïëåêñà RISC ñöåëåâûìè ìÐÍÊ îñóùåñòâëÿåòñÿ ñ íåïîëíîé êîìïëåìåí-òàðíîñòüþ. Óçíàâàíèå ìÐÍÊ-ìèøåíåé îáû÷íî ïðîèñõî-äèò çà ñ÷åò êîìïëåìåíòàðíîãî ñïàðèâàíèÿ íóêëåîòèäîâ2—7 íà 5R-êîíöå ìèêðîÐÍÊ (seed region) ñ 3R-íåòðàíñëèðó-åìîé îáëàñòüþ (3R-UTR) ìÐÍÊ (Bartel, 2009). Âî ìíîãèõìèêðîÐÍÊ èìåþòñÿ òàêæå äîïîëíèòåëüíûå ñàéòû êîìïëå-ìåíòàðíîñòè ïîìèìî seed region (Grimson et al., 2007).

ÏÒÃÑ äîñòèãàåòñÿ íåñêîëüêèìè âîçìîæíûìè ìåõà-íèçìàìè. Îäíèì èç íèõ ÿâëÿåòñÿ ðàçðåçàíèå öåëåâîéìÐÍÊ â ðåçóëüòàòå ýíäîíóêëåàçíîé àêòèâíîñòè Ago2 (Liuet al., 2004). Ñàéò ðàñùåïëåíèÿ ëîêàëèçîâàí ìåæäó 9-ì è10-ì íóêëåîòèäàìè c 5R-êîíöà ìèêðîÐÍÊ (Martinez et al.,2002). Èìåííî êîìïëåìåíòàðíîå ñïàðèâàíèå öåíòðàëü-íîé îáëàñòè ìèêðîÐÍÊ (9—11-é íóêëåîòèäû) ñ ìÐÍÊ ÿâ-ëÿåòñÿ íåîáõîäèìûì óñëîâèåì ýíäîíóêëåàçíîé àêòèâíî-ñòè Ago2 (Doench et al., 2003). Àëüòåðíàòèâíî RISC ìî-æåò èíèöèèðîâàòü äåàäåíèëèðîâàíèå öåëåâîé ìÐÍÊ è ååïîñëåäóþùóþ äåãðàäàöèþ (Wu et al., 2006) ïóòåì ðåêðó-òèðîâàíèÿ àäàïòåðíîãî áåëêà GW182 è äåàäåíèëàçíîãîêîìïëåêñà Ccr4—Not (Fabian et al., 2012). GW182 ñâÿçû-âàåò, êðîìå òîãî, áåëîê PABP. Ïðåäïîëîæèòåëüíî âçàè-

ìîäåéñòâèå GW182 ñ PABP äåëàåò íåâîçìîæíîéöèðêóëÿðèçàöèþ ìÐÍÊ, íåîáõîäèìóþ äëÿ èíèöèàöèèòðàíñëÿöèè áåëêà (Zekri et al., 2009). Ñõåìà áèîãåíåçà èîñíîâíûõ ýôôåêòîðíûõ ìåõàíèçìîâ äåéñòâèÿ ìèêðîÐÍÊïðåäñòàâëåíà íà ðèñóíêå.

Èìååòñÿ ðÿä äðóãèõ áåëêîâûõ âçàèìîäåéñòâèé, âî-âëåêàþùèõ êîìïëåêñ RISC. Â îáùåé ñëîæíîñòè ïðåäïî-ëàãàåòñÿ 9 âçàèìîäîïîëíÿþùèõ ìîëåêóëÿðíûõ ìåõàíèç-ìîâ RISC-îïîñðåäîâàííîãî ñàéëåíñèíãà ãåíîâ, äåòàëè êî-òîðûõ ïîêà äî êîíöà íå âûÿñíåíû (Morozova et al., 2012).

 êëåòêå êàæäàÿ ìèêðîÐÍÊ ñïîñîáíà óçíàâàòü ðÿäìÐÍÊ-ìèøåíåé.  òî æå âðåìÿ îäíà ìÐÍÊ ìîæåò ÿâëÿòü-ñÿ ìèøåíüþ äëÿ ìíîãèõ ìèêðîÐÍÊ (Krek et al., 2005). ðåçóëüòàòå ñîâîêóïíîñòü ìèêðîÐÍÊ îñóùåñòâëÿåòñëîæíóþ ñåòü âçàèìîäåéñòâèé c ìÐÍÊ-ìèøåíÿìè, îáåñ-ïå÷èâàÿ òîíêóþ íàñòðîéêó àêòèâíîñòè ãåíîâ è ðåãóëèðóÿâàæíåéøèå ôóíêöèè â íîðìå è ïðè ìíîæåñòâå ïàòîëîãè-÷åñêèõ ïðîöåññîâ (Ghildiyal, Zamore, 2009; Ðóêøà è äð.,2016). Ïî ðàçíûì îöåíêàì, 30—60 % ãåíîâ ÷åëîâåêà, êî-äèðóþùèõ áåëîê, íàõîäÿòñÿ ïîä ðåïðåññèâíûì êîíòðî-ëåì ìèêðîÐÍÊ (Lewis et al., 2005; Friedman et al., 2009).Êðîìå òîãî, ìíîãèå ìèêðîÐÍÊ â êëåòêå ñóùåñòâóþò â íå-ñêîëüêèõ èçîôîðìàõ (Guo, Chen, 2014).

Èíôåêöèÿ ÂÃÀ ñóùåñòâåííî èçìåíÿåò ïðîôèëü êëå-òî÷íûõ ìèêðîÐÍÊ, ïðè ýòîì íåêîòîðûå èçìåíåíèÿ ìîæ-íî îöåíèòü êàê ïðîâèðóñíûå, à íåêîòîðûå — êàê àíòèâè-ðóñíûå. Äèíàìèêà ìèêðîÐÍÊ ïðè ãðèïïå è åå áèîëîãè÷å-ñêàÿ ðîëü ïîäðîáíî ðàññìàòðèâàþòñÿ íèæå.

Âòîðûì òèïîì ìàëûõ èíòåðôåðèðóþùèõ ÐÍÊ ÿâëÿ-þòñÿ êèÐÍÊ. Ñòðóêòóðíî êèÐÍÊ ïðåäñòàâëÿþò ñîáîéäóïëåêñû äëèíîé 21—25 ï. í., ñõîæèå ñ âûøåîïèñàííû-ìè ìèêðîÐÍÊ-äóïëåêñàìè.  îòëè÷èå îò ìèêðîÐÍÊêèÐÍÊ íå êîäèðóþòñÿ êëåòî÷íûìè ãåíàìè. Îíè áûëè îò-êðûòû â èññëåäîâàíèÿõ íà íåìàòîäå Caenorhabditis ele-gans êàê ïðîäóêò ðàçðåçàíèÿ ÐÍÊàçîé Dicer ýêçîãåííîââåäåííûõ â êëåòêè äëèííûõ äâóõíèòåâûõ ÐÍÊ (äíÐÍÊ),êîìïëåìåíòàðíûõ ê ýêçîííûì ó÷àñòêàì ãåíîâ (Fire et al.,1998).  ðÿäå ãðóïï îðãàíèçìîâ èñòî÷íèêàìè êèÐÍÊ ïî-ìèìî ýêñïåðèìåíòàëüíî ââåäåííûõ ìîãóò áûòü òàêæå âè-ðóñíûå äíÐÍÊ è ïðîäóêòû äâóíàïðàâëåííîé òðàíñêðèï-öèè ìîáèëüíûõ ýëåìåíòîâ ãåíîìà. Ýôôåêòîðíûé ìåõà-íèçì êèÐÍÊ-èíòåðôåðåíöèè ñõîæ ñ âûøåîïèñàííûìãåííûì ñàéëåíñèíãîì, îïîñðåäîâàííûì ìèêðîÐÍÊ. Îíâêëþ÷àåò â ñåáÿ ñáîðêó êîìïëåêñà RISC è ôðàãìåíòàöèþìÐÍÊ-ìèøåíè áåëêîì Ago2.

 ïîñëåäíèå ãîäû ñèíòåòè÷åñêèå êèÐÍÊ, íàïðàâëåí-íûå íà ïîäàâëåíèå ýêñïðåññèè ãåíîâ ÂÃÀ, àêòèâíî èññëå-äóþòñÿ â êà÷åñòâå ïåðñïåêòèâíûõ íîâûõ ëåêàðñòâåííûõñðåäñòâ â ëå÷åíèè ãðèïïà.  ýòîì íàïðàâëåíèè â ðÿäå ëà-áîðàòîðèé äîñòèãíóòû çàìåòíûå óñïåõè, ðåçóëüòàòû äàí-íûõ ðàáîò äåòàëüíî îáñóæäàþòñÿ íèæå.

Òðåòüèì òèïîì ìàëûõ èíòåðôåðèðóþùèõ ÐÍÊ ÿâëÿ-þòñÿ piÐÍÊ, èìåþùèå äëèíó 25—32 íóêëåîòèäà. Îíèâçàèìîäåéñòâóþò ñ áåëêàìè êëàäà PIWI, òàêæå âõîäÿùè-ìè â ñåìåéñòâî Argonaut. Ó ìëåêîïèòàþùèõ áåëêè PIWIè piÐÍÊ îáíàðóæåíû òîëüêî â ãîíàäàõ. Áèîãåíåç piÐÍÊñóùåñòâåííî îòëè÷àåòñÿ îò áèîãåíåçà ìèðîÐÍÊ è êèÐÍÊ.piÐÍÊ ÷àñòè÷íî ïðîèñõîäÿò èç ñïåöèàëèçèðîâàííûõpiÐÍÊ-êëàñòåðîâ äëèíîé îò 1000 äî 100 000 ï. í. è áîëåå,÷àñòè÷íî — èç òðàíñêðèïòîâ àêòèâíûõ ìîáèëüíûõ ýëå-ìåíòîâ ãåíîìà. Ïî èìåþùèìñÿ äàííûì, ïðåäøåñòâåííè-êè piÐÍÊ â îòëè÷èå îò ïðåäøåñòâåííèêîâ ìèêðîÐÍÊ èêèÐÍÊ íå èìåþò øïèëå÷íîé ñòðóêòóðû è ÿâëÿþòñÿ îäíî-íèòåâûìè ìîëåêóëàìè. Îñíîâíîé ôóíêöèåé piÐÍÊ ÿâëÿ-åòñÿ ðåïðåññèÿ ïîäâèæíûõ ýëåìåíòîâ ãåíîìà (òðàíñïîçî-

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 517

Page 4: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

íîâ) â êëåòêàõ çàðîäûøåâîãî ïóòè. Ýòà çàäà÷à ðåøàåòñÿêàê â ÿäðå, ãäå áåëêè PIWI âîâëå÷åíû â ðåãóëÿöèþ ñòðóê-òóðû õðîìàòèíà, ïðåïÿòñòâóþùóþ òðàíñêðèïöèè òðàíñ-ïîçîíîâ, òàê è â öèòîïëàçìå, ãäå êîìïëåêñû PIWI èpiÐÍÊ îáåñïå÷èâàþò êîìïëåìåíòàðíîå óçíàâàíèå è ôðàã-ìåíòàöèþ òðàíñêðèïòîâ ïîäâèæíûõ ýëåìåíòîâ (Tothet al., 2016).

piÐÍÊ, ïî-âèäèìîìó, íå âîâëå÷åíû â ïàòîãåíåç ÂÃÀ(ê íàñòîÿùåìó âðåìåíè èõ íå îáíàðóæåíî â ðåñïèðàòîð-íûõ ýïèòåëèÿõ), ïîýòîìó íèæå ìû ñêîíöåíòðèðóåìñÿ íàêèÐÍÊ- è ìèêðîÐÍÊ-âåòâÿõ ÐÍÊ-èíòåðôåðåíöèè.

Àíòèâèðóñíàÿ ÐÍÊ-èíòåðôåðåíöèÿíà îñíîâå êèÐÍÊ âèðóñíîãî ïðîèñõîæäåíèÿ

ÐÍÊ-èíòåðôåðåíöèÿ èãðàåò êëþ÷åâóþ ðîëü â ñëîæ-íûõ âçàèìîäåéñòâèÿõ ìåæäó âèðóñîì è èíôèöèðîâàííîéèì êëåòêîé. Ó ðàñòåíèé, ãðèáîâ è â íåêîòîðûõ ãðóïïàõ

áåñïîçâîíî÷íûõ (÷ëåíèñòîíîãèå è íåìàòîäû) ÐÍÊ-èíòåð-ôåðåíöèÿ íà îñíîâå êèÐÍÊ âèðóñíîãî ïðîèñõîæäåíèÿ ÿâ-ëÿåòñÿ âàæíåéøèì ìåõàíèçìîì ïðîòèâîâèðóñíîéçàùèòû. Âèðóñíûå äíÐÍÊ óçíàþòñÿ áåëêàìè ñåìåéñòâàDicer DCL1 (Caenorhabditis elegans), DCL2 (Drosophila),DCL3 è DCL4 (Arabidopsis thaliana), êîòîðûå ðàçðåçàþòèõ íà êîðîòêèå äâóõíèòåâûå âèðóñíûå êèÐÍÊ-ôðàãìåíòû(21—24 ï. í.), ñòðóêòóðíî ñõîæèå ñ âûøåîïèñàííûìèìèêðîÐÍÊ-äóïëåêñàìè (Ding, 2010). Ýòà ðèáîíóêëåàçíàÿàêòèâíîñòü ïåðå÷èñëåííûõ ôîðì Dicer, íàïðàâëåííàÿ íàâèðóñíûå äíÐÍÊ, ñàìà ïî ñåáå îáëàäàåò ïðîòèâîâèðóñ-íûì äåéñòâèåì. Îäíàêî ýôôåêòîðíûé èììóííûé ìåõà-íèçì ó äàííûõ îðãàíèçìîâ âêëþ÷àåò ñáîðêó êîìïëåêñàRISC, âêëþ÷àþùåãî âèðóñíûå êèÐÍÊ, óçíàâàíèå âèðóñ-íûõ ìÐÍÊ ñ ïîëíîé êîìïëåìåíòàðíîñòüþ è èõ ôðàãìåí-òàöèþ â ðåçóëüòàòå ýíäîíóêëåàçíîé àêòèâíîñòè áåëêîâAgo (Pantaleo et al., 2007; Schuck et al., 2013).

Âîïðîñ î òîì, íàñêîëüêî ðàñïðîñòðàíåíà è ôóíêöèî-íàëüíî çíà÷èìà àíòèâèðóñíàÿ êèÐÍÊ-èíòåðôåðåíöèÿ ó

518 À. Í. Ãîðøêîâ è äð.

Áèîãåíåç ìèêðîÐÍÊ è îñíîâíûå ýôôåêòîðíûå ìåõàíèçìû ïîñòòðàíñêðèïöèîííîãî ãåííîãî ñàéëåíñèíãà (ÏÒÃÑ).

Ïåðâè÷íûé ìèêðîÐÍÊ-òðàíñêðèïò (pri-miRNA) òðàíñêðèáèðóåòñÿ ÐÍÊ-ïîëèìåðàçîé 2 è ôîðìèðóåò øïèëå÷íóþ âòîðè÷íóþ ñòðóêòóðó. Äàëåå êîì-ïëåêñ ìèêðîïðîöåññîð (ÐÍÊàçà III-ïîäîáíûé ôåðìåíò Drosha è ÐÍÊ-ñâÿçûâàþùèé áåëîê DGCR8) âûðåçàåò ïðåäøåñòâåííèê ìèêðîÐÍÊ (pre-miRNA) ñîñòðóêòóðîé «ñòåáåëü—ïåòëÿ». Àëüòåðíàòèâíûé ïóòü áèîãåíåçà pre-miRNA ñâÿçàí ñî ñïëàéñèíãîì ìèêðîÐÍÊ-êîäèðóþùèõ èíòðîíîâ (ìèðòðîíîâ).Pre-miRNA ýêñïîðòèðóþòñÿ â öèòîïëàçìó ïðè ó÷àñòèè ýêñïîðòèíà 5 è ìàëîé ÃÒÔàçû Ran.  öèòîïëàçìå ÐÍÊàçà III Dicer ïðè ó÷àñòèè áåëêà TRBPóäàëÿåò ïåòëåâóþ îáëàñòü, îñòàâëÿÿ ìèêðîÐÍÊ-äóïëåêñ äëèíîé 21—23 ï. í. ÌèêðîÐÍÊ-äóïëåêñ ñâÿçûâàåòñÿ ñ áåëêàìè ñåìåéñòâà Argonaut (Ago),ôîðìèðóÿ êîìïëåêñ RISC, ïðè ýòîì îäíà èç íèòåé (âåäóùàÿ íèòü) îïîñðåäóåò ÏÒÃÑ, à âòîðàÿ (ïàññàæèðñêàÿ) íèòü óäàëÿåòñÿ èç êîìïëåêñà. Âîçìîæ-íûå ýôôåêòîðíûå ìåõàíèçìû ÏÒÃÑ ñîñòîÿò â ðàçðåçàíèè öåëåâîé ìÐÍÊ áåëêîì Ago2, äåàäåíèëèðîâàíèè öåëåâîé ìÐÍÊ äåàäåíèëàçíûì êîìïëåêñîì

Ccr4—Not è ïîäàâëåíèè òðàíñëÿöèè ìÐÍÊ.

Page 5: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

ìëåêîïèòàþùèõ, ÿâëÿåòñÿ äèñêóññèîííûì (Cullen et al.,2013; Cullen, 2014; Gantier, 2014; Weng et al., 2015).  öå-ëîì õîðîøî èçâåñòíî, ÷òî ââåäåííûå â êëåòêè ìëåêîïèòà-þùèõ ýêçîãåííûå êèÐÍÊ âûçûâàþò âûñîêîýôôåêòèâíûéÏÒÃÑ öåëåâûõ ãåíîâ çà ñ÷åò ýíäîíóêëåàçíîé àêòèâíîñòèAgo2. Ñëåäîâàòåëüíî, ìëåêîïèòàþùèå îáëàäàþò íåîáõî-äèìûìè ýôôåêòîðíûìè ìåõàíèçìàìè äëÿ êèÐÍÊ-îïîñðå-äîâàííîé äåãðàäàöèè ìÐÍÊ-ìèøåíåé. Âìåñòå ñ òåì â îò-ëè÷èå îò ñåëåêòèâíîãî äåéñòâèÿ êèÐÍÊ òðàíñôåêöèÿ öå-ëåâûõ äëèííûõ äíÐÍÊ âûçûâàåò ëèøü íåñïåöèôè÷åñêîåïîäàâëåíèå ýêñïðåññèè ãåíîâ ïî ìåõàíèçìó èíòåðôåðî-íîâîãî îòâåòà (Elbashir et al., 2002), ò. å. â êëåòêàõ ìëåêî-ïèòàþùèõ äëèííûå äíÐÍÊ íå ïðîöåññèðóþòñÿ Dicer íàçíà÷èòåëüíîì óðîâíå â êèÐÍÊ-äóïëåêñû.

Áåññïîðíî, îñíîâíîé ìåõàíèçì àíòèâèðóñíîãî âðîæ-äåííîãî èììóíèòåòà ó ïîçâîíî÷íûõ — ýòî èíòåðôåðîíî-âûé îòâåò, â õîäå êîòîðîãî ðàñïîçíàâàíèå âèðóñíûõäíÐÍÊ áåðóò íà ñåáÿ áåëêîâûå ïàòòåðíðàñïîçíàþùèå ðå-öåïòîðû (Berke et al., 2013; Del Toro Duany et al., 2015).Åäèíñòâåííàÿ ôîðìà Dicer, ýêñïðåññèðóåìàÿ ó ìëåêîïè-òàþùèõ, íàïðàâëåíà íà ïðîäóêöèþ ìèêðîÐÍÊ èç øïè-ëå÷íûõ pre-miRNA; ðèáîíóêëåàçíàÿ àêòèâíîñòü Dicerìëåêîïèòàþùèõ â îòíîøåíèè äëèííûõ äÖÐÍÊ íèçêà çàñ÷åò àóòîèíãèáèòîðíîé ðîëè åãî N-êîíöåâîãî äîìåíà, ãî-ìîëîãè÷íîãî DExD/H-box-ãåëèêàçàì (Ma et al., 2008).Ôåðìåíòàòèâíàÿ àêòèâíîñòü Dicer òàêæå êðèòè÷åñêè çà-âèñèìà îò ðÿäà ïàðòíåðîâ ïî ñâÿçûâàíèþ, îïðåäåëÿþùèõåãî êîíôîðìàöèîííîå ñîñòîÿíèå: áåëêè TRBP, ADAR1 è,âîçìîæíî, RHA àêòèâèðóþò Dicer (Robb, Rana, 2007;Chakravarthy et al., 2010; Ota et al., 2013), â òî âðåìÿ êàêáåëîê PACT, íàïðîòèâ, èíãèáèðóåò àêòèâíîñòü Dicer â îò-íîøåíèè äëèííûõ äíÐÍÊ (Lee et al., 2013a).

 ñîãëàñèè ñ ïåðå÷èñëåííûìè ôàêòàìè ãëóáîêîåñåêâåíèðîâàíèå êëåòîê ìëåêîïèòàþùèõ, èíôèöèðîâàí-íûõ ðàçëè÷íûìè âèðóñàìè, íå îáíàðóæèëî â íèõ ñóùåñò-âåííûõ êîëè÷åñòâ ìàëûõ ÐÍÊ, êîòîðûå ÿâíî ñîîòâåòñòâî-âàëè áû âñåì êðèòåðèÿì âèðóñíûõ êèÐÍÊ (ðàçìåðó22 � 2 íóêëåîòèäà, âûñîêîìó óðîâíþ àêêóìóëÿöèè, ðàâ-íîìó ÷èñëó ñìûñëîâûõ è àíòèñìûñëîâûõ íèòåé, ñïåöè-ôè÷åñêîé àññîöèàöèè ñ Ago) (Backes et al., 2014; Bogerdet al., 2014). Êðîìå òîãî, ïðîäåìîíñòðèðîâàíî, ÷òî â êëå-òî÷íûõ ëèíèÿõ ñ îòñóòñòâóþùåé àêòèâíîñòüþ ãåíà Dicerðåïëèêàöèÿ ðÿäà ÐÍÊ- è ÄÍÊ-âèðóñîâ, â òîì ÷èñëå ÂÃÀ,èäåò ñ òîé æå ñêîðîñòüþ, ÷òî è â èíòàêòíûõ êëåòêàõ (Bo-gerd et al., 2014). Ýòè ðåçóëüòàòû ïðèâåëè ðÿä àâòîðîâ êçàêëþ÷åíèþ, ÷òî êèÐÍÊ-èíòåðôåðåíöèÿ êàê ñðåäñòâîôóíêöèîíàëüíîé àíòèâèðóñíîé çàùèòû â ïðèíöèïå íåõà-ðàêòåðíà äëÿ ìëåêîïèòàþùèõ (Cullen et al., 2013; Backeset al., 2014; Bogerd et al., 2014).

Òåì íå ìåíåå ñóùåñòâóþò àðãóìåíòû è ïðîòèâîïî-ëîæíîãî ðîäà. Îáíàðóæåíî (Parameswaran et al., 2010), ÷òîêëåòêè ìëåêîïèòàþùèõ, èíôèöèðîâàííûå øåñòüþ ðàçëè÷-íûìè ÐÍÊ-âèðóñàìè, ñîäåðæàò êîðîòêèå ÐÍÊ âèðóñíîãîïðîèñõîæäåíèÿ, ÷àñòü èç êîòîðûõ ÿâëÿþòñÿ ÐÍÊ-äóïëåê-ñàìè ñ íåñêîëüêèìè (äî òðåõ) íåñïàðåííûìè íóêëåîòèäà-ìè íà 3R-êîíöàõ (õàðàêòåðíûé ïðèçíàê ýíäîíóêëåàçíîãîðàñùåïëåíèÿ Dicer). Äëÿ âèðóñà ãåïàòèòà Ñ àâòîðû ïðî-äåìîíñòðèðîâàëè òàêæå àññîöèàöèþ êîðîòêèõ âèðóñíûõÐÍÊ ñ îâåðýêñïðåññèðîâàííûìè Ago1—Ago4, õîòÿ èõ ðå-àëüíàÿ ôóíêöèîíàëüíàÿ ðîëü â ÐÍÊ-èíòåðôåðåíöèè âýòîé ðàáîòå íå áûëà ïîêàçàíà (Parameswaran et al., 2010).

Dicer-çàâèñèìàÿ ïðîäóêöèÿ êèÐÍÊ âèðóñíîãî ïðîèñ-õîæäåíèÿ è ñáîðêà êîìïëåêñà RISC áûëè îáíàðóæåíû âïëþðèïîòåíòíûõ ýìáðèîíàëüíûõ ñòâîëîâûõ êëåòêàõ(ÝÑÊ) ìûøè, èíôèöèðîâàííûõ âèðóñîì ýíöåôàëîìèî-

êàðäèòà (Picornaviridae) (Maillard et al., 2013). Äèôôåðåí-öèðîâêà ìûøèíûõ ÝÑÊ ðåçêî (â 10 ðàç) ñíèæàëà óðîâåíüâèðóñíîé êèÐÍÊ, ÷òî, ïî-âèäèìîìó, ñâÿçàíî ñ àêòèâà-öèåé ãåíîâ ñèñòåìû âðîæäåííîãî èììóíèòåòà (Flemret al., 2013). Óñòàíîâëåíî, ÷òî îîöèòû ìûøè ýêñïðåññè-ðóþò âûñîêîàêòèâíóþ N-òåðìèíàëüíî óêîðî÷åííóþ ôîð-ìó Dicer (Dicer0) ñ îòñóòñòâóþùèì DExD/H-box-ïîäîá-íûì äîìåíîì (Flemr et al., 2013); âîçìîæíî, Dicer0 ýêñ-ïðåññèðóåòñÿ è â ÝÑÊ ìûøè (Cullen, 2014). Óðîâåíüýêñïðåññèè Dicer â ÝÑÊ â öåëîì ñóùåñòâåííî âûøå, ÷åìâ äèôôåðåíöèðîâàííûõ ñîìàòè÷åñêèõ êëåòêàõ (Billyet al., 2001; Chen et al., 2010), ÷òî, î÷åâèäíî, òàêæå ñïî-ñîáñòâóåò áîëåå âûñîêîìó óðîâíþ ïðîòèâîâèðóñíîéêèÐÍÊ-èíòåðôåðåíöèè â ÝÑÊ.

Íåêîòîðîå óñèëåíèå ðåïëèêàöèè ÂÃÀ ïîñëå íîêäàóíàãåíà Dicer áûëî îáíàðóæåíî â êëåòî÷íîé ëèíèè Vero, õà-ðàêòåðèçóþùåéñÿ îòñóòñòâèåì ýêñïðåññèè ãåíîâ IFN-A1è IFN-B1 (Matskevich et al., 2007). Ýòè ðåçóëüòàòû ïîç-âîëÿþò ïðåäïîëîæèòü âîçìîæíîñòü àíòèâèðóñíîé êèÐÍÊ-èíòåðôåðåöèè â äàííîé èíòåðôåðîí-äåôèöèòíîé êëåòî÷-íîé ñèñòåìå è ïîäòâåðæäàþò, ÷òî â êëåòêàõ ìëåêîïèòàþ-ùèõ ñóùåñòâóþò êîíêóðåíòíûå îòíîøåíèÿ ìåæäó ñèñòå-ìîé èíòåðôåðîíîâîãî îòâåòà è àíòèâèðóñíîé êèÐÍÊ-èí-òåðôåðåíöèåé.

Ìíîãèå âèðóñû êîäèðóþò áåëêè-ñóïðåññîðû àíòèâè-ðóñíîé êèÐÍÊ-èíòåðôåðåíöèè, îãðàíè÷èâàþùèå ñïîñîá-íîñòü Dicer ðàçðåçàòü âèðóñíûå äíÐÍÊ. Çàðàæåíèå êëåòîêìëåêîïèòàþùèõ âèðóñàìè ñ äåëåöèÿìè èëè ìóòàöèÿìèñîîòâåòñòâóþùèõ ãåíîâ ïðèâîäèëî ê ïîÿâëåíèþ â íèõçíà÷èòåëüíûõ êîëè÷åñòâ âèðóñíûõ êèÐÍÊ è ê Ago2-îïî-ñðåäîâàííîìó ñíèæåíèþ èíôåêöèîííîé ñïîñîáíîñòè âè-ðóñà. Òàêèå ðåçóëüòàòû áûëè ïîëó÷åíû äëÿ âèðóñà Íîäà-ìóðà (Nodaviridae) ñ äåëåöèåé áåëêà B2 (NoDB2) (Li et al.,2013; Maillard et al., 2013), äëÿ âèðóñà ãåïàòèòà ìûøåé(Coronaviridae) c ìóòàöèåé áåëêà N (Cui et al., 2015). Íàìîäåëüíûõ ñèñòåìàõ ïîäàâëåíèå ýêñïåðèìåíòàëüíîéêèÐÍÊ-èíòåðôåðåíöèè áûëî ïðîäåìîíñòðèðîâàíî òàêæåäëÿ öåëîãî ðÿäà îâåðýêñïðåññèðîâàííûõ âèðóñíûõ ñó-ïðåññîðíûõ áåëêîâ, â òîì ÷èñëå NS1 èç ÂÃÀ (Bucheret al., 2004; Li et al., 2004). Äîêàçàíî ïðÿìîå ñâÿçûâàíèåäíÐÍÊ ñ N-êîíöåâûì (àìèíîêèñëîòíûå îñòàòêè 1—73) äî-ìåíîì áåëêà NS1 ÂÃÀ (Chien et al., 2004; Cheng et al.,2009), ïðåïÿòñòâóþùåå ðèáîíóêëåàçíîé àêòèâíîñòè Dicer.

Òàêèì îáðàçîì, ó ìëåêîïèòàþùèõ àíòèâèðóñíàÿêèÐÍÊ-èíòåðôåðåíöèÿ, ïî-âèäèìîìó, îãðàíè÷åíà îîöè-òàìè è ÝÑÊ (ïðåäïîëîæèòåëüíî òîëüêî ãðûçóíîâ), ÷òîìîæåò áûòü ñâÿçàíî ñ ýêñïðåññèåé â äàííûõ êëåòêàõ âû-ñîêîàêòèâíîãî Dicer0 (Flemr et al., 2013) è îòñóòñòâèåì âíèõ ñóùåñòâåííîãî óðîâíÿ ýêñïðåññèè ãåíîâ èíòåðôåðî-íîâîãî îòâåòà (Harada et al., 1990).  äèôôåðåíöèðîâàí-íûõ ñîìàòè÷åñêèõ êëåòêàõ ìëåêîïèòàþùèõ êèÐÍÊ-èí-òåðôåðåíöèÿ, î÷åâèäíî, íå èãðàåò çàìåòíîé ðîëè â áîðüáåñ âèðóñàìè èç-çà âêëþ÷åíèÿ â êëåòêàõ ãåíîâ èíòåðôåðî-íîâîãî îòâåòà, à òàêæå ñóïðåññèè äíÐÍÊ-ïðîöåññèðóþùåéñïîñîáíîñòè Dicer ïî íåñêîëüêèì ìåõàíèçìàì (àóòîèíãè-áèðîâàíèå, èíãèáèðîâàíèå êëåòî÷íûìè áåëêàìè è èíãè-áèðîâàíèå ñóïðåññîðàìè âèðóñíîãî ïðîèñõîæäåíèÿ).

êèÐÍÊ-èíòåðôåðåíöèÿ êàê íîâûéòåðàïåâòè÷åñêèé ïîäõîä â áîðüáå ñ ÂÃÀ

Òåðàïåâòè÷åñêîå ïðèìåíåíèå êèÐÍÊ-èíòåðôåðåíöèèäëÿ ëå÷åíèÿ ðÿäà çàáîëåâàíèé, â òîì ÷èñëå ãðèïïà, àêòèâ-íî èññëåäóåòñÿ ñ íà÷àëà 2000-õ ãîäîâ.  öåëîì óñïåõ

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 519

Page 6: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

êèÐÍÊ-îïîñðåäîâàííîãî ñàéëåíñèíãà öåëåâîãî ãåíà ïîñóùåñòâó îïðåäåëÿåòñÿ äâóìÿ êîìïîíåíòàìè — îïòè-ìàëüíûì äèçàéíîì êèÐÍÊ è âûáîðîì ýôôåêòèâíîãîñðåäñòâà äîñòàâêè êèÐÍÊ â êëåòêè-ìèøåíè.

 ðÿäå ðàáîò ýêñïåðèìåíòàëüíî áûëè îïðåäåëåíûáëàãîïðèÿòíûå è íåáëàãîïðèÿòíûå ôàêòîðû äèçàéíàêèÐÍÊ, âëèÿþùèå íà ôèíàëüíóþ ýôôåêòèâíîñòü è ñïå-öèôè÷íîñòü êèÐÍÊ-èíòåðôåðåíöèè (Reynolds et al., 2004;Birmingham et al., 2007). Áûëè ðàçðàáîòàíû àëãîðèòìûïîäáîðà êèÐÍÊ, ó÷èòûâàþùèå ïåðå÷èñëåííûå âûøå òðå-áîâàíèÿ ê èõ äèçàéíó (Birmingham et al., 2007; Wang et al.,2009). Ñóùåñòâóþò web-ðåñóðñû, íàöåëåííûå íà ïîäáîðêèÐÍÊ äëÿ ñàéëåíñèíãà öåëåâûõ ãåíîâ (Lagana et al.,2015).  íàñòîÿùåå âðåìÿ äîñòóïíû ïîëíîãåíîìíûå áèá-ëèîòåêè êèÐÍÊ, ïîçâîëÿþùèå ïðîâîäèòü ðàçëè÷íûå âû-ñîêîïðîèçâîäèòåëüíûå ôóíêöèîíàëüíûå èññëåäîâàíèÿ íàîñíîâå íîêäàóíîâ èíäèâèäóàëüíûõ ãåíîâ.  èññëåäîâàíè-ÿõ in vitro íàðÿäó ñ ñîáñòâåííî êèÐÍÊ ÷àñòî èñïîëüçóþò-ñÿ ïëàçìèäû èëè ëåíòèâèðóñíûå âåêòîðû, êîäèðóþùèåøïèëå÷íûå ïðåäøåñòâåííèêè êèÐÍÊ (êøÐÍÊ).

Âòîðûì êðèòè÷åñêè âàæíûì îáñòîÿòåëüñòâîì, îïðå-äåëÿþùèì óñïåøíîñòü êèÐÍÊ-èíòåðôåðåíöèè è â ïåð-ñïåêòèâå êèÐÍÊ-òåðàïèè, ÿâëÿåòñÿ ñîçäàíèå ñðåäñòâà äî-ñòàâêè êèÐÍÊ, êîòîðîå îäíîâðåìåííî ñîîòâåòñòâîâàëîáû öåëîìó ðÿäó íåîáõîäèìûõ òðåáîâàíèé — âûñîêîé ýô-ôåêòèâíîñòè äîñòàâêè êèÐÍÊ â öåëåâûå êëåòêè (â ñëó÷àåãðèïïà — â êëåòêè ðåñïèðàòîðíûõ ýïèòåëèåâ), çàùèòåêèÐÍÊ îò íóêëåàç âî âíåêëåòî÷íîé ñðåäå, íèçêîé òîêñè÷-íîñòè, îòñóòñòâèþ èììóíîãåííîñòè, ýôôåêòèâíîé áèî-ðàçëàãàåìîñòè è âûâåäåíèþ èç îðãàíèçìà.  ñëó÷àå ñèñ-òåìíîãî ââåäåíèÿ ê òðåáîâàíèÿì îòíîñèòñÿ ñïîñîáíîñòüïðåîäîëåâàòü ðÿä òêàíåâûõ áàðüåðîâ (ýíäîòåëèé, áàçàëü-íûå ìåìáðàíû, òêàíåâûå ìàêðîôàãè), à â ñëó÷àå ýíäîöè-òîçíîãî ïîãëîùåíèÿ êëåòêàìè — ñïîñîáíîñòü ê âûñâî-áîæäåíèþ èç ýíäîñîì. Ïðåäëîæåíî íåñêîëüêî ýêñïåðè-ìåíòàëüíûõ ïëàòôîðì äîñòàâêè êèÐÍÊ, îñíîâíûìè èçêîòîðûõ ÿâëÿþòñÿ ëèïîñîìû, âèðóñíûå âåêòîðû, ïîëèêà-òèîííûå íàíîíîñèòåëè è ïåïòèäíûå ñèñòåìû äîñòàâêè(Wang et al., 2010; Ruigrok et al., 2016). Íåñìîòðÿ íà áîëü-øîå êîëè÷åñòâî èññëåäîâàíèé â äàííîì íàïðàâëåíèè èðÿä îáíàäåæèâàþùèõ ðåçóëüòàòîâ, âîïðîñ âûáîðà îïòè-ìàëüíîé ñòðàòåãèè äîñòàâêè òåðàïåâòè÷åñêèõ êèÐÍÊin vivo íå ìîæåò ïîêà ñ÷èòàòüñÿ ðåøåííûì.

Ïîäàâëåíèå ðåïëèêàöèè ÂÃÀ ñ ïîìîùüþ êèÐÍÊ-èí-òåðôåðåíöèè âèðóñíûõ ãåíîâ íåîäíîêðàòíî èññëåäîâàëèýêñïåðèìåíòàëüíî. Êàê è äëÿ êëåòî÷íûõ ãåíîâ, äëÿ ãåíîâÂÃÀ áûëè ñôîðìóëèðîâàíû áèîèíôîðìàöèîííûå àëãîðèò-ìû ïîäáîðà íàèáîëåå ýôôåêòèâíî äåéñòâóþùèõ êèÐÍÊ(ElHefnawi et al., 2011; Liu et al., 2013); äëÿ ðåøåíèÿ ýòîéçàäà÷è èìååòñÿ ðÿä web-ðåñóðñîâ (Sharma et al., 2015).

Ðåçóëüòàòû ýòèõ èññëåäîâàíèé ñóììèðîâàíû âòàáë. 1. Èç ïðèâåäåííûõ â òàáëèöå äàííûõ î÷åâèäíî, ÷òîýôôåêòèâíî ôóíêöèîíèðóþùèå àíòè-ÂÃÀ êèÐÍÊ (èëèêøÐÍÊ-êîäèðóþùèå ïëàçìèäû), êàê ïðàâèëî, íàïðàâëå-íû íà êîíñåðâàòèâíûå âèðóñíûå ãåíû, êîäèðóþùèå âíóò-ðåííèå áåëêè âèðóñà è ïîëèìåðàçíûé êîìïëåêñ.  ðå-çóëüòàòå òàêîãî âûáîðà ìèøåíåé êèÐÍÊ-èíòåðôåðåíöèèâ ðÿäå ñëó÷àåâ óäàëîñü äîñòè÷ü èíãèáèðîâàíèÿ íåñêîëü-êèõ øòàììîâ ÂÃÀ îäíèìè è òåìè æå êèÐÍÊ (òàáë. 1).

Êàê âèäíî èç äàííûõ òàáë. 1, â ýêñïåðèìåíòàõ ïî àí-òè-ÂÃÀ êèÐÍÊ-èíòåðôåðåíöèè áûëè èñïîëüçîâàíûðàçëè÷íûå ñðåäñòâà äîñòàâêè êèÐÍÊ — êàê òðàäèöèîí-íûå, òàê è äîñòàòî÷íî íîâûå — ÏÝÃèëèðîâàííûå èììó-íîëèïîñîìû (Khantasup et al., 2014) è pH-çàâèñèìûå ïåï-òèäû (Liang et al., 2015). Ïîñêîëüêó ÂÃÀ ÿâëÿåòñÿ ðåñ-

ïèðàòîðíûì âèðóñîì, in vivo ñóùåñòâóåò âîçìîæíîñòüèíòðàíàçàëüíîãî èëè èíãàëÿöèîííîãî ââåäåíèÿ êèÐÍÊ-ñîäåðæàùèõ ïðåïàðàòîâ, ÷òî ïîçâîëÿåò èçáåæàòü ðÿäà ñå-ðüåçíûõ ïðåïÿòñòâèé, ñâÿçàííûõ ñ èõ ñèñòåìíûì ââåäå-íèåì (Ruigrok et al., 2016). Òåì íå ìåíåå ïðîáëåìû çàùè-òû êèÐÍÊ îò íóêëåàç è âûñâîáîæäåíèÿ êèÐÍÊ èç ýíäî-ñîì ýïèòåëèàëüíûõ êëåòîê îñòàþòñÿ àêòóàëüíûìè è âýòîì ñëó÷àå. Íåñìîòðÿ íà ïðèâåäåííûå â òàáë. 1 ïîëîæè-òåëüíûå ðåçóëüòàòû, èìåííî ðàçðàáîòêà îïòèìàëüíîãîñðåäñòâà äîñòàâêè êèÐÍÊ in vivo â èíôèöèðîâàííûå ÂÃÀêëåòêè îñòàåòñÿ îñíîâíûì ïðåïÿòñòâèåì, çàòðóäíÿþùèìíåìåäëåííóþ òðàíñëÿöèþ êèÐÍÊ-òåõíîëîãèè â êëèíè÷å-ñêóþ ïðàêòèêó òåðàïèè ãðèïïà.

Åùå îäíèì ïåðñïåêòèâíûì íàïðàâëåíèåì èñïîëüçî-âàíèÿ êèÐÍÊ â áîðüáå ñ ãðèïïîì ÿâëÿåòñÿ ïîèñê è ÏÒÃÑíå âèðóñíûõ, à êëåòî÷íûõ ãåíîâ, âàæíûõ äëÿ ðåïëèêàöèèÂÃÀ.  ðÿäå ðàáîò ñ ýòîé öåëüþ áûë ïðîâåäåí ñêðèíèíãêëåòî÷íûõ ôàêòîðîâ ðåïëèêàöèè ÂÃÀ ñ èñïîëüçîâàíèåìêèÐÍÊ-áèáëèîòåê. Ïîëíîãåíîìíûé êèÐÍÊ-ñêðèíèíã ÿâ-ëÿåòñÿ ìîùíåéøèì èíñòðóìåíòîì â ôóíêöèîíàëüíûõ ãå-íåòè÷åñêèõ èññëåäîâàíèÿõ áèîëîãèè ÂÃÀ, îäíàêî åãî ðå-çóëüòàòû îêàçûâàþòñÿ êðèòè÷åñêè çàâèñèìûìè îò âû-áðàííûõ â èññëåäîâàíèè ïàðàìåòðîâ — êëåòî÷íîé ëèíèè,øòàììà âèðóñà, ýôôåêòèâíîñòè êèÐÍÊ-íîêäàóíà, âûáîðàâðåìåíí*ûõ òî÷åê ñêðèíèíãà.  ÷àñòíîñòè, â 7 ïîëíîãå-íîìíûõ èññëåäîâàíèÿõ ñ èñïîëüçîâàíèåì áèáëèîòåêêèÐÍÊ, ïðîâåäåííûõ ê íàñòîÿùåìó âðåìåíè, áûëî âûÿâ-ëåíî â îáùåé ñëîæíîñòè 1362 õîçÿéñêèõ ãåíà, ñâÿçàííûõñ ðåïëèêàöèåé ÂÃÀ. Îäíàêî òîëüêî 6 ãåíîâ (ATP6AP1,ATP6V0C, ATP6V0D1, COPA, COPG è NXF1) ïåðåñåêà-ëèñü â ÷åòûðåõ ñêðèíèíãàõ è, ïàðàäîêñàëüíûì îáðàçîì,íè îäíîãî ãåíà — âî âñåõ 7 èññëåäîâàíèÿõ (Chou et al.,2015). Ïîýòîìó èíòåðïðåòàöèÿ ðåçóëüòàòîâ êèÐÍÊ-ñêðè-íèíãà è îñîáåííî èõ ïîñëåäóþùèé ïåðåâîä â ïëîñêîñòüðàçðàáîòêè ëåêàðñòâåííûõ ñðåäñòâ òðåáóþò îïðåäåëåí-íîé îñòîðîæíîñòè ïðè âñåé âàæíîñòè è èíôîðìàòèâíîñòèòàêèõ äàííûõ.

Âèðóñíûå ìèêðîÐÍÊ:ïðîâèðóñíàÿ ìèêðîÐÍÊ-èíòåðôåðåíöèÿ

Ðÿä âèðóñîâ èñïîëüçóåò ÐÍÊ-èíòåðôåðåíöèþ äëÿîáåñïå÷åíèÿ áåñïðåïÿòñòâåííîãî ïðîõîæäåíèÿ èìè æèç-íåííîãî öèêëà, êîäèðóÿ â ñâîèõ ãåíîìàõ âèðóñíûå ìèê-ðîÐÍÊ. Âèðóñíûå ìèêðîÐÍÊ êîäèðóþòñÿ ãåíîìàìè ðÿäàÄÍÊ-ñîäåðæàùèõ âèðóñîâ, ïðèíàäëåæàùèõ ê íåñêîëü-êèì ñåìåéñòâàì: Herpesviridae, Polyomaviridae, Ascoviri-dae, Baculoviridae, Adenoviridae è Iridoviridae (Grundhoff,Sullivan, 2011; Takane, Kanai, 2011; Liu, 2014). Áîëåå200 âèðóñíûõ ìèêðîÐÍÊ áûëî îáíàðóæåíî â ãåíîìàõàëüôà-, áåòà- è ãàììà-ãåðïåñ-âèðóñîâ. Âèðóñíûå ìèê-ðîÐÍÊ ÄÍÊ-ñîäåðæàùèõ âèðóñîâ èìåþò ìíîæåñòâî ìè-øåíåé êàê ñðåäè âèðóñíûõ ìÐÍÊ (àóòîðåãóëÿöèÿ âèðóñ-íûõ ãåíîâ) (Murphy et al., 2008; Lin et al., 2011), òàê è ñðå-äè êëåòî÷íûõ ìÐÍÊ. Âèðóñíûå ìèêðîÐÍÊ ðåãóëèðóþòïåðåêëþ÷åíèå ñ ëèòè÷åñêîãî íà ïåðñèñòåíòíûé òèï èí-ôåêöèè, âûçûâàþò íåîáõîäèìûå âèðóñó èçìåíåíèÿ êëå-òî÷íîãî ìåòàáîëèçìà, ìîäóëèðóþò ïðîõîæäåíèå êëåòêîéêëåòî÷íîãî öèêëà, îáåñïå÷èâàþò óêëîíåíèå îò äåéñòâèÿèììóííîé ñèñòåìû õîçÿèíà, èíãèáèðóþò àïîïòîç èíôè-öèðîâàííûõ êëåòîê (Grundhoff, Sullivan, 2011; Takane,Kanai, 2011; Powdrill et al., 2016).

Äàííûå ïî êîäèðîâàíèþ ìèêðîÐÍÊ ÐÍÊ-ñîäåðæà-ùèìè âèðóñàìè ê íàñòîÿùåìó âðåìåíè î÷åíü ñêóäíû.

520 À. Í. Ãîðøêîâ è äð.

Page 7: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 521

Ò à á ë è ö à 1

Ýêñïåðèìåíòàëüíîå èñïîëüçîâàíèå êèÐÍÊ, íàïðàâëåííûõ íà âèðóñíûå ìèøåíè,äëÿ ýôôåêòèâíîãî ïîäàâëåíèÿ ðåïëèêàöèè âèðóñà ãðèïïà

Ìîäåëü Èíãèáèðóåìûå øòàììû ÂÃÀ Ñèñòåìà äîñòàâêè êèÐÍÊÌèøåíè êèÐÍÊ-èíòåðôåðåíöèè

Ëèòåðàòóðíûéèñòî÷íèê

Êëåòêè 293T,BHK

A/WSN/33 (H1N1) ñ íóêëåîòèäíîéçàìåíîé âàëèíà íà àëàíèí â ïîçè-öèè 41 â ÎÐÑ M1

ÒÔÐ Trans IT LT-1 + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ

M2 McCown et al., 2003

Êëåòêè MDCK A/Puerto Rico/8/34 (H1N1),A/WSN/33 (H1N1)

Ýëåêòðîïîðàöèÿ êèÐÍÊ NP, PA, PB1 Ge et al., 2003

Êëåòêè Vero A/Puerto Rico/8/34 (H1N1) NP

Êóðèíûå ýì-áðèîíû

ÒÔÐ Oligofectamine + êèÐÍÊ NP, PA, PB1

Ìûøè Òî æå ÏÝÈ + êèÐÍÊ (âíóòðèâåííîå ââå-äåíèå)

NP, PA Ge et al., 2004

ÏÝÈ + ïëàçìèäíàÿ ÄÍÊ, êîäè-ðóþùàÿ êøÐÍÊ (ÂÂ)

NP

ÏÝÈ + ïëàçìèäíàÿ ÄÍÊ, êîäè-ðóþùàÿ êøÐÍÊ (ÈÍ)

NP, PB1

Êëåòêè Vero Ëåíòèâèðóñíûé âåêòîð, êîäèðóþ-ùèé êøÐÍÊ

NP

Ìûøè A/Puerto Rico/8/34 (H1N1), Ñâîáîäíàÿ êèÐÍÊ (ÂÂ) ñ ïîñëå-äóþùèì ÒÔÐ Oligofectamine +êèÐÍÊ (ÈÍ)

NP, PA Tompkins et al., 2004

A/Hong Kong/156/97 (H5N1),

A/Netherlands/219/03 (H7N7),

A/Hong Kong/1073/99 (H9N2)

Êëåòêè MDCK A/WSN/33 (H1N1) Ëåíòèâèðóñíûé âåêòîð, êîäèðóþ-ùèé êøÐÍÊ

M1 Hui et al., 2004

Ìûøè A/PuertoRico/8/34 (H1N1) Äåàöåòèëèðîâàííûé ÏÝÈ + êèÐÍÊ,(ÂÂ)

NP Thomas et al., 2005

Êëåòêè MDCK A/chicken/Hubei/327/2004 (H5N1), ÒÔÐ Lipofectamine + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ

NP, M2 Zhou et al., 2007

A/Duck/Hubei/W1/2004

Ìûøè (H9N2), A/Hubei/2003 (H1N1) ÏÝÈ + ïëàçìèäíàÿ ÄÍÊ, êîäèðóþ-ùàÿ êøÐÍÊ (ÂÂ)

Êëåòêè MDCK A/chicken/Qinghaihu/726/2005(H5N1)

ÒÔÐ SuperFect + ïëàçìèäíàÿ ÄÍÊ,êîäèðóþùàÿ êøÐÍÊ

NP, PA, PB1 Zhou et al., 2008

Êóðèíûå ýì-áðèîíû

ÒÔÐ Oligofectamine + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ

Ìûøè Ïëàçìèäíàÿ ÄÍÊ, êîäèðóþùàÿêøÐÍÊ (ÂÂ)

Êëåòêè CEF A/Chicken/Henan/1/04 (H5N1) ÒÔÐ Lipofectamine + ÐÍÊ-îëèãî-íóêëåîòèäû, ìîäèôèöèðîâàííûå2R-O-ìåòèë ñ 3R-áóòàíîë-ìåòêîé

NS1 Wu et al., 2008

Öûïëÿòà ÒÔÐ Lipofectamine + ÐÍÊ-îëèãî-íóêëåîòèäû, ìîäèôèöèðîâàííûå2R-O-ìåòèë ñ 3R-áóòàíîë-ìåòêîé(ÈÍ)

Êëåòêè CH-SAHè MDCK

A/turkey/Ontario/6118/68 (H8N4), ÒÔÐ Lipofectamine + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ

NP, PA Abrahamyan et al.,2009A/turkey/Massachusetts/3740/65

(H6N2),

A/duck/Czech/56 (H4N6),

A/Quail/Italy/1117/65 (H10N8)

Êëåòêè MDCK A/New Caledonia/20/1999 (H1N1),A/Hong Kong/486/97 (H5N1)

ÒÔÐ Lipofectamine + êèÐÍÊ, ëåí-òèâèðóñíûé âåêòîð, êîäèðóþ-ùèé êøÐÍÊ

M2 Sui et al., 2009

Êëåòêè MDCK A/PuertoRico/8/34 (H1N1) Áàêóëîâèðóñíûé âåêòîð, êîäèðóþ-ùèé êøÐÍÊ

NP Suzuki et al., 2009

A/Tiger/HarBin/01/2002 (H5N1) ÒÔÐ Lipofectamine + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ

PA Zhang et al., 2009

Ìûøè ÏÝÈ + ïëàçìèäíàÿ ÄÍÊ, êîäèðóþ-ùàÿ êøÐÍÊ (ÂÂ)

Page 8: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Ñ íàèáîëüøåé äîñòîâåðíîñòüþ ãåíû ìèêðîÐÍÊ áûëè îá-íàðóæåíû â ãåíîìàõ âèðóñîâ ñåìåéñòâà Retroviridae,âêëþ÷àÿ ÂÈ×-1 (Omoto et al., 2004; Zhang et al., 2014).Ðåòðîâèðóñû èìåþò â ñâîåì æèçíåííîì öèêëå ñòàäèþ îá-ðàòíîé òðàíñêðèïöèè è èíòåãðàöèè ïðîâèðóñíîé ÄÍÊ âãåíîì êëåòêè-õîçÿèíà, ÷òî ïîçâîëÿåò èì èñïîëüçîâàòü äëÿñèíòåçà è ïðîöåññèíãà ñîáñòâåííûõ ìèêðîÐÍÊ êëåòî÷-íóþ ìèêðîÐÍÊ-ïðîèçâîäÿùóþ áåëêîâóþ ìàøèíåðèþ(Harwig et al., 2014).

Ðÿä àâòîðîâ ïîëàãàåò, ÷òî ìèêðîÐÍÊ, âîçìîæíî,â ïðèíöèïå íåñâîéñòâåííû ÐÍÊ-âèðóñàì ïî äâóì ïðè-

÷èíàì. Âî-ïåðâûõ, ìíîãèå ÐÍÊ-âèðóñû èìåþò öèòî-ïëàçìàòè÷åñêèé öèêë ðåïëèêàöèè è âíóòðèÿäåðíûåêîìïîíåíòû ìèêðîÐÍÊ-ïðîöåññèíãà îêàçûâàþòñÿ äëÿíèõ íåäîñòóïíûìè. Âî-âòîðûõ, ýíäîíóêëåàçíîå ðàçðåçà-íèå ïåðâè÷íûõ ìèêðîÐÍÊ-òðàíñêðèïòîâ ñïîñîáíî äåñòà-áèëèçèðîâàòü âèðóñíûé ãåíîì è âûçâàòü åãî ôðàãìåíòà-öèþ (Cullen, 2010; Grundhoff, Sullivan, 2011).

Âìåñòå ñ òåì îïóáëèêîâàíû ðåçóëüòàòû ðàáîò ïî ãå-íåòè÷åñêîìó èíæèíèðèíãó ÂÃÀ (Varble et al., 2010; Varb-le, tenOever, 2011) âèðóñà êëåùåâîãî ýíöåôàëèòà (Flavivi-ridae) (Rouha et al., 2010) è âèðóñà Ñèíäáèñ (Togoviridae)

522 À. Í. Ãîðøêîâ è äð.

Ò à á ë è ö à 1 (ïðîäîëæåíèå)

Ìîäåëü Èíãèáèðóåìûå øòàììû ÂÃÀ Ñèñòåìà äîñòàâêè êèÐÍÊÌèøåíè êèÐÍÊ-èíòåðôåðåíöèè

Ëèòåðàòóðíûéèñòî÷íèê

Êëåòêè MDCK A/PuertoRico/8/34 (H1N1) ÒÔÐ Lipofectamine + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ

PB1 Li et al., 2011

Êóðèíûå ýì-áðèîíû

Ìûøè Òî æå ÒÔÐ Lipofectamine + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ(âíóòðèâåííîå ââåäåíèå)

ÏÝÈ + êèÐÍÊ ( ñ ïîñëåäóþùèìÈÍ)

NS1 Rajput et al., 2012

Êëåòêè MDCK A/Chicken/Thailand/VSMU-3-BKK/2004 (H5N1),

Êàòèîííûå ÏÝÃèëèðîâàííûå èììó-íîëèïîñîìû + êèÐÍÊ

NP Khantasup et al., 2014

A/Openbillstork/Thailand/VSMU-5-NSN/2004 (H5N1)

Êëåòêè HD11 A/Puerto Rico/8/34 (H1N1) ÒÔÐ Lipofectamine + êèÐÍÊ,ABA-21/117Q ïîëèìåð + êèÐÍÊ

PB1 Hinton et al., 2014

Êóðèíûå ýì-áðèîíû

ABA-21/117Q ïîëèìåð + êèÐÍÊ

Êëåòêè MDCK Òî æå ÒÔÐ TransPass HeLa + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ

NS1, NS2 Svancarova et al.,2015

Ìûøè » » ÒÔÐ TransPass HeLa + ïëàçìèäíàÿÄÍÊ, êîäèðóþùàÿ êøÐÍÊ (ÂÂ)

Êëåòêè MDCK A/turkey/Italy/2676/2000(H7N1),

ÒÔÐ Effectene + ïëàçìèäíàÿ ÄÍÊ,êîäèðóþùàÿ êøÐÍÊ

NP Stoppani et al., 2015

A/swine/Italy/1521/1998 (H1N2),

A/swine/Italy/1523/1998 (H3N2),

A/swine/Italy/1513/1998 (H1N1),

A/swine/Italy/437/1976 (H1N1)

A/chicken/Navapur/7972/2006(H5N1)

ÒÔÐ X-treme Gene Transfectant +êèÐÍÊ

NP, PB2 Behera et al., 2015

Êëåòêè MDCK,A549

A/Puerto Rico/8/34 (H1N1) pH-çàâèñèìûå ïåïòèäû + êèÐÍÊ NP Liang et al., 2015

Êëåòêè MDCK Òî æå Ëåíòèâèðóñíûé âåêòîð, êîäèðóþ-ùèé êøÐÍÊ

NP, PB1 Xu et al., 2015

A/WS/33(H1N1) ÒÔÐ Lipofectamine + êèÐÍÊ M1, M2, NS1,NS2

McMillen et al., 2016

Êëåòêè LMH A/chicken/Texas/473-2/2010(H6N2),

Ïëàçìèäíàÿ ÄÍÊ, êîäèðóþùàÿêøÐÍÊ, òðàíñôîðìèðîâàííàÿâ E. coli áàêòåðèàëüíûé âåêòîðtkRNAi

NP, PA Linke et al., 2016

A/turkey/Colorado/235497/2003(H8N4)

Êëåòêè A549 A/WSN/33 (H1N1), Ëåíòèâèðóñíûé âåêòîð, êîäèðóþ-ùèé êøÐÍÊ

Íåéðàìèíèäàçà Wang et al., 2016

A/Puerto Rico/8/34 (H1N1)

Òðàíñãåííûåìûøè, ýêñ-ïðåññèðóþ-ùèå êøÐÍÊ

Ï ð è ì å ÷ à í è å. ÒÔÐ — òðàíñôåêöèîííûé ðåàãåíò, ÏÝÈ — ïîëèýòèëåíèìèí, ÏÝÃ-ïîëèýòèëåíãëèêîëü, ÂÂ è ÈÍ — ñîîòâåòñòâåííî âíóòðèâåí-íî è èíòðîíîçàëüíî.

Page 9: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

(Shapiro et al., 2010), äîêàçûâàþùèå âîçìîæíîñòü âñòàâêèøïèëå÷íîãî ìèêðîÐÍÊ-ïðåäøåñòâåííèêà â íåêîäèðóþ-ùóþ îáëàñòü âèðóñíîãî ÐÍÊ-ãåíîìà è ïîñëåäóþùóþýêñïðåññèþ äàííîé ôóíêöèîíàëüíîé ìèêðîÐÍÊ â èíôè-öèðîâàííûõ êëåòêàõ áåç óòðàòû ðåïëèêàòèâíûõ ñâîéñòââèðóñà. Ïîìèìî î÷åâèäíîé ôóíäàìåíòàëüíîé âàæíîñòèïðèâåäåííûõ âûøå ðàáîò îíè îòêðûâàþò ïåðñïåêòèâó èñ-ïîëüçîâàíèÿ ÐÍÊ-ñîäåðæàùèõ âèðóñîâ â êà÷åñòâå íîâûõâåêòîðîâ äëÿ äîñòàâêè öåëåâûõ òåðàïåâòè÷åñêèõ ìèê-ðîÐÍÊ â êëåòêè (tenOever, 2013).

Îñîáåííî èíòåðåñíî, ÷òî åñëè âèðóñ ãðèïïà èìååòâíóòðèÿäåðíóþ ôàçó æèçíåííîãî öèêëà, Flaviviridae è To-goviridae ñ÷èòàþòñÿ ñåìåéñòâàìè ÐÍÊ-âèðóñîâ ñ ïîë-íîñòüþ öèòîïëàçìàòè÷åñêèì öèêëîì ðåïëèêàöèè. Òåì íåìåíåå äëÿ ôëàâèâèðóñà ïðîöåññèíã ïðå-ìèêðîÐÍÊ òðàíñ-êðèïòà îêàçàëñÿ çàâèñèìûì îò ÿäåðíîé íóêëåàçû Drosha.Àâòîðû èññëåäîâàíèÿ îáúÿñíÿþò ýòîò íåîáû÷íûé ôàêòâîçìîæíûì ïåðåðàñïðåäåëåíèåì ïîòîêîâ âíóòðèêëåòî÷-íîãî òðàíñïîðòà ïðè ôëàâèâèðóñíîé èíôåêöèè (Rouhaet al., 2010). Ïîçäíåå òðàíñëîêàöèÿ Drosha â öèòîïëàçìóïðè èíôèöèðîâàíèè êëåòîê âèðóñîì Ñèíäáèñ áûëà äîêà-çàíà ýêñïåðèìåíòàëüíî (Shapiro et al., 2012). Ïî ìíåíèþàâòîðîâ ðàáîòû, ýòîò ñëó÷àé ïðåäñòàâëÿåò ñîáîé íîâûéïîëíîñòüþ öèòîïëàçìàòè÷åñêèé ïóòü ïðîöåññèíãà øïè-ëå÷íîé ÐÍÊ â êëåòêå. Òðàíñëîêàöèÿ Drosha â öèòîïëàçìóèíôèöèðîâàííûõ ÐÍÊ-âèðóñàìè êëåòîê è öèòîïëàçìàòè-÷åñêàÿ ðèáîíóêëåàçíàÿ àêòèâíîñòü äàííîãî ôåðìåíòà âîòíîøåíèè âèðóñíûõ äöÐÍÊ, ïðèâîäÿùàÿ ê èõ äåãðàäà-öèè, áûëà âïîñëåäñòâèè îõàðàêòåðèçîâàíà êàê ðàíåå íå-èçâåñòíûé ñïîñîá àíòèâèðóñíîé çàùèòû êëåòîê ìëåêîïè-òàþùèõ, íåçàâèñèìûé êàê îò àíòèâèðóñíîé êèÐÍÊ-èí-òåðôåðåíöèè, òàê è îò èíòåðôåðîíîâîãî îòâåòà (Shapiroet al., 2014).

Òàêèì îáðàçîì, ïðåïÿòñòâèÿ ê êîäèðîâàíèþ ìèê-ðîÐÍÊ â ãåíîìàõ ÐÍÊ-ñîäåðæàùèõ âèðóñîâ è èõ ýêñïðåñ-ñèè â èíôèöèðîâàííûõ êëåòêàõ íå ÿâëÿþòñÿ ôóíäàìåí-òàëüíî íåïðåîäîëèìûìè.  ïîñëåäíèå ãîäû â íåñêîëüêèõïóáëèêàöèÿõ ïðèâîäÿòñÿ äîêàçàòåëüñòâà ñóùåñòâîâàíèÿìèêðîÐÍÊ (èëè «ìèêðîÐÍÊ-ïîäîáíûõ ìîëåêóë») â ãåíî-ìàõ íåñêîëüêèõ ÐÍÊ-âèðóñîâ — âèðóñà Çàïàäíîãî Íèëà(Flaviviridae) (Hussain et al., 2012), âèðóñà ãåïàòèòà À (Pi-cornaviridae) (Shi et al., 2014) è âèðóñà Ýáîëà (Filoviridae)(Liang et al., 2014). Ýòè âàæíûå ðåçóëüòàòû íóæäàþòñÿ âäàëüíåéøåé âåðèôèêàöèè, îäíàêî, ïî-âèäèìîìó, ìèê-ðîÐÍÊ-èíòåðôåðåíöèÿ íà îñíîâå âèðóñíûõ ìèêðîÐÍÊ íåîãðàíè÷èâàåòñÿ ãðóïïàìè ÄÍÊ-âèðóñîâ è ðåòðîâèðóñîâ(Swaminathan et al., 2013).

Âçàèìîäåéñòâèÿ âèðóñàñ ìèêðîÐÍÊ êëåòêè-õîçÿèíà:

îáùèå ìåõàíèçìû

 èíôèöèðîâàííîé êëåòêå âèðóñ âñòóïàåò âî âçàèìî-äåéñòâèÿ ñ ñèñòåìîé êëåòî÷íûõ ìèêðîÐÍÊ. ×àñòü èç ýòèõâçàèìîäåéñòâèé ïðåäïîëîæèòåëüíî ìîæíî îõàðàêòåðèçî-âàòü êàê àíòèâèðóñíûå, ÿâëÿþùèåñÿ êîìïîíåíòîì ïðîòè-âîâèðóñíîé çàùèòû êëåòêè-õîçÿèíà, à äðóãóþ ÷àñòü —êàê ïðîâèðóñíûå, ÿâëÿþùèåñÿ ÷àñòüþ ðåïëèêàòèâíîéñòðàòåãèè âèðóñà.

 öåëîì ðÿäå ðàáîò ìÐÍÊ âèðóñîâ áûëè îïðåäåëåíûâ êà÷åñòâå ìèøåíåé äëÿ ìíîæåñòâà ìèêðîÐÍÊ èíôèöè-ðîâàííîé êëåòêè (â áîëüøèíñòâå ñëó÷àåâ íà îñíîâåêîìïüþòåðíûõ ïðåäñêàçàíèé è èñïîëüçîâàíèÿ ðåïîðòåð-íûõ ñèñòåì) (Skalsky, Cullen, 2010; Ojha et al., 2016).

Âûñêàçûâàëèñü ïðåäïîëîæåíèÿ, ÷òî âçàèìîäåéñòâèÿêëåòî÷íûõ ìèêðîÐÍÊ è âèðóñíûõ ìÐÍÊ íîñÿò àíòèâè-ðóñíûé õàðàêòåð, òàê êàê îíè â ïðèíöèïå ñïîñîáíû ïî-äàâëÿòü ýêñïðåññèþ âèðóñíûõ ãåíîâ (Watanabe et al.,2007).  íåêîòîðûõ ñëó÷àÿõ àíòèâèðóñíûé ýôôåêò áûëïðîäåìîíñòðèðîâàí äëÿ êëåòîê, îâåðýêñïðåññèðóþùèõäàííûå ìèêðîÐÍÊ (Russo, Potenza, 2011). Îäíàêî èñòèí-íóþ ñòåïåíü áèîëîãè÷åñêîé çíà÷èìîñòè òàêèõ âçàèìî-äåéñòâèé â áîðüáå îðãàíèçìà ñ âèðóñàìè îöåíèòü òðóäíî.Ñèñòåìà ìèêðîÐÍÊ ÿâëÿåòñÿ êîíñåðâàòèâíîé, ìíîãèåìèêðîÐÍÊ â íåèçìåííîì âèäå ýêñïðåññèðóþòñÿ â ðàçíûõãðóïïàõ îðãàíèçìîâ, ýâîëþöèîííî äàëåêî îòñòîÿùèõäðóã îò äðóãà.  òî æå âðåìÿ îáùåèçâåñòíî, ÷òî âèðóñû,âî-ïåðâûõ, îáû÷íî èìåþò óçêèé ðåïåðòóàð õîçÿåâ è,âî-âòîðûõ, áûñòðî ýâîëþöèîíèðóþò.  ýòîé ñâÿçè íà-ïðàâëåííàÿ ýâîëþöèÿ êëåòî÷íûõ ìèêðîÐÍÊ íà óçíàâàíèåâèðóñíûõ ìÐÍÊ-ìèøåíåé òðóäíî ïðåäñòàâèìà. Ñêîðåå,íàïðîòèâ, ìíîãèå âèðóñû àêòèâíî ýâîëþöèîíèðóþò âñòîðîíó èçáåãàíèÿ óçíàâàíèÿ ñâîèõ ìÐÍÊ õîçÿéñêèìèRISC-êîìïëåêñàìè. Íàïðàâëåíèÿìè òàêîé ýâîëþöèèïðåäïîëîæèòåëüíî ÿâëÿþòñÿ óêîðî÷åíèå 3R-UTR âèðóñ-íûõ ìÐÍÊ â ðÿäå ñåìåéñòâ âèðóñîâ, à òàêæå ñóùåñòâåí-íîå óñëîæíåíèå âòîðè÷íîé ñòðóêòóðû 3R-UTR ìíîãèõ âè-ðóñíûõ ìÐÍÊ, ÷òî çàòðóäíÿåò ñâÿçûâàíèå ñ íèìè êîì-ïëåêñîâ RISC (Cullen, 2013).

Êðîìå òîãî, áîëüøèíñòâî ìèêðîÐÍÊ â êëåòêå ïðèñóò-ñòâóåò â ìàëîì ÷èñëå êîïèé è ïîýòîìó èìååò ñëèøêîìíèçêèé ïîòåíöèàë ñàéëåíñèíãà äëÿ ñêîëüêî-íèáóäü çà-ìåòíîãî ñíèæåíèÿ ìîùíîãî óðîâíÿ ýêñïðåññèè âèðóñíûõãåíîâ (tenOever, 2013).

 óæå óïîìèíàâøåìñÿ èññëåäîâàíèè (Bogerd et al.,2014) áûëî óñòàíîâëåíî, ÷òî â êëåòêàõ ñ îòñóòñòâóþùåéàêòèâíîñòüþ ãåíà Dicer ðÿä âèðóñîâ ðåïëèöèðóåòñÿ ñ òîéæå ýôôåêòèâíîñòüþ, ÷òî è â èíòàêòíûõ êëåòêàõ. Ýòè ðå-çóëüòàòû ñòàâÿò ïîä ñîìíåíèå íå òîëüêî ðîëü êèÐÍÊ âè-ðóñíîãî ïðîèñõîæäåíèÿ (î ÷åì óæå ãîâîðèëîñü ðàíåå), íîè ðîëü êëåòî÷íûõ ìèêðîÐÍÊ (òàêæå ÿâëÿþùèõñÿ ïðîäóê-òîì Dicer) â ïðîòèâîâèðóñíîé çàùèòå êëåòîê ìëåêîïèòà-þùèõ.

Áîëåå òîãî, â íåêîòîðûõ ñëó÷àÿõ ñâÿçûâàíèå êëåòî÷-íûõ ìèêðîÐÍÊ ñ âèðóñíûìè ÐÍÊ, íàïðîòèâ, íîñèò ÿâíîïðîâèðóñíûé õàðàêòåð. Íàèáîëåå èññëåäîâàííûì ïðèìå-ðîì ïîäîáíîãî ðîäà ÿâëÿåòñÿ miR-122, îáèëüíî ýêñïðåñ-ñèðóåìàÿ â ïå÷åíè. miR-122 èìååò 2 àòèïè÷íûõ ñàéòàñâÿçûâàíèÿ ñ 5R-íåêîäèðóþùåé îáëàñòüþ ãåíîìíîé ÐÍÊâèðóñà ãåïàòèòà Ñ (ÂÃÑ) (Henke et al., 2008). Ïðè èíôåê-öèè miR-122 ôîðìèðóåò îëèãîìåðíûé êîìïëåêñ ñ ÐÍÊÂÃÑ (Machlin et al., 2011), òåì ñàìûì çàùèùàÿ åå íåêýïè-ðîâàííûé 5R-êîíåö îò âîçäåéñòâèÿ êëåòî÷íûõ ýêçîíóê-ëåàç. Òàêèì îáðàçîì, miR-122 ÿâëÿåòñÿ âàæíåéøèì ôàê-òîðîì ïàòîãåííîñòè ÂÃÑ, èãðàþùèì êëþ÷åâóþ ðîëü âðåïëèêàöèè è äëèòåëüíîì ïåðñèñòèðîâàíèè äàííîãî âè-ðóñà. Áëîêèðîâàíèå ôóíêöèè miR-122 â èíôèöèðîâàííûõãåïàòîöèòàõ îêàçàëîñü ìíîãîîáåùàþùåé òåðàïåâòè÷å-ñêîé ñòðàòåãèåé â áîðüáå ñ ÂÃÑ (Lanford et al., 2010).

Îäíîâðåìåííî ÐÍÊ ÂÃÑ ñëóæèò ìîëåêóëÿðíîé ãóá-êîé, ñåêâåñòèðóþùåé miR-122 è ñîîòâåòñòâåííî äåðå-ïðåññèðóþùåé åå êëåòî÷íûå ìèøåíè (Luna et al., 2010),ñðåäè êîòîðûõ, â ÷àñòíîñòè, ðÿä äåòåðìèíàíò ìåòàñòàçè-ðîâàíèÿ ãåïàòîöåëëþëÿðíîé êàðöèíîìû (Tsai et al.,2009).

Ôóíêöèîíèðîâàíèå âèðóñíûõ ÐÍÊ â êà÷åñòâå ìîëå-êóëÿðíûõ ãóáîê, àäñîðáèðóþùèõ íà ñâîè ñàéòû ñâÿçû-âàíèÿ êëåòî÷íûå ìèêðîÐÍÊ (ïî-âèäèìîìó, ñ èõ ïîñëå-äóþùåé äåãðàäàöèåé) è òåì ñàìûì up-ðåãóëèðóþùèõ

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 523

Page 10: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

ýêñïðåññèþ îïðåäåëåííûõ êëåòî÷íûõ ãåíîâ â öåëÿõ ïðî-ëèôåðàöèè èëè ïåðñèñòèðîâàíèÿ âèðóñà, î÷åâèäíî, ÿâëÿ-åòñÿ äîñòàòî÷íî ðàñïðîñòðàíåííûì ÿâëåíèåì, ìíîãîêðàò-íî âîçíèêàâøèì â ýâîëþöèè âèðóñîâ (McCaskill et al.,2015). Ïîìèìî âûøåóïîìÿíóòîé miR-122 è ÐÍÊ ÂÃÑ ïî-äîáíûå ôóíêöèîíàëüíûå âçàèìîîòíîøåíèÿ ïðîäåìîíñò-ðèðîâàíû äëÿ ðÿäà êëåòî÷íûõ ìèêðîÐÍÊ è íåñêîëüêèõãåðïåñ-âèðóñîâ (Guo, Steitz, 2014).

 íåñêîëüêèõ íåäàâíèõ ïóáëèêàöèÿõ áûëà ïðåäëîæå-íà ãèïîòåçà «êîíêóðèðóþùèõ ýíäîãåííûõ ÐÍÊ» (Tayet al., 2014) èëè ïðèìåíèòèòåëüíî ê âèðóñàì «êîíêóðèðó-þùèõ âèðóñíûõ è õîçÿéñêèõ ÐÍÊ» (Li et al., 2014). Àâòî-ðû ïðåäïîëàãàþò, ÷òî âèðóñíûå ìÐÍÊ è êëåòî÷íûåìÐÍÊ â èíôèöèðîâàííîé êëåòêå, èìåþùèå ñàéòû óçíà-âàíèÿ îäíèõ è òåõ æå ìèêðîÐÍÊ, âñòóïàþò â êîíêóðåíòíûåîòíîøåíèÿ çà èõ ñâÿçûâàíèå. Ýòè âçàèìîäåéñòâèÿ ïðèâîäÿòê ðåöèïðîêíîé ðåãóëÿöèè â ñèñòåìå âèðóñíàÿ ÐÍÊ—êëå-òî÷íàÿ ìèêðîÐÍÊ—êëåòî÷íàÿ ìÐÍÊ è â êîíå÷íîì èòîãåñîçäàþò îïòèìàëüíûå óñëîâèÿ äëÿ ðåïëèêàöèè è (èëè)ïåðñèñòèðîâàíèÿ âèðóñà. Òàêèì îáðàçîì, âîçìîæíî, èìåí-íî â êîíêóðåíòíîì ñâÿçûâàíèè êëåòî÷íûõ ìèêðîÐÍÊ èäåðåïðåññèè èõ êëåòî÷íûõ ìèøåíåé, à íå â ïðÿìîì àíòè-âèðóñíîì äåéñòâèè è ñîñòîèò áèîëîãè÷åñêàÿ ðîëü áîëü-øèíñòâà âûÿâëåííûõ èëè ïðåäñêàçàííûõ âçàèìîäåéñòâèéâèðóñíûõ ÐÍÊ è ìèêðîÐÍÊ èíôèöèðîâàííîé êëåòêè.

Åùå îäíîé ñòîðîíîé ïðîáëåìû âçàèìîäåéñòâèÿ âè-ðóñîâ ñ ìèêðîÐÍÊ èíôèöèðîâàííîé êëåòêè ÿâëÿåòñÿ èç-ìåíåíèå ïðîôèëÿ êëåòî÷íûõ ìèêðîÐÍÊ, íå ñâÿçàííîãîíàïðÿìóþ ñ óçíàâàíèåì èìè âèðóñíûõ ÐÍÊ. Îöåíêà äè-íàìèêè êëåòî÷íûõ ìèêðîÐÍÊ â óñëîâèÿõ ðàçëè÷íûõ âè-ðóñíûõ èíôåêöèé ïðîâîäèëàñü íåîäíîêðàòíî (Guo, Steitz,2014). Íàèáîëåå ÿðêèì ïðèìåðîì ïîäîáûõ èçìåíåíèéïðîâèðóñíîãî õàðàêòåðà ÿâëÿåòñÿ 1000-êðàòíûé ðîñò êîí-öåíòðàöèè miR-155 â B-ëèìôîöèòàõ ÷åëîâåêà, ëàòåíòíîèíôèöèðîâàííûõ âèðóñîì Ýïøòåéíà—Áàððà (Yin et al.,2008). Ìèøåíè miR-155 âîâëå÷åíû â BACH-1-îïîñðåäî-âàííóþ ðåãóëÿöèþ òðàíñêðèïöèè (Yin et al., 2008), â ñèã-íàëüíûé ïóòü NF-kB (Lu et al., 2008) è â ðåãóëÿöèþ ïðî-ëèôåðàöèè B-êëåòîê (Loeb et al., 2012).

Èçìåíåíèå óðîâíÿ ýêñïðåññèè ìèêðîÐÍÊ ìîæåòáûòü èñïîëüçîâàíî è êëåòêîé-õîçÿèíîì â öåëÿõ áîðüáûñ âèðóñîì.  ÷àñòíîñòè, ñóùåñòâóåò òåñíåéøàÿ ñâÿçüìåæäó àíòèâèðóñíûì èíòåðôåðîíîâûì îòâåòîì è ìèê-ðîÐÍÊ-ðåãóëÿöèåé êëåòî÷íûõ ãåíîâ. Òàê, îäíèì èçèíòåðôåðîíñòèìóëèðóåìûõ ãåíîâ ÿâëÿåòñÿ CH25H. Õîëå-ñòåðèí-25-ãèäðîêñèëàçà êàòàëèçèðóåò ïðåâðàùåíèå õîëå-ñòåðèíà â àíòèâèðóñíûé ëèïèäíûé àãåíò 25-ãèäðîêñèõî-ëåñòåðîë (25-HC) (Liu et al., 2013). 25-HC èìååò íåñêîëü-êî ýôôåêòîðíûõ àíòèâèðóñíûõ ìåõàíèçìîâ, îäíèì èçêîòîðûõ ÿâëÿåòñÿ up-ðåãóëÿöèÿ miR-130b è miR-185. Ìè-øåíÿìè ýòèõ ìèêðîÐÍÊ ÿâëÿþòñÿ ãåíû ëèïèäíîãî ìåòà-áîëèçìà, â ÷àñòíîñòè AGPAT3, SREBP2, SCARB1, LDLR,FADS1 è PPARã. Ïîäàâëåíèå èõ ýêñïðåññèè, ïî-âèäèìî-ìó, îïðåäåëÿåò àíòèâèðóñíûé ýôôåêò miR-185 â îòíîøå-íèè ðÿäà âèðóñîâ (Singaravelu et al., 2015).

Äðóãèì ïðèìåðîì ïîäîáíîãî ðîäà ÿâëÿåòñÿ up-ðåãó-ëÿöèÿ miR-342-5p èíòåðôåðîíèíäóöèðóåìûì òðàíñêðèï-öèîííûì ôàêòîðîì IRF1. Ñðåäè ìíîãî÷èñëåííûõ ìèøå-íåé miR-342-5p îáíàðóæåíû ôåðìåíòû IDI1 è SC4MOL,âîâëå÷åííûå â áèîñèíòåç ñòåðîëîâ. Èõ ðåïðåññèÿ â êî-íå÷íîì èòîãå ïðèâîäèò ê ñíèæåíèþ óðîâíÿ õîëåñòåðèíàâ èíôèöèðîâàííîé êëåòêå è, ïî-âèäèìîìó, îïîñðåäóåòïðîòèâîâèðóñíûé ýôôåêò miR-342-5p â îòíîøåíèè ÂÃÀ(H1N1), âèðóñà ïðîñòîãî ãåðïåñà 1, öèòîìåãàëîâèðóñà ÷å-ëîâåêà è ìûøè (Robertson et al., 2016).

Äèíàìèêà êëåòî÷íûõ ìèêðîÐÍÊïðè èíôåêöèè ÂÃÀ

 ðÿäå ðàáîò óñòàíîâëåíî, ÷òî ÂÃÀ, êàê è äðóãèå âè-ðóñû, èíèöèèðóåò èçìåíåíèå ïðîôèëÿ êëåòî÷íûõ ìèê-ðîÐÍÊ. Îñíîâíûìè ìåòîäàìè ïðîôèëèðîâàíèÿ ìèê-ðîÐÍÊ ÿâëÿþòñÿ ñêðèíèíã ñ ïîìîùüþ ìèêðî÷èïîâ (mic-roarray analysis) è ñåêâåíèðîâàíèå íîâîãî ïîêîëåíèÿ. Äëÿâàëèäàöèè ïîëó÷àåìûõ ðåçóëüòàòîâ îáû÷íî èñïîëüçóþò-ñÿ êîëè÷åñòâåííàÿ ÏÖÐ â ðåàëüíîì âðåìåíè è ëþöèôå-ðàçíàÿ ðåïîðòåðíàÿ ñèñòåìà.  íåäàâíèõ èíòåãðàòèâíûõèññëåäîâàíèÿõ ðå÷ü èäåò î ñîòíÿõ ìèêðîÐÍÊ, óðîâåíü êî-òîðûõ çíà÷èìî èçìåíÿåòñÿ ïðè âèðóñíîé èíôåêöèè (Tanet al., 2014; Bao et al., 2015; Peng et al., 2015; Makkochet al., 2016). Íà íàø âçãëÿä, íàèáîëåå ÿñíûå â ñìûñëå âî-âëå÷åííûõ ìèøåíåé è âíóòðèêëåòî÷íûõ ïðîöåññîâ ðå-çóëüòàòû èññëåäîâàíèé äèíàìèêè êëåòî÷íûõ ìèêðîÐÍÊïðè ãðèïïîçíîé èíôåêöèè ñóììèðîâàíû â òàáë. 2.

Èç ïðèâåäåííûõ â òàáë. 2 äàííûõ î÷åâèäíî, ÷òî èí-ôåêöèÿ ÂÃÀ èçìåíÿåò óðîâåíü ìíîæåñòâà ìèêðîÐÍÊ, âî-âëå÷åííûõ â âàæíåéøèå êëåòî÷íûå ïðîöåññû. Îäíèì èçíèõ ÿâëÿåòñÿ èíäóêöèÿ àïîïòîçà èíôèöèðîâàííûõ êëåòîê ïîíåñêîëüêèì âîâëåêàþùèì ìèêðîÐÍÊ ìåõàíèçìàì. Àïîï-òîç èíôèöèðîâàííûõ êëåòîê ìîæíî ðàññìàòðèâàòü êàêñðåäñòâî ïðîòèâîâèðóñíîé çàùèòû îðãàíèçìà, íàïðàâëåí-íîå íà îãðàíè÷åíèå ðåïëèêàöèè âèðóñà. Îäíàêî îäíîâðå-ìåííî àïîïòîç âíîñèò âêëàä â òÿæåñòü çàáîëåâàíèÿ. Ìàñ-ñîâàÿ àïîïòîòè÷åñêàÿ ãèáåëü ëåãî÷íûõ ýïèòåëèàëüíûõêëåòîê ñòàíîâèòñÿ îäíèì èç çâåíüåâ ôàòàëüíîãî îñòðîãîðåñïèðàòîðíîãî äèñòðåññ-ñèíäðîìà (Short et al., 2014).

Çíà÷èòåëüíîå êîëè÷åñòâî ìèêðîÐÍÊ âîâëå÷åíî â çà-âèñèìóþ îò ÂÃÀ ìîäóëÿöèþ âðîæäåííîãî èììóíèòåòàïî íåñêîëüêèì ïóòÿì (òàáë. 2).  ÷àñòíîñòè, up-ðåãóëÿöèÿðÿäà ìèêðîÐÍÊ (miR-21, miR-451 è miR-141) ïðè èíôåê-öèè ÂÃÀ ïîäàâëÿåò ýêñïðåññèþ ïðîâîñïàëèòåëüíûõ öè-òîêèíîâ. Ñ îäíîé ñòîðîíû, èíãèáèðîâàíèå ïðîâîñïàëè-òåëüíûõ öèòîêèíîâ ìîæåò îêàçàòüñÿ âûãîäíûì âèðóñó.Âìåñòå ñ òåì èçáûòî÷íîå íåêîíòðîëèðóåìîå îñâîáîæäå-íèå öèòîêèíîâ (öèòîêèíîâûé øòîðì) ÿâëÿåòñÿ îäíèì èçíàèáîëåå îïàñíûõ äëÿ æèçíè ïîñëåäñòâèé ãðèïïà (Teija-ro, 2015), ïîýòîìó îïîñðåäîâàííûé ìèêðîÐÍÊ ÏÒÃÑïðîâîñïàëèòåëüíûõ öèòîêèíîâ, ïî-âèäèìîìó, ÿâëÿåòñÿäîïîëíèòåëüíûì ìåõàíèçìîì êëåòî÷íîãî êîíòðîëÿ âîñ-ïàëåíèÿ, ñâÿçàííîãî ñ èíôåêöèåé ÂÃÀ.

Ê ÷èñëó ñîáûòèé, ñîïðîâîæäàþùèõ ïîçäíèå ñòàäèèèíôåêöèè ÂÃÀ, îòíîñÿòñÿ èçìåíåíèÿ ïðîôèëÿ ìèê-ðîÐÍÊ, ìèøåíè êîòîðûõ âîâëå÷åíû â êëåòî÷íóþ ïðîëè-ôåðàöèþ è ðåïàðàöèþ ÄÍÊ, ÷òî, î÷åâèäíî, ñâÿçàíî ñ ðå-ãåíåðàòèâíûìè ïðîöåññàìè â ëåãî÷íîì ýïèòåëèè.

Äèíàìèêà íåêîòîðûõ êëåòî÷íûõ ìèêðîÐÍÊ áûëàîõàðàêòåðèçîâàíà êàê âûãîäíàÿ âèðóñó. Òàê, íàáëþäàå-ìîå ñíèæåíèå êîíöåíòðàöèè miR-24 ïðèâîäèò ê up-ðåãó-ëÿöèè ïðîòåàçû ôóðèíà, ïðîòåîëèòè÷åñêàÿ àêòèâíîñòüêîòîðîé â îòíîøåíèè ïðåäøåñòâåííèêà ãåìàããëþòèíèíàH0 íåîáõîäèìà äëÿ ïðîäóêöèè èíôåêöèîííûõ âèðèîíîâH5N1, ñïîñîáíûõ ê ìåìáðàííîìó ñëèÿíèþ (Lovedayet al., 2015).

Ñõîäíûì îáðàçîì down-ðåãóëÿöèÿ miR-17-3p èmiR-221 ïðè èíôåêöèè ÂÃÀ ïðèâîäèò ê äåðåïðåññèè èõìèøåíè GalNAc transferase 3 (GALNT3), êîòîðàÿ êàòà-ëèçèðóåò Î-ãëèêîçèëèðîâàíèå ìóöèíîâîãî òèïà â èíôè-öèðîâàííûõ êëåòêàõ. O-ãëèêîçèëèðîâàíèå êëåòî÷íûõðåöåïòîðîâ ÿâëÿåòñÿ îäíèì èç êëþ÷åâûõ ôàêòîðîâ, îïðå-äåëÿþùèõ àäñîðáöèþ ÂÃÀ âèðèîíîâ íà êëåòî÷íîé ïî-âåðõíîñòè (Nakamura et al., 2015).

524 À. Í. Ãîðøêîâ è äð.

Page 11: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 525

Ò à á ë è ö à 2

Èçìåíåíèå ýêñïðåññèè êëåòî÷íûõ ìèêðîÐÍÊ, èõ ìèøåíè è êëåòî÷íûå ïðîöåññû,â êîòîðûå îíè âîâëå÷åíû ïðè èíôèöèðîâàíèè ÂÃÀ

ìèêðîÐÍÊÄèíàìèêàìèêðîÐÍÊ

ÌèøåíüìèêðîÐÍÊ

Ôóíêöèÿ áåëêàÏîäòèïâèðóñà

Ëèòåðàòóðíûéèñòî÷íèê

À ï î ï ò î ç

miR-29c � BCL2L2 Àíòèàïîïòîòè÷åñêàÿ ìîäóëÿöèÿ êëåòî÷íîéãèáåëè

H1N1 Guan et al., 2012

Ñåìåéñòâî miR-30 � STK17b Ïðîàïîïòîòè÷åñêàÿ êèíàçà H5N1 Li et al., 2011

miR-34a � Bax Òðèããåð àïîïòîòè÷åñêîé ïåðìåàáèëèçàöèèìåìáðàíû ìèòîõîíäðèé

H1N1 Fan, Wang, 2016

miR-34c � SIRT1 Àïîïòîòè÷åñêàÿ ìîäóëÿöèÿ äåàöåòåëèðîâà-íèÿ

» Rivera et al., 2016

miR-223 � HOXC6 Àíòèàïîïòîòè÷åñêèé òðàíñêðèïöèîííûéôàêòîð

H5N1 Li et al., 2011

� PI3K, PP2A,PKA

Îïîñðåäóþò àíòèàïîïòîòè÷åñêèé êëåòî÷-íûé ïóòü CREB

H1N1 Li et al., 2010

miR-548an � NS1ABP Àíòèàïîïòîòè÷åñêàÿ ìîäóëÿöèÿ êëåòî÷íîéãèáåëè

» Othumpangat et al.,2013

miR-4276 � COX6C Èíäóêöèÿ êàñïàçû 9 » Othumpangat et al.,2014

È ì ì ó í í û é î ò â å ò

miR-16 � TNF-a Ïðîâîñïàëèòåëüíûå öèòîêèíû H5N3 Wang et al., 2009b

miR-21 � IL1B, IL12 H1N2 Skovgaard et al., 2013

� H1N1 Li et al., 2010

miR-141 � TGF-b2 H5N1 Lam et al., 2013

miR-451 � IL6 H1N2 Skovgaard et al., 2013

miR-15b-3p � IKBKB, TRAF6,IRAK1, TRAF3

Âîâëå÷åíû â êëåòî÷íûå ïóòè Toll-ïîäîá-íûõ ðåöåïòîðîâ

H1N1 Huang et al., 2015

miR-29 � DNMT3a,DNMT3b

Ýïèãåíåòè÷åñêèå ñóïðåññîðû äëÿ COX2 èñèíòåçà IFN-l1

H1N1,H3N2

Fang et al., 2012

miR-124-3p � TRAF2, MAP3K1,MAP3K7IP1,

MAP3K7IP3, JAK1,STAT6, STAT5B

Âîâëå÷åíû â êëåòî÷íûå ñèãíàëèíãîâûåïóòè âðîæäåííîãî èììóíèòåòà

H1N1 Huang et al., 2015

miR-132 � MAPK3 Êëþ÷åâîé êîìïîíåíò êàñêàäà MAPK/ERK H1N1,H3N2

Buggele et al., 2012

miR-146a � IRAK-1 Ìåäèàòîð ñèãíàëèíãà èíòåðëåéêèíà-1 H1N1,H3N2

Buggele et al., 2012;Terrier et al., 2013

miR-200a � IFNAR1, STAT2 Âîâëå÷åíû â ñèñòåìó ñèãíàëèíãà IFN- I H1N1 Li et al., 2010

miR-449b � HDAC1 Ñóïðåññîð IFNb-ïðîìîòîðà H1N1,H3N2

Buggele et al., 2013

miR-650 � MxA Àíòèâèðóñíûé áåëîê, ñòèìóëèðóåìûé IFN H1N1 Pichulik et al., 2016

miR-664 � LIF Âîâëå÷åí â ERK5 ñèãíàëüíóþ ñèñòåìó H7N9 Wolf et al., 2016

Ê ë å ò î ÷ í à ÿ ï ð î ë è ô å ð à ö è ÿ

miR-21 � hMSH2 Ó÷àñòâóåò â ðåãóëÿöèè êëåòî÷íîãî öèêëàêëåòîê ëåãî÷íîãî ýïèòåëèÿ

H1N1 Tan et al., 2014

miR-28-5p � BRCA1 Ó÷àñòâóåò â ñèñòåìå ðåïàðàöèè ÄÍÊ » Liu et al., 2014

miR-29a, miR-29b � Akt3 Ó÷àñòâóåò â ðåãóëÿöèè êëåòî÷íîãî öèêëà » Liu et al., 2010

miR-141 � EGFR Ðåãóëèðóåò ïðîëèôåðàöèþ êëåòîê ëåãî÷íî-ãî ýïèòåëèÿ

H1N1,H5N1

Vela et al., 2014; Liet al., 2015b

Ï ð î â è ð ó ñ í î å â ë è ÿ í è å í à ý ê ñ ï ð å ñ ñ è þ ã å í î â ê ë å ò ê è - õ î ç ÿ è í à

miR-9 � MCPIP1 Äåãðàäàöèÿ âèðóñíîé ÐÍÊ H1N1,H3N2

Dong et al., 2016

miR-17-3p, miR-221 � GALNT3 Îñóùåñòâëÿåò Î-ãëèêîçèëèðîâàíèå ìóöè-íîâîãî òèïà â çàðàæåííûõ êëåòêàõ

H1N1,H3N2

Nakamura et al., 2015

Page 12: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Åùå îäíèì ïðèìåðîì ïðîâèðóñíîãî èçìåíåíèÿ ïðî-ôèëÿ ìèêðîÐÍÊ ïðè èíôåêöèè ÂÃÀ ÿâëÿåòñÿ up-ðåãóëÿ-öèÿ miR-9 â óñëîâèÿõ âèðóñíîãî çàðàæåíèÿ (Dong et al.,2016). Ìèøåíüþ miR-9 ÿâëÿåòñÿ áåëîê MCPIP1. Ýòîò áå-ëîê îáëàäàåò ÐÍÊàçíîé àêòèâíîñòüþ â îòíîøåíèè âèðóñ-íûõ ÐÍÊ (Lin et al., 2013). Îïîñðåäîâàííûé miR-9 ñàé-ëåíñèíã MCPIP1 ïðèâîäèò ê ñóùåñòâåííîìó óñèëåíèþðåïðîäóêöèè ÂÃÀ.  ðÿäå ïóáëèêàöèé áûëè óñòàíîâëåíûâèðóñíûå ìÐÍÊ (ÂÃÀ) â êà÷åñòâå ìèøåíåé äëÿ êëåòî÷-íûõ ìèêðîÐÍÊ (òàáë. 3).

Âûøå ìû îáñóäèëè, ÷òî ïðÿìîé àíòèâèðóñíûé ýô-ôåêò âçàèìîäåéñòâèé êëåòî÷íûõ ìèêðîÐÍÊ ñ âèðóñíûìèÐÍÊ-òðàíñêðèïòàìè êàê ìèíèìóì íåî÷åâèäåí.  ðÿäåñëó÷àåâ áîëåå óìåñòíî ãîâîðèòü î êîíêóðåíòíûõ îòíîøå-íèÿõ ìåæäó âèðóñíûìè è õîçÿéñêèìè ìÐÍÊ çà ñâÿçûâà-íèå ìèêðîÐÍÊ (Li et al., 2014).  ÷àñòíîñòè, miR-491-5p,óçíàþùàÿ ìÐÍÊ PB1 (Song et al., 2010), îäíîâðåìåííîèìååò ñâîåé ìèøåíüþ ìÐÍÊ ìàòðèêñíîé ìåòàëîïðîòåè-íàçû MMP-9 (Yuan et al., 2013). MMP-9 ñâÿçàíà ñ ðÿäîìïàòîëîãè÷åñêèõ ïðîöåññîâ â ëåãêèõ, âêëþ÷àÿ îñòðûé ðåñ-

526 À. Í. Ãîðøêîâ è äð.

Ò à á ë è ö à 2 (ïðîäîëæåíèå)

ìèêðîÐÍÊÄèíàìèêàìèêðîÐÍÊ

ÌèøåíüìèêðîÐÍÊ

Ôóíêöèÿ áåëêàÏîäòèïâèðóñà

Ëèòåðàòóðíûéèñòî÷íèê

miR-24 � Furin Ïðîòåîëèòè÷åñêîå ðàçðåçàíèå ïðåêóðñîðàãåìàããëþòèíèíà, íåîáõîäèìîå äëÿ îáðà-çîâàíèÿ èíôåêöèîííî àêòèâíîãî âèðèîíà

H5N1 Loveday et al., 2015

miR-155 � MX1 Âàæíàÿ ðîëü âî âçàèìîäåéñòâèè âèðóñ—õî-çÿèí ïðè èíôåêöèè

H1N1,H5N3

Wang et al., 2012

miR-485 � RIG-I Ïàòòåðíðàñïîçíàþùèé ðåöåïòîð H5N1 Ingle et al., 2015

Ï ð è ì å ÷ à í è å. Ñòðåëêà âíèç èëè ââåðõ ïîêàçûâàåò ñîîòâåòñòâåííî óâåëè÷åíèå èëè óìåíüøåíèå ýêñïðåññèè äàííîé ìèêðîÐÍÊ ïðè èíôåêöèèÂÃÀ.

Ò à á ë è ö à 3

Êëåòî÷íûå ìèêðîÐÍÊ, èìåþùèå ñâîèìè ìèøåíÿìè ìÐÍÊ ÂÃÀ

ìèêðîÐÍÊ ìÐÍÊ-ìèøåíü ÂÃÀ Ñóáòèï ÂÃÀËèòåðàòóðíûé

èñòî÷íèê

let-7c M1 H1N1 Ma et al., 2012

miR-323 PB1 » Song et al., 2010

miR-491

miR-654

miR-26a » » Tambyah et al., 2013

miR-576-3p PA

miR-628-3p HA

miR-136 PB2, HA » Scaria et al., 2006

miR-507

gga-miR-133c PB1, PB-F2, N40 » Kumar et al., 2014

gga-miR-146c*

gga-miR-1710

miR-485 PB1 H5N1 Ingle et al., 2015

miR-106 HA, NA, PA, PB1, PB2 H5N3 Wang et al., 2012

miR-142-3p M, NA

miR-146a HA, NA, NP, PB1, PB2

miR-153 HA, NA, PA, PB1, PB2

miR-155 HA, NA, NP, NS, PB1

miR-15a HA, MNP, NS, PB2

miR-17-3p HA, M, PA, PB1

miR-17-5p HA, M, NA, PA, PB1

miR-187 HA, NA, PB1, PB2

miR-18a HA, M, NA, PB1, PB2

miR-18b HA, M, NA, PB1, PB2

miR-19b HA, NS, PA, PB1

miR-202 HA, M, NA, NP, NS, PA, PB1, PB2

miR-206 HA, M, NP, NS, PB2

miR-20a HA, NA, PA, PB1, PB2

Page 13: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

ïèðàòîðíûé äèñòðåññ-ñèíäðîì, õðîíè÷åñêóþ îáñòðóê-öèþ ëåãêèõ, àñòìó, èíôåêöèîííóþ ïíåâìîíèþ è èäèîïà-òè÷åñêèé ôèáðîç ëåãêèõ (Lee et al., 2013). Ïîýòîìó äåðåï-ðåññèÿ MMP-9 â ðåçóëüòàòå êîíêóðåíòíîãî ñâÿçûâàíèÿmiR-491-5p âèðóñíîé ìÐÍÊ îêàçûâàåòñÿ âàæíûì êîìïî-íåíòîì ïàòîãåííîñòè ÂÃÀ.

Àíàëîãè÷íûì îáðàçîì miR-29a èìååò ðÿä ïðåä-ñêàçàííûõ ìèøåíåé â ãåíîìå ÂÃÀ (Wang et al., 2012).Âìåñòå ñ òåì êëåòî÷íîé ìèøåíüþ miR-29a ÿâëÿåòñÿôîñôàòàçà PTEN, âîâëå÷åííàÿ â PI3K/Akt-ñèãíàëüíûéïóòü (Lin et al., 2016). Äåðåïðåññèÿ PTEN â ðåçóëüòàòå àä-ñîðáöèè miR-29a íà âèðóñíûå ìÐÍÊ ÿâëÿåòñÿ îäíèìèç âàæíûõ ôàêòîðîâ àïîïòîçà êëåòîê, èíôèöèðîâàííûõÂÃÀ.

Òåðàïåâòè÷åñêîå âîçäåéñòâèå íà ìèêðîÐÍÊ, âîâëå-÷åííûå â êëåòî÷íûå ïðîöåññû, ñâÿçàííûå ñ èíôåêöèåéÂÃÀ, ïðåäñòàâëÿåò ñîáîé íîâóþ ïðèâëåêàòåëüíóþ ñòðà-òåãèþ â áîðüáå ñ ãðèïïîì. Ðå÷ü ìîæåò èäòè î ââåäåíèèäîïîëíèòåëüíûõ êîïèé ìèêðîÐÍÊ (mimics), âîâëå÷åí-íûõ â àíòèâèðóñíóþ ðåãóëÿöèþ êëåòî÷íûõ ïðîöåññîâ(íàïðèìåð, â èíòåðôåðîíîâûé îòâåò), èëè, íàïðîòèâ, îáëîêèðîâàíèè ïðîâèðóñíûõ ìèêðîÐÍÊ ñ ïîìîùüþ ìî-äèôèöèðîâàííûõ àíòèñìûñëîâûõ îëèãîíóêëåîòèäîâ (an-timiRs), îáû÷íî èñïîëüçóåìûõ â âèäå antagomirs (àí-

òè-ìèêðîÐÍÊ, êîíúþãèðîâàííûå ñ õîëåñòåðèíîì) èëèLNA-îëèãîíóêëåîòèäíûõ ìîäèôèêàöèé (Stenvang et al.,2012). Íàöåëåííàÿ íà ìèêðîÐÍÊ òåðàïèÿ íà îñíîâå mi-mics èëè antimiRs âñòðå÷àåò òå æå çàòðóäíåíèÿ, ÷òî èêèÐÍÊ-òåðàïèÿ, ïðåæäå âñåãî ñîçäàíèå ýôôåêòèâíîãî èáåçîïàñíîãî ñðåäñòâà äîñòàâêè in vivo.

ÌèêðîÐÍÊ-èíòåðôåðåíöèÿ ÿâëÿåòñÿ íîâûì ïîäõî-äîì äëÿ ñîçäàíèÿ àòòåíóèðîâàííûõ ãðèïïîçíûõ âàêöèííîâîãî ïîêîëåíèÿ. Ñ ýòîé öåëüþ â íåñêîëüêèõ èññëåäî-âàíèÿõ áûë âûïîëíåí èíæèíèðèíã ÂÃÀ, âêëþ÷àþùèéâ ñåáÿ âñòðàèâàíèå ìèêðîÐÍÊ-óçíàþùåãî ýëåìåíòà(MRE) â ïîñëåäîâàòåëüíîñòü âèðóñíîãî ãåíà. Òàêèì îáðà-çîì, áûëè ñîçäàíû àòòåíóèðîâàííûå âèðóñû, ñîäåð-æàùèå MRE miR-93, âñòðîåííûé â ÎÐÑ ãåíà NP (Perezet al., 2009), è MRE miR-let-7b, âñòðîåííûé â ÎÐÑ ãåíàPB1 (Feng et al., 2015; Shen et al., 2015). Áîëåå ñëîæíûéäèçàéí àòòåíóèðîâàííîãî âèðóñà áûë èñïîëüçîâàí Ëè ññîàâòîðàìè (Li et al., 2015a).  ýòîé ðàáîòå â âèðóñíûéãåí NS áûëà âñòðîåíà ýêñïðåññèîííàÿ êàññåòà miR-93,ýêñïðåññèðóþùàÿ èñêóññòâåííóþ ìèêðîÐÍÊ, óçíàþùóþNP. Âàêöèíàöèÿ ìûøåé ïåðå÷èñëåííûìè ðåêîìáè-íàíòíûìè âèðóñàìè ñóùåñòâåííî ñíèæàëà ñìåðòíîñòüæèâîòíûõ â ðåçóëüòàòå ëåòàëüíîé äîçû âèðóñà äèêîãîòèïà.

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 527

Ò à á ë è ö à 3 (ïðîäîëæåíèå)

ìèêðîÐÍÊ ìÐÍÊ-ìèøåíü ÂÃÀ Ñóáòèï ÂÃÀËèòåðàòóðíûé

èñòî÷íèê

miR-20b HA, M, NA, NP, NS, PA, PB1, PB2

miR-211 HA, M, NA, NP, NS, PA, PB1, PB2

miR-223 HA, NA, PB1, PB2

miR-23b HA, M, NA, NP, PA, PB1, PB2

miR-24 HA, M, NA, NP, PA, PB1

miR-29a HA, M, NA, NP, NS, PB1, PB2

miR-29c HA, M, NA, NP, PA, PB1, PB2

miR-301 HA, NA, NP, PB1, PB2

miR-30b NA, NP, PB1, PB2

miR-32 HA, NS

miR-34a HA, NA, PA, PB1, PB2

miR-7b HA, M, NA, NP, NS, PA, PB1, PB2

miR-92 HA, M, NA, NP, PA, PB2

miR-216b NA H5N1, H3N2 Khongnomnan et al., 2015

miR-3145 PB1 H1N1, H5N1, H3N2

miR-3682 NS H1N1, H3N2

miR-4513 PA

miR-4753 PA, PB1 H1N1, H5N1

miR-5693 PA H5N1, H3N2

miR-127-3p PB1 H1N1, H3N2, H5N1 Makkoch et al., 2016

miR-128 PA

miR-136 NP, HA

miR-16 NP, M, ÐÀ, ÐÂ1, ÐÂ2, NS1

miR-222 NP, M, ÐÀ, ÐÂ1, ÐÂ2, NS1

miR-29a HA

miR-323 PB1

miR-548 PB1, NS1

miR-660 PA

miR-92a PB2

Page 14: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Çàêëþ÷åíèå

ÐÍÊ-èíòåðôåðåíöèÿ ïðåäñòàâëÿåò ñîáîé âàæíåéøèéìåõàíèçì ðåãóëÿöèè ìíîæåñòâà áèîëîãè÷åñêèõ ôóíêöèé,â ÷àñòíîñòè âçàèìîäåéñòâèé ÂÃÀ è èíôèöèðîâàííîéêëåòêè. Íåñìîòðÿ íà îïðåäåëåííîå îõëàæäåíèå îïòè-ìèçìà êîíöà 90-õ ãîäîâ ïðîøëîãî âåêà è íà÷àëà íîâîãî,ñâÿçàííîãî ñ ïåðñïåêòèâîé íåìåäëåííîãî âíåäðåíèÿ òåõ-íîëîãèè ÐÍÊ-èíòåðôåðåíöèè â êëèíè÷åñêóþ ïðàêòèêóëå÷åíèÿ ìíîæåñòâà çàáîëåâàíèé, áåññïîðíî, ÷òî òåðà-ïåâòè÷åñêîå èñïîëüçîâàíèå ìèêðîÐÍÊ- è êèÐÍÊ-âåòâåéÐÍÊ-èíòåðôåðåíöèè èìååò çíà÷èòåëüíûé ïîòåíöèàë âáîðüáå ñ ãðèïïîì. Äàííûé ïîäõîä ïîçâîëÿåò ñîçäàâàòüâûñîêîñïåöèôè÷íûå ëåêàðñòâåííûå ñðåäñòâà, íàïðàâëåí-íûå íà ÏÒÃÑ ñòðîãî îïðåäåëåííûõ öåëåâûõ ìÐÍÊ-òðàíñ-êðèïòîâ êàê âèðóñíîé, òàê è êëåòî÷íîé ïðèðîäû.  íàñòî-ÿùåå âðåìÿ ïðîäîëæàþòñÿ àêòèâíûå ýêñïåðèìåíòàëüíûåóñèëèÿ ìíîæåñòâà ëàáîðàòîðèé ïî ñîçäàíèþ ýôôåêòèâ-íîãî è áåçîïàñíîãî ñðåäñòâà äîñòàâêè in vivo ìàëûõ ÐÍÊ.Êðîìå òîãî, äåðåãóëÿöèÿ ïðîôèëÿ ìèêðîÐÍÊ ïðè âèðóñ-íûõ èíôåêöèÿõ ÿâëÿåòñÿ ïîòåíöèàëüíî âàæíåéøèì äèà-ãíîñòè÷åñêèì èíñòðóìåíòîì.

Êîëëåêòèâ àâòîðîâ ïðèíîñèò áëàãîäàðíîñòü çà ïî-ìîùü â ïîäãîòîâêå îáçîðà Í. Í. Íèêîëüñêîìó (Èíñòèòóòöèòîëîãèè ÐÀÍ) è À. Á. Áîíäàðåíêî (Íàó÷íî-èññëåäîâà-òåëüñêèé èíñòèòóò ãðèïïà Ìèíèñòåðñòâà çäðàâîîõðàíå-íèÿ ÐÔ).

Ðàáîòà âûïîëíåíà ïðè ôèíàíñîâîé ïîääåðæêå Ðîñ-ñèéñêîãî íàó÷íîãî ôîíäà (ïðîåêò 15-15-00170: «Êëåòî÷-íûå ìèêðîÐÍÊ — íîâûå ìîëåêóëÿðíûå ìèøåíè äëÿ òå-ðàïèè òÿæåëûõ âèðóñíûõ èíôåêöèé»).

Ñ ï è ñ î ê ë è ò å ð à ò ó ð û

Êèñåëåâ Î. È. 2011. Ãåíîì ïàíäåìè÷åñêîãî âèðóñà ãðèïïàÀ/H1N1v-2009. ÑÏá.: Äèìèòðåéä Ãðàôèê Ãðóïï. 164 ñ. (Kise-lev O. I. 2011. The genome of pandemic influenza A/H1N1v-2009.St. Petersburg: Dimiterd Graph of Groups. 164 p.)

Ðóêøà Ò. Ã., Ñåðãååâà Å. Þ., Ïàëêèíà Í. Â., Àêñåíåí-êî Ì. Á., Êîìèíà À. Â., Êëèìèíà Ã. Ì., Áåëîíîãîâ Ð. Í. 2016.ÌèêðîÐÍÊ êàê ðåãóëÿòîðû ýôôåêòîâ óëüòðàôèîëåòîâîãî èçëó-÷åíèÿ â êëåòêàõ êîæè. Öèòîëîãèÿ. 58 (10) : 733—743. (Ruk-sha T. G., Sergeeva E. Yu., Palkina N. V., Aksenenko M. B., Komi-na A. V., Klimina G. M., Belonogov R. N. 2016. MicroRNKs as ul-traviolet irradiation effects regulators in skin cells. Tsitologiya.58 (10) : 733—743.)

Ùåëêàíîâ Ì. Þ., Ïîïîâ À. Ô., Ñèìàêîâà À. È., Çåíèí È. Â.,Ïðîøèíà Å. Ñ., Êèðèëëîâ È. Ì., Äìèòðèåíêî Ê. À., Øåâ-÷óê Ä. Â. 2015. Ïàòîãåíåç ãðèïïà: ìåõàíèçìû ìîäóëÿöèè áåë-êàìè âîçáóäèòåëÿ. Æóðí. èíôåêòîë. 7 (2) : 31—46. (Shchelka-nov M. Yu., Popov A. F., Simakova A. I., Zenin I. V., Proshi-na Ye. S., Kirillov I. M., Dmitrienko K. A., Shevchuk D. V. 2015.Pathogenesis of influenza: mechanisms of protein modulation ofthe pathogen. J. Infectol. 7 (2) : 31—46.)

Abrahamyan A., Nagyb E., Golovanc S. 2009. Human H1 pro-moter expressed short hairpin RNAs (shRNAs) suppress avian inf-luenza virus replication in chicken CH-SAH and canine MDCKcells. Antiviral Res. 84 : 159—167.

Backes S., Langlois R. A., Schmid S., Varble A., Shim J. V.,Sachs D., ten Oever B. R. 2014. The Mammalian response to virusinfection is independent of small RNA silencing. Cell Rep. 8 :114—125.

Bao Y., Gao Y., Jin Y., Cong W., Pan X., Cui X. 2015. MicroRNAexpression profiles and networks in mouse lung infectedwith H1N1 influenza virus. Mol. Genet. Genomics. 290 : 1885—1897.

Bartel D. P. 2009. MicroRNAs: target recognition and regula-tory functions. Cell. 136 : 215—233.

Behera V., Nagarajan S., Murugkar H., Kalaiyarasu S., Pra-kash A., Gothalwal R., Dubey S. C., Kulkarni D. D., Tosh C. 2015.siRNAs targeting PB2 and NP genes potentially inhibit replicationof highly pathogenic H5N1 avian Influenza virus. J. Biosci. 40 :233—240.

Berke I. C., Li Y., Modis Y. 2013. Structural basis of innateimmune recognition of viral RNA. Cell Microbiol. 15 : 386—394.

Billy E., Brondani V., Zhang H., Müller U., Filipowicz W.2001. Specific interference with gene expression induced by long,double-stranded RNA in mouse embryonal teratocarcinoma cell li-nes. Proc. Nat. Acad. Sci. USA. 98 : 14 428—14 433.

Birmingham A., Anderson E., Sullivan K., Reynolds A., Boe-se Q., Leake D., Karpilow J., Khvorova A. 2007. A protocol for de-signing siRNAs with high functionality and specificity. Nat. Pro-toc. 2 : 2068—2078.

Bogerd H. P., Skalsky R. L., Kennedy E. M., Furuse Y., Whis-nant A. W., Flores O., Schultz K. L., Putnam N., Barrows N. J.,Sherry B., Scholle F., Garcia-Blanco M. A., Griffin D. E., CullenB. R. 2014. Replication of many human viruses is refractory to in-hibition by endogenous cellular microRNAs. J. Virol. 88 :8065—8076.

Bucher E., Hemmes H., de Haan V., Goldbach R., Prins M.2004. The influenza A virus NS1 protein binds small interferingRNAs and suppresses RNA silencing in plants. J. Gen. Virol. 85 :983—991.

Buggele W. A., Johnson K. E., Horvath C. M. J. 2012. Influen-za A virus infection of human respiratory cells induces primarymicroRNA expression. Biol. Chem. 287 : 31 027—31 040.

Buggele W. A., Krause K. E., Horvath C. M. 2013. Small RNAprofiling of influenza A virus-infected cells identifies miR-449b asa regulator of histone deacetylase 1 and interferon beta. PLoSONE. 8 : e76560.

Carthew R. W., Sontheimer E. J. 2009. Origins and mecha-nisms of miRNAs and siRNAs. Cell. 136 : 642—655.

Chakravarthy S., Sternberg S. H., Kellenberger C. A., Doud-na J. A. 2010. Substrate-specific kinetics of Dicer-catalyzed RNAprocessing. J. Mol. Biol. 404 : 392—402.

Chen L. L., Yang L., Carmichael G. G. 2010. Molecular basisfor an attenuated cytoplasmic dsRNA response in human embryo-nic stem cells. Cell Cycle. 9 : 3552—3564.

Chendrimada T. P., Gregory R. I., Kumaraswamy E., Nor-man J., Cooch N., Nishikura K., Shiekhattar R. 2005. TRBP re-cruits the Dicer complex to Ago2 for microRNA processing andgene silencing. Nature. 436 : 740—744.

Cheng A., Wong S. M., Yuan Y. A. 2009. Structural basis fordsRNA recognition by NS1 protein of influenza A virus. Cell Res.19 : 187—195.

Chien C. Y., Xu Y., Xiao R., Aramini J. M., Sahasrabudhe V.,Krug R. M., Montelione G. T. 2004. Biophysical characterizationof the complex between double-stranded RNA and the N-termi-nal domain of the NS1 protein from influenza A virus: evidencefor a novel RNA-binding mode. Biochemistry. 43 : 1950—1962.

Chou Y. C., Lai M. M., Wu Y. C., Hsu N. C., Jeng K. S.,Su W. C. 2015. Variations in genome-wide RNAi screens: lessonsfrom influenza research. J. Clin. Bioinform. 5 : 2.

Coburn G. A., Cullen B. R. 2003. siRNAs: a new wave ofRNA-based therapeutics. J. Antimicrob. Chemother. 51 : 753—756.

Cui L., Wang H., Ji Y., Yang J., Xu S., Huang X., Wang Z.,Qin L., Tien P., Zhou X., Guo D., Chen Y. 2015. The nucleocapsidprotein of coronaviruses acts as a viral suppressor of RNA silen-cing in mammalian cells. J. Virol. 89 : 9029—9043.

Cullen B. R. 2010. Five questions about viruses and micro-RNAs. PLoS Pathog. 6 : e1000787.

Cullen B. R. 2013. How do viruses avoid inhibition by endoge-nous cellular microRNAs? PLoS Pathog. 9 : e1003694.

Cullen B. R. 2014. Viruses and RNA interference: issues andcontroversies. J. Virol. 88 : 12 934—12 936.

528 À. Í. Ãîðøêîâ è äð.

Page 15: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Cullen B. R., Cherry S., tenOever B. R. 2013. Is RNA interfe-rence a physiologically relevant innate antiviral immune responsein mammals? Cell Host Microbe. 14 : 374—378.

Del Toro Duany Y., Wu B., Hur S. 2015. MDA5-filament, dy-namics and disease. Curr. Opin. Virol. 12 : 20—25.

Ding S. W. 2010. RNA-based antiviral immunity. Nat. Rev.Immunol. 10 : 632—644.

Doench J. G., Petersen C. P., Sharp P. A. 2003. siRNAs canfunction as miRNAs. Genes Develop. 17 : 438—442.

Dong C., Sun X., Guan Z., Zhang M., Duan M. 2016. Modula-tion of influenza A virus replication by microRNA-9 through targe-ting MCPIP1. J. Med. Virol. 89 : 41—48.

Elbashir S. M., Harborth J., Weber K., Tuschl T. 2002. Analy-sis of gene function in somatic mammalian cells using small inter-fering RNAs. Methods. 26 : 199—213.

ElHefnawi M., Hassan N., Kamar M., Siam R., Remoli A. L.,El-Azab I., AlAidy O., Marsili G., Sgarbanti M. 2011. The design ofoptimal therapeutic small interfering RNA molecules targeting di-verse strains of influenza A virus. Bioinformatics. 27 :3364—3370.

Fabian M. R., Sonenberg N. 2012. The mechanics of mi-RNA-mediated gene silencing: a look under the hood of miRISC.Nat. Struct. Mol. Biol. 19 : 586—593.

Fan N., Wang J. 2016. MicroRNA 34a contributes to vi-rus-mediated apoptosis through binding to its target gene Bax in in-fluenza A virus infection. Biomed. Pharmacother. 83 :1464—1470.

Fang J., Hao Q., Liu L., Li Y., Wu J., Huo X., Zhu Y. 2012. Epi-genetic changes mediated by microRNA miR29 activate cyclooxy-genase 2 and lambda-1 interferon production during viral infection.J. Virol. 86 : 1010—1020.

Feng C., Tan M., Sun W., Shi Y., Xing Z. 2015. Attenuation ofthe influenza virus by microRNA response element in vivo and pro-tective efficacy against 2009 pandemic H1N1 virus in mice. Int. J.Infect. Dis. 38 : 146—152.

Fire A., Xu S., Montgomery M., Kostas S., Driver S., Mello C.1998. Potent and specific genetic interference by double-strandedRNA in Caenorhabditis elegans. Nature. 391 : 806—811.

Flemr M., Malik R., Franke V., Nejepinska J., Sedlacek R.,Vlahovicek K., Svoboda P. 2013. A retrotransposon-driven dicerisoform directs endogenous small interfering RNA production inmouse oocytes. Cell. 155 : 807—816.

Friedman R. C., Farh K. K., Burge C. B., Bartel D. P. 2009.Most mammalian mRNAs are conserved targets of microRNAs.Genome Res. 19 : 92—105.

Gantier M. P. 2014. Processing of double-stranded RNA inmammalian cells: a direct antiviral role? J. Interferon CytokineRes. 34 : 469—477.

Ge Q., Filip L., Bai A., Nguyen T., Eisen H. N., Chen J. 2004.Inhibition of influenza virus production in virus-infected mice byRNA interference. Proc. Nat. Acad. Sci. USA. 101 : 8676—8681.

Ge Q., McManus M. T., Nguyen T., Shen C. H., Sharp V. A.,Eisen H. N., Chen J. 2003. RNA interference of influenza virusproduction by directly targeting mRNA for degradation and indi-rectly inhibiting all viral RNA transcription. Proc. Nat. Acad. Sci.USA. 100 : 2718—2723.

Ghildiyal M., Zamore P.D. 2009. Small silencing RNAs: anexpanding universe. Nat. Rev. Genet. 10 : 94—108.

Gregory R. I., Yan K. P., Amuthan G., Chendrimada T., Dora-totaj B., Cooch N., Shiekhattar R. 2004. The microprocessor comp-lex mediates the genesis of microRNAs. Nature. 432 : 235—240.

Grimson A., Farh K. K., Johnston W. K., Garrett-Engele P.,Lim L. P., Bartel D. P. 2007. MicroRNA targeting specificity inmammals: determinants beyond seed pairing. Mol. Cell. 27 :91—105.

Grundhoff A., Sullivan C. S. 2011. Virus-encoded microRNAs.Virology. 411 : 325—343.

Guan Z., Shi N., Song Y., Zhang X., Zhang M., Duan M. 2012.Induction of the cellular microRNA-29c by influenza virus contri-butes to virus-mediated apoptosis through repression of antiapopto-tic factors BCL2L2. Biochem. Biophys. Res. Commun. 425 :662—667.

Guo L., Chen F. 2014. A challenge for miRNA: multiple iso-miRs in miRNAomics. Gene. 544 : 1—7.

Guo Y. E., Steitz J. A. 2014. Virus meets host microRNA: thedestroyer, the booster, the hijacker. Mol. Cell. Biol. 34 : 3780—3787.

Hammond S. M. 2015. An overview of microRNAs. Adv.Drug Deliv. Rev. 87 : 3—14.

Han J., Lee Y., Yeom K.-H., Nam J.-W., Heo I., Rhee J.-K.,Sohn S. Y., Cho Y., Zhang B.-T., Kim V. N. 2006. Molecular basisfor the recognition of primary microRNAs by the Drosha—DGCR8complex. Cell. 125 : 887—901.

Harada H., Willison K., Sakakibara J., Miyamoto M., Fuji-ta T., Taniguchi T. 1990. Absence of the type I IFN system in EC-cells: transcriptional activator (IRF-1) and repressor (IRF-2) genesare developmentally regulated. Cell. 63 : 303—312.

Harwig A., Das A. T., Berkhout B. 2014. Retroviral micro-RNAs. Curr. Opin. Virol. 7 : 47—54.

Henke J. I., Goergen D., Zheng J., Song Y., Schüttler C. G.,Fehr C., Jünemann C., Niepmann M. 2008. microRNA-122 stimu-lates translation of hepatitis C virus RNA. EMBO J. 27 : 3300—3310.

Hinton T. M., Challagulla A., Stewart C. R., Guerrero-San-chez C., Grusche F. A., Shi S., Bean A. G., Monaghan V., Gunatil-lake V. A., Thang S. H., Tizard M. L. 2014. Inhibition of influenzavirus in vivo by siRNA delivered using ABA triblock copolymersynthesized by reversible addition-fragmentation chain-transfer po-lymerization. Nanomedicine. 9 : 1141—1154.

Huang L., Ma J., Sun Y., Lv Y., Lin W., Liu M., Tu C., Zhou P.,Gu W., Su S., Zhang G. 2015. Altered splenic miRNA expressionprofile in H1N1 swine influenza. Arch. Virol. 160 : 979—985.

Hui E. K., Yap E. M., An D. S., Chen I. S., Nayak D. V. 2004.Inhibition of influenza virus matrix (M1) protein expression and vi-rus replication by U6 promoter-driven and lentivirus-mediated deli-very of siRNA. J. Gen. Virol. 85 : 1877—1884.

Hussain M., Torres S., Schnettler E., Funk A., Grundhoff A.,Pijlman G., Khromykh A. A., Asgari S. 2012. West Nile virus enco-des a microRNA-like small RNA in the 3R untranslated regionwhich up-regulates GATA4 mRNA and facilitates virus replicationin mosquito cells. Nucleic Acids Res. 40 : 2210—2223.

Hutvagner G., McLachlan J., Pasquinelli A. E., Balint E.,Tuschl T., Zamore P. D. 2001. A cellular function for the RNA-in-terference enzyme Dicer in the maturation of the let-7 small tempo-ral RNA. Science. 293 : 834—838.

Ingle H., Kumar S., Raut A. A., Mishra A., Kulkarni D. D., Ka-meyama T., Takaoka A., Akira S., Kumar H. 2015. The microRNAmiR-485 targets host and influenza virus transcripts to regulateantiviral immunity and restrict viral replication. Sci. Signal. 8 :ra126.

Jacob A., Sood R., Chanu Kh., Bhatia S., Khandia R., Pate-riya A. K., Nagarajan S., Dimri U., Kulkarni D. D. 2016. Amanta-dine resistance among highly pathogenic avian influenza viruses(H5N1) isolated from India. Microb. Pathog. 91 : 35—40.

Khantasup K., Kopermsub V., Chaichoun K., Dharakul T.2014. Targeted small interfering RNA-immunoliposomes as a pro-mising therapeutic agent against highly pathogenic Avian InfluenzaA (H5N1) virus infection. Antimicrob. Agents Chemother. 58 :2816—2824.

Khongnomnan K., Makkoch J., Poomipak W., Poovorawan Y.,Payungporn S. 2015. Human miR-3145 inhibits influenza A viru-ses replication by targeting and silencing viral PB1 gene. Exp. Biol.Med. (Maywood). 240 : 1630—1639.

Krek A., Grün D., Poy M. N., Wolf R., Rosenberg L., Ep-stein E. J., MacMenamin P., da Piedade I., Gunsalus K. C., StoffelM., Rajewsky N. 2005. Combinatorial microRNA target predicti-ons. Nat. Genet. 37 : 495—500.

Kumar A., Vn M.A., Raut A. A., Sood R., Mishra A. 2014. Iden-tification of chicken pulmonary miRNAs targeting PB1, PB1-F2,and N40 genes of highly pathogenic avian influenza virus H5N1 insilico. Bioinform. Biol. Insights. 8 : 135—145.

Kwak P. B., Tomari Y. 2012. The N domain of Argonaute dri-ves duplex unwinding during RISC assembly. Nat. Struct. Mol.Biol. 19 : 145—151.

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 529

Page 16: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Laganà A., Veneziano D., Russo F., Pulvirenti A., Giugno R.,Croce C. M., Ferro A. 2015. Computational design of artificialRNA molecules for gene regulation. Methods Mol. Biol. 1269 :393—412.

Lam W. Y., Yeung A. C., Ngai K. L., Li M. S., To K. F.,Tsui S. K., Chan V. K. 2013. Effect of avian influenza A H5N1 in-fection on the expression of microRNA-141 in human respiratoryepithelial cells. BMC Microbiol. 13 : 104.

Lanford R. E., Hildebrandt-Eriksen E. S., Petri A., Persson R.,Lindow M., Munk M. E., Kauppinen S., Ørum H. 2010. Therapeuticsilencing of microRNA-122 in primates with chronic hepatitis C vi-rus infection. Science. 327 : 198—201.

Lee H. Y., Zhou K., Smith A. M., Noland C. L., Doudna J. A.2013a. Differential roles of human Dicer-binding proteins TRBPand PACT in small RNA processing. Nucleic Acids Res. 41 :6568—6576.

Lee Y., Jeon K., Lee J. T., Kim S., Kim V. N. 2002. MicroRNAmaturation: stepwise processing and subcellular localization.EMBO J. 21 : 4663—4670.

Lee Y., Kim M., Han J., Yeom K. H., Lee S., Baek S. H.,Kim V. N. 2004. MicroRNA genes are transcribed by RNA polyme-rase II. EMBO J. 23 : 4051—4060.

Lee Y. H., Lai C. L., Hsieh S. H., Shieh C. C., Huang L. M.,Wu-Hsieh B. A. 2013b. Influenza A virus induction of oxidativestress and MMP-9 is associated with severe lung pathology in amouse model. Virus Res. 178 : 411—422.

Lewis B. P., Burge C. B., Bartel D. P. 2005. Conserved seedpairing, often flanked by adenosines, indicates that thousands ofhuman genes are microRNA targets. Cell. 120 : 15—20.

Li C., Hu J., Hao J., Zhao B., Wu B., Sun L., Peng S.,Gao G. F., Meng S. 2014. Competitive virus and host RNAs: theinterplay of a hidden virus and host interaction. Protein Cell. 5 :348—356.

Li J., Arévalo M. T., Diaz-Arévalo D., Chen Y., Choi J. G.,Zeng M. J. 2015a. Generation of a safe and effective live viral vac-cine by virus self-attenuation using species-specific artificialmicroRNA. Control. Release. 207 : 70—76.

Li T., Lu H., Mukherjee D., Lahiri S. K., Shen C., Yu L.,Zhao J. 2015b. Identification of epidermal growth factor receptorand its inhibitory microRNA141 as novel targets of Krüppel-likefactor 8 in breast cancer. Oncotarget. 6 : 21 428—21 442.

Li W. X., Li H., Lu R., Li F., Dus M., Atkinson V., Bry-don E. W., Johnson K. L., García-Sastre A., Ball L. A., Palese V.,Ding S. W. 2004. Interferon antagonist proteins of influenza andvaccinia viruses are suppressors of RNA silencing. Proc. Nat.Acad. Sci. USA. 101 : 1350—1355.

Li W., Yang X., Jiang Y., Wang B., Yang Y., Jiang Z., Li M.2011. Inhibition of influenza A virus replication by RNA interfe-rence targeted against the PB1 subunit of the RNA polymerasegene. Arch. Virol. 156 : 1979—1987.

Li Y., Chan E. Y., Li J., Ni C., Peng X., Rosenzweig E., Tum-pey T. M., Katze M. G. 2010. MicroRNA expression and virulencein pandemic influenza virus-infected mice. J. Virol. 84 : 3023—3032.

Li Y., Li J., Belisle S., Baskin C.R., Tumpey T. M., Katze M. G.2011. Differential microRNA expression and virulence of avian,1918 reassortant, and reconstructed 1918 influenza A viruses. Vi-rol. 421 : 105—113.

Li Y., Lu J., Han Y., Fan X., Ding S.W. 2013. RNA interferencefunctions as an antiviral immunity mechanism in mammals. Scien-ce. 342 : 231—234.

Liang H. W., Zhou Z., Zhang S. Y., Zen K., Chen X.,Zhang C. Y. 2014. Identification of Ebola virus microRNAs andtheir putative pathological function. Sci. China Life Sci. 57 :973—981.

Liang W., Chow M. Y., Lau P. N., Zhou Q. T., Kwok P. C., Le-ung G. P., Mason A. J., Chan H. K., Poon L. L., Lam J. K. 2015. In-halable dry powder formulations of siRNA and pH-responsive pep-tides with antiviral activity against H1N1 influenza virus. Mol.Pharm. 12 : 910—921.

Lin R. J., Chien H. L., Lin S. Y., Chang B. L., Yu H. P.,Tang W. C., Lin Y. L. 2013. MCPIP1 ribonuclease exhibits broad-

spectrum antiviral effects through viral RNA binding and degrada-tion. Nucleic Acids Res. 41 : 3314—3326.

Lin X., Liang D., He Z., Deng Q., Robertson E. S., Lan K.2011. miR-K12-7-5p encoded by Kaposi’s sarcoma-associated her-pesvirus stabilizes the latent state by targeting viral ORF50/RTA.PLoS ONE. 6 : e16224.

Lin X., Zhou X., Liu D., Yun L., Zhang L., Chen X., Chai Q.,Li L. 2016. MicroRNA-29 regulates high-glucose-induced apopto-sis in human retinal pigment epithelial cells through PTEN. In Vit-ro Cell. Develop. Biol. — Animal. 52 : 419—426.

Linke L. M., Wilusz J., Pabilonia K. L., Fruehauf J., Magnu-son R., Olea-Popelka F., Triantis J., Landolt G., Salman M. 2016.Inhibiting avian influenza virus shedding using a novel RNAi anti-viral vector technology: proof of concept in an avian cell model.AMB Express. 6 : 16.

Liu D. G. 2014. MicroRNAs in human virus genomes: helpinghands for viral infection. Microrna. 3 : 75—85.

Liu J., Carmell M. A., Rivas F. V., Marsden C. G., Thom-son J. M., Song J. J., Hammond S. M., Joshua-Tor L., Hannon G. J.2004. Argonaute2 is the catalytic engine of mammalian RNAi. Sci-ence. 30 : 1437—1441.

Liu S. Y., Aliyari R., Chikere K., Li G., Marsden M. D.,Smith J. K., Pernet O., Guo H., Nusbaum R., Zack J. A., Frei-berg A. N., Su L., Lee B., Cheng G. 2013. Interferon-inducible cho-lesterol-25-hydroxylase broadly inhibits viral entry by productionof 25-hydroxycholesterol. Immunity. 38 : 92—105.

Liu Y., Chang Y., Xu D., Li Z., Zhang H., Li J., Tian M. 2013.Optimised design of siRNA based on multi-featured comparison andanalysis of H1N1 virus. Int. J. Data Min. Bioinform. 7 : 345—357.

Liu Z. P., Wu H., Zhu J., Miao H. 2014. Systematic identifica-tion of transcriptional and post-transcriptional regulations in hu-man respiratory epithelial cells during influenza A virus infection.BMC Bioinformatics. 15 : 336.

Loeb G. B., Khan A. A., Canner D., Hiatt J. B., Shendure J.,Darnell R. B., Leslie C. S., Rudensky A. Y. 2012. Transcriptome-wi-de miR-155 binding map reveals widespread noncanonical micro-RNA targeting. Mol. Cell. 48 : 760—770.

Loveday E.-K., Diederich S., Pasick J., Jean F. 2015. HumanmicroRNA-24 modulates highly pathogenic avian-origin H5N1 in-fluenza A virus infection in A549 cells by targeting secretory path-way furin. J. Gen.Virol. 96 : 30—39.

Lu F., Weidmer A., Liu C. G., Volinia S., Croce C. M., Lieber-man P. M. 2008. Epstein-Barr virus-induced miR-155 attenuatesNF-kappaB signaling and stabilizes latent virus persistence. J. Vi-rol. 82 : 10 436—10 443.

Luna J. M., Scheel T. K., Danino T., Shaw K. S., Mele A.,Fak J. J., Nishiuchi E., Takacs C. N., Catanese M. T., de Jong Y. P.,Jacobson I. M., Rice C. M., Darnell R. B. 2015. Hepatitis C virusRNA functionally sequesters miR-122. Cell. 160 : 1099—1110.

Ma E., MacRae I. J., Kirsch J. F., Doudna J. A. 2008. Autoin-hibition of human dicer by its internal helicase domain. J. Mol.Biol. 380 : 237—243.

Ma Y. J., Yang J., Fan X. L., Zhao H., Hu W., Li Z. P, Yu G. C.,Ding X., Wang J., Bo X. C., Zheng X. F., Zhou Z., Wang S. Q. 2012.Cellular microRNA let-7c inhibits M1 protein expression of theH1N1 influenza A virus in infected human lung epithelial cells. J.Cell. Mol. Med. 16 : 2539—2546.

Machlin E. S., Sarnow P., Sagan S. M. 2011. Masking the 5R

terminal nucleotides of the hepatitis C virus genome by an uncon-ventional microRNA—target RNA complex. Proc. Nat. Acad. Sci.USA. 108 : 3193—3198.

Maillard P. V., Ciaudo C., Marchais A., Li Y., Jay F.,Ding S. W., Voinnet O. 2013. Antiviral RNA interference in mam-malian cells. Science. 342 : 235—238.

Makkoch J., Poomipak W., Saengchoowong S., Khongnom-nan K., Praianantathavorn K., Jinato T., Poovorawan Y., Payung-porn S. 2016. Human microRNAs profiling in response to influen-za A viruses (subtypes pH1N1 H3N2 and H5N1). Exp. Biol. Med.241 : 409—420.

Martinez J., Patkaniowska A., Urlaub H., Luhrmann R.,Tuschl T. 2002. Single-stranded antisense siRNAs guide targetRNA cleavage in RNAi. Cell. 110 : 563—574.

530 À. Í. Ãîðøêîâ è äð.

Page 17: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Matskevich A. A., Moelling K. 2007. Dicer is involved in pro-tection against influenza A virus infection. J. Gen. Virol. 88 :2627—2635.

McCaskill J., Praihirunkit P., Sharp P. M., Buck A. H. 2015.RNA-mediated degradation of microRNAs: a widespread viral stra-tegy? RNA Biol. 12 : 579—585.

McCown M., Diamond M. S., Pekosza A. 2003. The utility ofsiRNA transcripts produced by RNA polymerase I in down regula-ting viral gene expression and replication of negative- and positi-ve-strand RNA viruses. Virol. 313 : 514—524.

McMillen C. M., Beezhold D. H., Blachere F. M., Othumpan-gat S., Kashon M. L., Noti J. D. 2016. Inhibition of influenza A vi-rus matrix and nonstructural gene expression using RNA interfe-rence. Virol. 497 : 171—184.

Morozova N., Zinovyev A., Nonne N., Pritchard L. L., Gor-ban A. N., Harel-Bellan A. 2012. Kinetic signatures of microRNAmodes of action. RNA. 18 : 1635—1655.

Murphy E., Vanicek J., Robins H., Shenk T., Levine A. J. 2008.Suppression of immediate-early viral gene expression by herpesvi-rus-coded microRNAs: implications for latency. Proc. Nat. Acad.Sci. USA. 105 : 5453—5458.

Nakamura S., Horie M., Daidoji T., Honda T., Yasugi M.,Kuno A., Komori T., Okuzaki D., Narimatsu H., Nakaya T., Tomo-naga K. 2015. Influenza A virus-induced expression of a GalNActransferase, GALNT3, via microRNAs is required for enhanced vi-ral replication. J. Virol. 90 : 1788—1801.

Ojha C. R., Rodriguez M., Dever S. M., Mukhopadhyay R.,El-Hage N. 2016. Mammalian microRNA: an important modulatorof host-pathogen interactions in human viral infections. J. Biomed.Sci. 23 : 74.

Omoto S., Ito M., Tsutsumi Y., Ichikawa Y., Okuyama H.,Andi B. E., Saksena N. K., Fuji Y. 2004. HIV-1 nef suppression byvirally encoded microRNA. Retrovirology. 1 : 44.

Ota H., Sakurai M., Gupta R., Valente L., Wulff B. E., Ariyo-shi K., Iizasa H., Davuluri R. V., Nishikura K. 2013. ADAR1 formsa complex with Dicer to promote microRNA processing andRNA-induced gene silencing. Cell. 153 : 575—589.

Othumpangat S., Noti J. D., Beezhold D. H. 2014. Lung epi-thelial cells resist influenza A infection by inducing the expressionof cytochrome c oxidase VIc which is modulated by miRNA 4276.Virol. 468 : 256—264.

Othumpangat S., Noti J. D., Blachere F. M., Beezhold D. H.2013. Expression of non-structural-1A binding protein in lung epi-thelial cells is modulated by miRNA-548an on exposure to influen-za A virus. Virol. 447 : 84—94.

Pantaleo V., Szittya G., Burgyan J. 2007. Molecular bases ofviral RNA targeting by viral small interfering RNA-programmedRISC. J. Virol. 8 : 3797—3806.

Parameswaran P., Sklan E., Wilkins C., Burgon T., Sa-muel M. A., Lu R., Ansel K. M., Heissmeyer V., Einav S., Jack-son W., Doukas T., Paranjape S., Polacek .C, dos Santos F. B., Ja-lili R., Babrzadeh F., Gharizadeh B., Grimm D., Kay M., Koike S.,Sarnow P., Ronaghi M., Ding S. W., Harris E., Chow M., Dia-mond M. S., Kirkegaard K., Glenn J. S., Fire A. Z. 2010. Six RNAviruses and forty-one hosts: viral small RNAs and modulation ofsmall RNA repertoires in vertebrate and invertebrate systems.PLoS Pathog. 6 : e1000764.

Peng X., Gao Q. S., Zhou L., Chen Z. H., Lu S., Huang H. J.,Zhan C. Y., Xiang M. 2015. MicroRNAs in avian influenza virusH9N2-infected and non-infected chicken embryo fibroblasts. Ge-net. Mol. Res. 14 : 9081—9091.

Perez J. T., Pham A. M., Lorini M. H., Chua M. A., Steel J., te-nOever B. R. 2009. MicroRNA-mediated species-specific attenua-tion of influenza A virus. Nat. Biotechnol. 27 : 572—576.

Peters L., Meister G. 2007. Argonaute proteins: mediators ofRNA silencing. Mol. Cell. 26 : 611—623.

Pichulik T., Khatamzas E., Liu X., Brain O., Delmiro Gar-cia M., Leslie A., Danis B., Mayer A., Baban D., Ragoussis J., We-ber A. N., Simmons A. 2016. Pattern recognition receptor mediateddownregulation of microRNA-650 fine-tunes MxA expression indendritic cells infected with influenza A virus. Eur. J. Immunol.46 : 167—177.

Powdrill M. H., Desrochers G. F., Singaravelu R., Pe-zacki J. P. 2016. The role of microRNAs in metabolic inter-actions between viruses and their hosts. Curr. Opin. Virol. 19 :71—76.

Rajput R., Khanna M., Kumar P., Kumar B., Sharma S., Gup-ta N., Saxena L. 2012. Small interfering RNA targeting the non-structural gene 1 transcript inhibits influenza A virus replication inexperimental mice. Nucleic Acid Therapy. 22 : 414—422.

Reynolds A., Leake D., Boese Q., Scaringe S., Marshall W. S.,Khvorova A. 2004. Rational siRNA design for RNA interference.Nat. Biotechnol. 22 : 326—330.

Rivera A., Barr T., Rais M., Engelmann F., Messaoudi I. 2016.microRNAs regulate host immune response and pathogenesis du-ring influenza infection in Rhesus macaques. Viral Immunol. 29 :212—227.

Robb G. B., Rana T. M. 2007. RNA helicase A interacts withRISC in human cells and functions in RISC loading. Mol. Cell. 26 :523—537.

Robertson K. A., Hsieh W. Y., Forster T., Blanc M., Lu H.,Crick P. J., Yutuc E., Watterson S., Martin K., Griffiths S. J., En-right A. J., Yamamoto M., Pradeepa M. M., Lennox K. A., Behl-ke M. A., Talbot S., Haas J., Dölken L., Griffiths W. J., Wang Y.,Angulo A., Ghazal P. 2016. An interferon regulated microRNAprovides broad cell-intrinsic antiviral immunity through multihithost-directed targeting of the sterol pathway. PLoS Biol. 14 :e1002364.

Rouha H., Thurner C., Mandl C. W. 2010. Functional microR-NA generated from a cytoplasmic RNA virus. Nucleic Acids Res.38 : 8328—8337.

Ruby J. G., Jan C. H., Bartel D. P. 2007. Intronic microRNAprecursors that bypass Drosha processing. Nature. 448 : 83—86.

Ruigrok M. J., Frijlink H. W., Hinrichs W. L. 2016. Pulmonaryadministration of small interfering RNA: the route to go? J. Con-trol. Release. 235 : 14—23.

Russo A., Potenza N. 2011. Antiviral effects of human micro-RNAs and conservation of their target sites. FEBS Lett. 585 :2551—2555.

Saini H. K., Griffiths-Jones S., Enright A. J. 2007. Genomicanalysis of human microRNA transcripts. Proc. Nat. Acad. Sci.USA. 104 : 17 719—17 724.

Saladino R., Barontini M., Crucianelli M., Nencioni L., Sgar-banti R., Palamara A. T. 2010. Current advances in anti-influenzatherapy. Curr. Med. Chem. 17 : 2101—2140.

Samji T. 2009. Influenza A: understanding the viral life cycle.Yale J. Biol. Med. 82 : 153—159.

Scaria V., Hariharan M., Maiti S., Pillai B., Brahmachari S. K.2006. Host-virus interaction: a new role for microRNAs. Retroviro-logy. 11 : 68.

Schuck J., Gursinsky T., Pantaleo V., Burgyán J., Beh-rens S. E. 2013. AGO/RISC-mediated antiviral RNA silencing in aplant in vitro system. Nucleic Acids Res. 41 : 5090—5103.

Shapiro J. S., Varble A., Pham A. M., tenOever B. R. 2010.Noncanonical cytoplasmic processing of viral microRNAs. RNA.16 : 2068—2074.

Shapiro J. S., Langlois R. A., Pham A. M., tenOever B. R.2012. Evidence for a cytoplasmic microprocessor of pri-miRNAs.RNA. 18 : 1338—1346.

Shapiro J. S., Schmid S., Aguado L. C., Sabin L. R., Yasuna-ga A., Shim J. V., Sachs D., Cherry S., tenOever B. R. 2014. Droshaas an interferon-independent antiviral factor. Proc. Nat. Acad. Sci.USA. 111 : 7108—7113.

Sharma D., Priyadarshini P., Vrati S. 2015. Unraveling theweb of viroinformatics: computational tools and databases in virusresearch. J. Virol. 89 : 1489—1501.

Shen X., Sun W., Shi Y., Xing Z., Su X. 2015. Altered viral re-plication and cell responses by inserting microRNA recognitionelement into PB1 in pandemic influenza A virus (H1N1). Media-tors Inflamm. 2015 : 976 575.

Shi J., Sun J., Wang B., Wu M., Zhang J., Duan Z., Wang H.,Hu N., Hu Y. 2014. Novel microRNA-like viral small regulatoryRNAs arising during human hepatitis A virus infection. FASEB J.28 : 4381—4393.

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 531

Page 18: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Short K. R., Kroeze E. J., Fouchier R. A., Kuiken T. 2014. Pa-thogenesis of influenza-induced acute respiratory distress syndro-me. Lancet Infect. Dis. 14 : 57—69.

Shuey D. J., McCallus D. E., Giordano T. 2002. RNAi: ge-ne-silencing in therapeutic intervention. Drug Discov. Today. 7 :1040—1046.

Singaravelu R., O’Hara S., Jones D. M., Chen R., Tay-lor N. G., Srinivasan P., Quan C., Roy D. G., Steenbergen R. H.,Kumar A., Lyn R. K., Özcelik D., Rouleau Y., Nguyen M. A., Ray-ner K. J., Hobman T. C., Tyrrell D. L., Russell R. S., Pezacki J. P.2015. MicroRNAs regulate the immunometabolic response to viralinfection in the liver. Nat. Chem. Biol. 11 : 988—993.

Skalsky R. L., Cullen B. R. 2010. Viruses, microRNAs, andhost interactions. Annu. Rev. Microbiol. 64 : 123—141.

Skovgaard K., Cirera S., Vasby D., Podolska A., Breum S. Ø.,Dürrwald R., Schlegel M., Heegaard P. M. 2013. Expression of in-nate immune genes proteins and microRNAs in lung tissue of pigsinfected experimentally with influenza virus (H1N2). Innate Im-mun. 19 : 531—544.

Song L., Liu H., Gao S., Jiang W., Huang W. 2010. CellularmicroRNAs inhibit replication of the H1N1 influenza A virus in in-fected cells. J. Virol. 84 : 8849—8860.

Stenvang J., Petri A., Lindow M., Obad S., Kauppinen S. 2012.Inhibition of microRNA function by antimiR oligonucleotides. Si-lence. 3 : 1.

Stoppani E., Bassi I., Dotti S., Lizier M., Ferrari M., Lucchi-ni F. 2015. Expression of a single siRNA against a conserved re-gion of NP gene strongly inhibits in vitro replication of differentInfluenza A virus strains of avian and swine origin. Antiviral Res.120 : 16—22.

Sui H. Y., Zhao G. Y., Huang J. D., Jin D. Y., Yuen K. Y.,Zheng B. J. 2009. Small interfering RNA targeting m2 gene indu-ces effective and long term inhibition of influenza A virus replica-tion. PLoS ONE. 4 : e5671.

Suzuki H., Saitoh H., Suzuki T., Takaku H. 2009. Inhibition ofinfluenza virus by baculovirus-mediated shRNA. Nucleic AcidsSymp. Ser. (Oxford). 53 : 287—288.

Svancarova P., Svetlikova D., Betakova T. 2015. Synergicand antagonistic effect of small hairpin RNAs targeting the NSgene of the influenza A virus in cells and mice. Virus Res. 195 :100—111.

Swaminathan G., Martin-Garcia J., Navas-Martin S. 2013.RNA viruses and microRNAs: challenging discoveries for the 21stcentury. Physiol. Genomics. 45 : 1035—1048.

Takane K., Kanai A. 2011. Vertebrate virus-encoded mi-croRNAs and their sequence conservation. Jpn. J. Infect. Dis. 64 :357—366.

Tambyah P. A., Sepramaniam S., Mohamed Ali J., Chai S. C.,Swaminathan P., Armugam A., Jeyaseelan K. 2013. MicroRNAs incirculation are altered in response to influenza A virus infection inhumans. PLoS ONE. 8 : e76811.

Tan K. S., Choi H., Jiang X., Yin L., Seet J. E., Patzel V., En-gelward B. P., Chow V. T. 2014. Micro-RNAs in regeneratinglungs: an integrative systems biology analysis of murine influenzapneumonia. BMC Genomics. 15 : 587.

Tay Y., Rinn J., Pandolfi P. P. 2014. The multilayered com-plexity of ceRNA crosstalk and competition. Nature. 505 : 344—352.

Teijaro J. R. 2015. The role of cytokine responses during in-fluenza virus pathogenesis and potential therapeutic options. Curr.Top. Microbiol. Immunol. 386 : 3—22.

tenOever B. R. 2013. RNA viruses and the host microRNAmachinery. Nat. Rev. Microbiol. 11 : 169—180.

Terrier O., Textoris J., Carron C., Marcel V., Bourdon J. C.,Rosa-Calatrava M. 2013. Host microRNA molecular signatures as-sociated with human H1N1 and H3N2 influenza A viruses revealan unanticipated antiviral activity for miR-146a. J. Gen. Virol. 94 :985—995.

Thomas M., Lu J. J., Ge Q., Zhang C., Chen J., Klibanov A. M.2005. Full deacylation of polyethylenimine dramatically boosts itsgene delivery efficiency and specificity to mouse lung. Proc. Nat.Acad. Sci. USA. 102 : 5679—5684.

Tompkins S. M., Lo C. Y., Tumpey T. M., Epstein S. L.2004. Protection against lethal influenza virus challenge byRNA interference in vivo. Proc. Nat. Acad. Sci. USA. 101 : 8682—8686.

Tóth K. F., Pezic D., Stuwe E., Webster A. 2016. The piRNApathway guards the germline genome against transposable ele-ments. Adv. Exp. Med. Biol. 886 : 51—77.

Tsai W. C., Hsu P. W., Lai T. C., Chau G. Y., Lin C. W.,Chen C. M., Lin C. D., Liao Y. L., Wang J. L., Chau Y. P.,Hsu M. T., Hsiao M., Huang H. D., Tsou A. P. 2009. Micro-RNA-122, a tumor suppressor microRNA that regulates intrahe-patic metastasis of hepatocellular carcinoma. Hepatology. 49 :1571—1582.

Varble A., Chua M. A., Perez J. T., Manicassamy B., Gar-cía-Sastre A., tenOever B. R. 2010. Engineered RNA viral synthe-sis of microRNAs. Proc. Nat. Acad. Sci. USA. 107 : 11 519—11 524.

Varble A., tenOever B. R. 2011. Implications of RNA vi-rus-produced miRNAs. RNA Biol. 8 : 190—194.

Vela E. M., Kasoji M. D., Wendling M. Q., Price J. A., Knost-man K. A., Bresler H. S., Long J. P. 2014. MicroRNA expression inmice infected with seasonal H1N1 swine H1N1 or highly pathoge-nic H5N1. J. Med. Microbiol. 63 : 1131—1142.

Wang J., Lu Z., Wientjes M. G., Au J. L. 2010. Delivery ofsiRNA therapeutics: barriers and carriers. AAPS J. 12 : 492—503.

Wang S., Chen C., Yang Z., Chi X., Zhang J., Chen J. L. 2016.Targeted disruption of influenza A virus hemagglutinin in geneti-cally modified mice reduces viral replication and improves diseaseoutcome. Sci. Rep. 6 : 23746.

Wang X., Wang X., Varma R. K., Beauchamp L., Magdale-no S., Sendera T. J. 2009a. Selection of hyperfunctional siRNAswith improved potency and specificity. Nucleic Acids Res. 37 :e152.

Wang Y., Brahmakshatriya V., Lupiani B., Reddy S. M., Soi-bam B., Benham A. L., Gunaratne P., Liu H. C., Trakooljul N.,Ing N., Okimoto R., Zhou H. 2012. Integrated analysis of microRNAexpression and mRNA transcriptome in lungs of avian influenza vi-rus infected broilers. BMC Genomics. 22 : 278.

Wang Y., Brahmakshatriya V., Zhu H., Lupiani B., Red-dy S. M., Yoon B. J., Gunaratne P. H., Kim J. H., Chen R., Wang J.,Zhou H. 2009b. Identification of differentially expressed miRNAsin chicken lung and trachea with avian influenza virus infection bya deep sequencing approach. BMC Genomics. 10 : 512.

Watanabe T., Watanabe S., Kawaoka Y. 2010. Cellular net-works involved in the influenza virus life cycle. Cell Host Microbe.7 : 427—439.

Watanabe Y., Kishi A., Yachie N., Kanai A., Tomita M. 2007.Computational analysis of microRNA-mediated antiviral defensein humans. FEBS Lett. 581 : 4603—4610.

Weng K. F., Hsieh P. T., Huang H. I., Shih S. R. 2015. Mam-malian RNA virus-derived small RNA: biogenesis and functionalactivity. Microbes Infect. 17 : 557—563.

Wolf S., Wu W., Jones C., Perwitasari O., Mahalingam S.,Tripp R. A. 2016. MicroRNA regulation of human genes essentialfor influenza A (H7N9) replication. PLoS ONE. 11 : e0155104.

Wu L., Fan J., Belasco J. G. 2006. MicroRNAs direct rapiddeadenylation of mRNA. Proc. Nat. Acad. Sci. USA. 103 : 4034—4039.

Wu Y., Zhang G., Li Y., Jin Y., Dale R., Sun L. Q., Wang M.2008. Inhibition of highly pathogenic avian H5N1 influenza virusreplication by RNA oligonucleotides targeting NS1 gene. Biochem.Biophys. Res. Commun. 365 : 369—374.

Xu F., Liu G., Liu Q., Zhou Y. 2015. RNA interference of influ-enza A virus replication by microRNA-adapted lentiviral shRNA.J. Gen. Virol. 96 : 2971—2981.

Yi R., Qin Y., Macara I. G., Cullen B. R. 2003. Exportin-5 me-diates the nuclear export of pre-microRNAs and short hairpinRNAs. Genes Develop. 17 : 3011—3016.

Yin Q., McBride J., Fewell C., Lacey M., Wang X., Lin Z., Ca-meron J., Flemington E. K. 2008. MicroRNA-155 is an Ep-stein—Barr virus-induced gene that modulates Epstein—Barr vi-rus-regulated gene expression pathways. J. Virol. 82 : 5295—5306.

532 À. Í. Ãîðøêîâ è äð.

Page 19: © À. Í. Ãîðøêîâ À. Â. Ïåòðîâà À. Â. Âàñèítsitologiya.incras.ru/59_8/gorshkov.pdf · 2017. 8. 23. · Æèçíåííûé öèêë âèðóñà ãðèïïà

Yuan M., Zhan Q., Duan X., Song B., Zeng S., Chen X.,Yang Q., Xia J. 2013. A functional polymorphism at miR-491-5pbinding site in the 3R-UTR of MMP-9 gene confers increased riskfor atherosclerotic cerebral infarction in a Chinese population.Atherosclerosis. 226 : 447—452.

Zekri L., Huntzinge E., Heimstad S., Izaurralde E. 2009. Thesilencing domain of GW182 interacts with PABPC1 to promotetranslational repression and degradation of microRNA targets andis required for target release. Mol. Cell. Biol. 29 : 6220—6231.

Zeng Y., Yi R., Cullen B. R. 2005. Recognition and cleavage ofprimary microRNA precursors by the nuclear processing enzymeDrosha. EMBO J. 24 : 138—148.

Zhang W., Wang C., Yang S., Qin C., Huc J., Xia X. 2009. Inhi-bition of highly pathogenic avian influenza virus H5N1 replication

by the small interfering RNA targeting polymerase A gene. Bio-chem. Biophys. Res. Commun. 390 : 421—426.

Zhang Y., Fan M., Geng G., Liu B., Huang Z., Luo H., Zhou J.,Guo X., Cai W., Zhang H. 2014. A novel HIV-1-encoded microRNAenhances its viral replication by targeting the TATA box region.Retrovirology. 11 : 23.

Zhou H., Jin M., Yu Z., Xua X., Peng Y., Wu H., Liu J., Liu H.,Cao S., Chen H. 2007. Effective small interfering RNAs targetingmatrix and nucleocapsid protein gene inhibit influenza A virusreplication in cells and mice. Antiviral Research. 76 : 186—193.

Zhou K., He H., Wu Y., Duan M. 2008. RNA interference ofavian influenza virus H5N1 by inhibiting viral mRNA with siRNAexpression plasmids. J. Biotechnol. 135 : 140—144.

Ïîñòóïèëà 1 III 2017

RNA INTERFERENCE AND INFLUENZA A VIRUS PATHOGENESIS

A. N. Gorshkov,1, 2, * A. V. Petrova,1 A. V. Vasin1, 3

1 Research Institute of Influenza Ministry of Healthcare of the Russian Federation, St.-Petersburg, 197376,2 Institute of Cytology RAS, St. Petersburg, 194064, and

3 Peter the Great Polytechnic University, Department of Molecular Biology, St. Petersburg, 195251;

* e-mail: [email protected]

RNA interference was discovered in the 90s during the studies of Caenorhabditis elegans nematode. Ini-tially RNA interference has been described as a selective degradation of the mRNA transcript, induced by pre-sence of short interfering RNA (siRNA) — short (20—25 b. p.) exogenous double-stranded RNA which iscomplementary to mRNA exon sites. Over the last two decades, the concept of RNA interference has becomeextended. It was recognized as one of the most important and universal elements of gene activity post-transcrip-tional regulation, which is widespread among prokaryotes, eukaryotes and viruses. In this review we provide abrief description of the various anti-viral and pro-viral RNA interference mechanisms, summarize RNA interfe-rence role in the influenza A virus biology, and discuss the opportunities and challenges of RNA interference asa new therapeutic strategy against influenza.

K e y w o r d s: RNA interference, influenza A virus, microRNA, siRNA, interferon response.

ÐÍÊ-èíòåðôåðåíöèÿ è ïàòîãåíåç âèðóñà ãðèïïà À 533