外骨骼結構磁流變液阻尼調 控下肢 步行復健系統開發與功能 測試 應用

1
外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外 外外外外外 外外外 外外外 外外外外 外外外外外 外外外外外外外外外 外外 外外外外外 ( 外外外外外 ) 外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外 外外外外外 ,,。 外外 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外 外外外外外外外外外 外 ,,,。 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外 外 外外外外外外 外外外 ,,、體、 外外外外外外 外外外外外外外外外外外外 外外外 外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外 、,一, 外外外外外外 外 外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外 外外外外外外外外外外外 t 外外外外外外外 t 外外外外外 外外外外外外外外外外外外外外外外外外 外外外外外外外 外外外外外外外外外外外外外外外外 (p=0.246) 外外外外外外外外外外外外外外外外外外外外外外外 (p=0.002) 外外外外外外外外外外外外外外外外外外外外 (0.1190.093) 外外外外外外外外外外外外外外 外外外外外外外 (1.7310.833) 外外外外外外外外外外外外外 外外外外外外外外外外外外外外 外外外外外外外外外 ,,。 外外外外外外外外外外外 外外外外外 外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外外外 ,一一 (p=0.009) 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外 ,; 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 (p=0.033) 外外外外外外外外外外外外外外 外外外外外外外 外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外外外外外 ,。 外外外外外外外 外外外外外外 外外外外外外外外外 一,、 F/S ratio 外外外外外外外外 外外外外外外外外外外外外外外外 ,, 外外外外外外外 外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 ,, 外外外外外外外外外外外外外外外外外 外外外外外外外外外外外 外外外外 外外外外外外外外外外外外外外外外外 、;,一 F/S ratio 外外外外外外外外外 外外外外外外外外 外外外外外外外外外外外外 外外外外外外外外外外外 外外外外外外外外外外外外 ,,,、。 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外 外外外外外 ,體 外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外 。, 外外外 外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外 ;,、, 外外外外外外外外外Development and Assessment of an Exoskeleton Magnetorheological Damper Controlled Lower Limb Ambulatory Rehabilitation System 外外外外外 SolidWorks 外外外外外 外外外外外外外外外外外外外外外外外外外 外外外外 外外外外外外外外外外外外 體,、 外外外 ( 外外外外外 外 外外外外外外外外外外外外外外外 一、一 ) 外外外外外外外外外外外外外外外外外外外外外外外外外外 外外 。; 外外外外外外 外外外 外外外外外外外外外外 外外外 外外外外外外外外外 外外外外外外外外 、、,,, (0-5V) 外外外外外外外外外 (0-2A) 外 外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外 外外外外外外 ,,,, 外外外外外外 外外外 外外外外外外外外 外外 外外外外外外外外外外外外外 外外外外外 。,一體,體 (C1815) 外外外外 (1kΩ) 外外 外外外外 外外外外外外外外外外外 (NI,DAQ 6009) 外外外外 High/Low 外外外外 外外外外外外外外外外 外外外外外外外外 外外外外外外 外外外外外外外外外外外外外外外外外外外外 外外外外外外 體、。, SolidWorks 外外外外外外外外外外外外外外外 63 外 外外外外外外外外外外外外外 69.61mm 外外外外外外外外外外外外外外外外外外外外 70mm 外外外 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外 。,, 外外外外外外外 外外外外 ICC 外外外外外 1.0 外 外外外外外外外外外外外 外外 外外外外外外外外外外外外外 外外外外外 外外外外外外外外 外外外外外外外外外外外外 外外外 ,一體、,體 外外外外外外外外外 外外外外 外外外外外外外外外外外外外外外外外 外外外外外外 外外外外外外外外外外外外外外外外外外 、、體體; 外外 外外外外外外 外外外外外外外外外外外外外外外外外 外外外外外 外外外外外外外外外 外外外外外外外外外外外外外外外外 體,體、、 外外外外外外外外 外外外外外外 外外外外外外外外外外 外外外外外外外外 外外外外外外外外外外外外外 外外外 外外外外外外 體體;體,體、 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外外外外外外外 外外外外外外外外外外外外外外外外外 外外外外外外外外外外 外 、、體體 外外外外外 外外外外外外LabVIEW 外外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外外 外外外外外外外外外外外 外外外外外外外外外外 外 外外外外外外外外外外外外外外 外外外外外外外外外外外外外外外外外 、、體; 外外外外外外外外外外 外外外外外外外外外外外外外外外外外外外外外 外外外 外外外外外外外外外外外外外外外外外外外 、、;, 外外外外 外外外 外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外外 外外外 外外外外外外外外外外外 體,;,體 外外 外外外 Zebris 外外外外外外外外外外外外外外 外外外外外外外外外外 外外外外外外外外外 、, ICC 外外外外外 1.0 外外外外外外外外外外外外外 外外外外外外外 外外外外外外外外外外外外 外外外 外外外外外 外外外外外外外外外外外

Upload: kreeli

Post on 22-Mar-2016

72 views

Category:

Documents


3 download

DESCRIPTION

Development and Assessment of an Exoskeleton Magnetorheological Damper Controlled Lower Limb Ambulatory Rehabilitation System. 視覺回饋下肢步行復健訓練 系統軟體開發與 測試. 研究背景、動機與目的. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 外骨骼結構磁流變液阻尼調 控下肢 步行復健系統開發與功能 測試 應用

外骨骼結構磁流變液阻尼調控下肢步行復健系統開發與功能測試應用

指導教授:李明義教授 研究生:翁祥瑜

研究背景、動機與目的

研究方法與進行步驟

結論

腦血管疾病 ( 俗稱腦中風 ) 近年來已列居台灣地區十大死因第三名,而腦中風病患常造成單側上肢及下肢肌肉癱瘓,俗稱偏癱。然而,腦中風病患在接受治療後仍會有大腿肌力不足與步態不對稱之現象,影響其日常生活功能性活動,也會容易發生跌倒。爰此,本研究之目的針對腦中風病患大腿肌力不足及對步態不對稱復健訓練之需求,整合市售跑步機裝置、體重支撐裝置、磁流變液線性阻尼器、外骨骼機構及其支撐裝置,開發一套「外骨骼結構磁流變液阻尼調控下肢步行復健系統」,並設計阻力式下肢步行復健訓練軟體,最後進行應用驗證。

本研究系統應用驗證工作包括單側膝關節負載承重步行實驗、視覺回饋對步態對稱性適應訓練成效實驗與步態訓練前後大腿肌肉力量評估實驗;實驗數據則採用獨立樣本 t 檢定與成對樣本 t 檢定分析。單側膝關節負載承重步行實驗結果發現,實驗組與控制組左右腳跨步時間差異指標無顯著差異 (p=0.246) ,但健患側膝關節彎曲最大角度差異指標則有顯著差異 (p=0.002) ,且控制組健患側膝關節彎曲最大角度差異指標 (0.1190.093) 小於實驗組健患側膝關節彎曲最大角度差異指標 (1.7310.833) ,證明當受測者右腳有負載時,確實可讓受測者步態產生異常。視覺回饋對步態對稱性適應訓練實驗結果顯示,控制組第一天前後測與實驗組第一天之健患側膝關節彎曲最大角度差異指標有顯著差異 (p=0.009) ,證明本研究之下肢步行復健設備對於受測者其膝關節彎曲最大角度對稱程度會產生即時適應效果;實驗組第一天與實驗組第四天之健患側膝關節彎曲最大角度差異指標也有顯著差異 (p=0.033) ,證明受測者經過本研究步態訓練四天訓練週期後,其健患側膝關節彎曲最大角度差異指標仍有改善效果。步態訓練前後大腿肌肉力量評估實驗結果發現受測者經過一天步態訓練後,其股外側肌、股直肌與股內側肌之 F/S ratio ,前測均大於後測,顯示受測者穿戴本研究所開發之下肢步行復健設備,接受訓練後肌肉誘發強度減弱,其可能原因係受測者穿戴外加膝關節阻力控制進行步行復健訓練會對股外側肌、股直肌與股內側肌造成肌肉疲勞所致;經過五天的訓練週期後,訓練第一天與第五天測試並比較上述三條肌群之 F/S ratio 後發現均有顯著差異,且有上升之趨勢,證明受測者在步態訓練後,可改善其大腿股外側肌、股直肌與股內側肌之肌力。

本研究已完成「外骨骼結構磁流變液阻尼調控下肢步行復健系統」之開發,也進行了視覺回饋阻力式下肢步行復健訓練軟體模組程式設計與視覺回饋對步態對稱性適應訓練實驗。實驗證明本系統可降低受測者其健患側膝關節彎曲最大角度差異指標,改善步態不對稱問題;另外,步態訓練前後大腿肌力評估實驗數據發現股外側肌、股直肌與股內側之肌力也有明顯改善,證明此系統將可用於改善病患大腿肌力不足之問題。

Development and Assessment of an Exoskeleton Magnetorheological DamperControlled Lower Limb Ambulatory Rehabilitation System

本研究利用 SolidWorks 工程套裝軟體設計外骨骼機構及其支撐裝置之機構元件,包括左、右腳外骨骼機構之三連桿機構元件 ( 一大腿連桿、一小腿連桿以及支撐裝置之懸臂連桿 ) 。本研究也自行設計了磁流變液線性阻尼器以及其控制單元;阻尼器則包含上蓋、下蓋、中軸以及外缸等元件,其中,中軸處纏繞著線圈,藉由控制輸入電壓 (0-5V) ,透過線圈轉換成電流 (0-2A) 後,改變阻尼器線圈內磁場,進而調控磁流變液鐵粒子極化之吸引力,使中軸與外缸間摩擦力改變,以產生不同之關節活動阻力。除此,本研究亦設計了一組體重支撐裝置之承重控制單元,係由電晶體 (C1815) 、固定電阻 (1kΩ) 與繼電器組成,藉由電腦控制資料擷取卡 (NI,DAQ 6009) 上輸出之 High/Low 控制訊號,趨動繼電器開關來控制體重支撐裝置上升、下降或停止。在外骨骼機構與磁流變液線性阻尼器組裝後,本研究也利用 SolidWorks 動態分析軟體模擬膝關節彎曲角度為 63 時,磁流變液線性阻尼器其位移為 69.61mm ,符合設計規範之磁流變液線性阻尼器最大位移70mm 。此外,為了驗證兩腳磁流變液阻尼器輸入電壓與輸出阻力間之線性關係,本研究也利用拉伸試驗機進行磁流變液線性阻尼器阻力測試,信度分析 ICC值均接近於 1.0 。

本研究內容共分為三部分,第一部分為下肢步行復健系統硬體機構設計、分析與雛形製作,細節工作項目包含系統硬體機構設計、機構運動模擬分析、系統硬體雛形製作組裝與下肢步行復健系統硬體整合等四項;第二部分為視覺回饋下肢步行復健訓練系統軟體開發與測試,細節工作項目包含系統控制與感測軟體模組開發、人機介面模組開發、視覺回饋阻力式下肢步行復健訓練軟體開發以及系統軟體整合等四項;第三部分為系統軟硬體整合與應用驗證,細節工作項目包含系統軟硬體整合、系統應用驗證實驗設計與執行以及實驗結果與討論。

研究工作包括系統控制與感測模組開發、人機介面模組開發、視覺回饋阻力式下肢步行復健訓練軟體模組開發以及系統軟體整合測試等。本研究係利用LabVIEW 程式開發語言結合資料擷取卡進行程式設計,至於系統控制與感測模組包含磁流變液線性阻尼器阻力控制程式組、關節角度感測程式組、體重支撐裝置承重控制程式組等;人機介面模組則包含個人資料輸入程式組、系統參數設定程式組、訓練過程顯示程式組與手動緊急操控程式組等;此外,本研究也開發了視覺回饋阻力式下肢步行復健訓練軟體模組,其工作包括關節角度及健患側膝關節彎曲最大角度差異指標即時顯示介面;最後,本研究也進行了系統軟體整合,並利用 Zebris超音波三維空間定位系統校正髖、膝關節角度感測單元,結果發現其信度分析 ICC值均接近於 1.0 ,

下肢步行復健系統硬體機構設計、分析與雛形製作

視覺回饋下肢步行復健訓練系統軟體開發與測試

系統應用驗證結果與討論