thanosmetaxas.files.wordpress.com · 2015. 5. 5. · author: metaxas, athanasios a created date:...

13
THANOS METAXAS ARE 320K & 320L STUDENT SHOW STRUCTURAL SPECILIZATION BOOKLET AN INDEPENDENT STUDY OF THE SOFTWARES USED BY STRUCTURAL ENGINEERS

Upload: others

Post on 04-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • THANOS METAXAS

    ARE 320K & 320L STUDENT SHOW STRUCTURAL SPECILIZATION BOOKLET

    AN INDEPENDENT STUDY OF THE SOFTWARES USED BY STRUCTURAL

    ENGINEERS

  • TABLE OF CONTENTS GENERAL INFORMATION………………………………………………1 RESOURCES………………………………………………………………..…2 FLEXURAL DESIGN OF BUILDING……………………………………3 CONCRETE AND WIND DESIGN………………………………........6 SAP2000 ANALYSIS: PROCEDURE…………………………………..7 SAP2000: SHEAR AND MOMENT DIAGRAMS…………………10 SAP2000: DESIGN RESULTS……………………………………………11

  • GENERAL INFORMATION GEOGRAPHY

    LOCATION: AUSTIN, TEXAS

    LOADING

    DEAD LOAD: 60 PSF

    ALL LIVE LOADS FROM IBC 2012

    CONSTRAINTS

    ALL BEAMS MODELED AS SIMPLY SUPPORTED

    PINNED CONNECTIONS

    NO MOMENT CONNECTIONS

  • RESOURCES

    SAP 2000 STRUCTURAL ANALYSIS SOFTWARE

    MICROSOFT EXCEL 2013

    AISC STEEL CONSTRUCTION MANUAL 13TH ED.

    AISC STEEL MANUAL LOAD DEFLECTION TABLES

    IBC 2012

    o TABLES OF PRESCRIBED LIVE LOADS

    ACI 318 CONCRETE DEFLECTION LIMITS

    ASCE 7-10: WIND LOADS SECTION

  • FLEXURAL DESIGN FOR GRAVITY LOADS IN STEEL: LOADING & DESIGN PROCESS

    LIVE FLOOR LOADS: IBC 2012 TABLES

    STORAGE (LIGHT): 125 PSF

    MANUFACTURING (HEAVY): 250 PSF

    CORRIDOR: 80 PSF

    OFFICE: 50 PSF

    DEAD FLOOR LOAD

    PRESCRIBED (ASSUMED): 60 PSF

    DESIGN PROCEDURE WITH EXCEL ACCORDING TO AISC STEEL MANUAL

    1. Determine the loads based on IBC 2012 prescribed live load tables for all programs.

    2. Factor the loads for the worst conditions using LRFD format.

    3. Determine the tributary widths and lengths for all flexural members.

    4. Compute the respective area and corresponding live loads for each member.

    5. Compute the maximum moment and shear due to the loading conditions using Table 3-23 (AISC).

    6. Choose a preliminary section using Table 3-2 (AISC) according to required moment capacity, and record the moment of inertia and shear capacity.

    7. Quickly check that the shear capacity of the section is adequate.

    8. Compute the maximum deflection using Table 3-23 (AISC). 9. Compare calculated deflection to the deflection limit for

    each member. 10. If deflection limits are not met, use the GOAL SEEK

    function in EXCEL to solve for a moment of inertia that will meet the limits.

    11. With this new moment of inertia, use Table 3-2 (AISC) to find a close match.

    12. Make all of the necessary checks for the section properties and capacities.

  • FLEXURAL DESIGN FOR GRAVITY LOADS IN STEEL: BUILDING FLOOR PLAN

    B1

    B2

    B3

    B4

    B5

    B6

    B15

    B1

    2

    B8

    B7

    B9

    B1

    0

    B1

    1

    B1

    3

    B1

    4

    B16

    B17

    B18

    B19

    G1

    G

    2

    G3

    G4

    G

    5

    G6

    G1

    0

    G1

    1

    G1

    2

    G1

    3

    G1

    4

    G7

    G7

    G8

    G8

    G1

    5

  • FLEXURAL DESIGN FOR GRAVITY LOADS IN STEEL: SELECTED BEAMS AND GIRDERS

    Light Storage

    Primary G4

    Trib. Length (ft)

    Trib. Width (ft)

    a (ft) b (ft) Point Load (k) Area Load

    (psf) Linear Load

    (klf)

    Mmax point load

    (k-ft)

    Mmax center (k-

    ft)

    Vmax (k)

    20 5 5 15 51 472 2.36 279.75 245.5 61.85

    Section Choice

    I (in^4) Defl. Point (in) Defl. Distrib. (in) Deflection (in) Defl. Limit

    (in) Defl. Check

    W21x44 843 0.402 0.348 0.749 1.000 0.251

    Office

    Secondary B16-B18

    Trib. Length (ft)

    Trib Width (ft)

    Area Load (psf)

    Linear Load (klf) Mmax (k-ft) Vmax (k)

    25 15 232 3.48 271.875 43.5

    Section Choice

    I (in^4) Deflection (in) Defl. Limit (in) Defl. Check

    W21x44 843 1.251 1.250 -0.0011

    Manufacturing (Heavy)

    Primary G8

    Trib. Length (ft)

    a (ft) Trib Width (ft) Point Load (k) Mmax Center Point (k-

    ft)

    Mmax Flanking

    Points (k-ft)

    Total Mmax (k-ft)

    Vmax (k)

    40 10 10 94.4 944 944 1888 141.6

    Section Choice

    I (in^4) Deflect. Mid

    (in) Deflect. Flank (in) Deflection (in)

    Defl. Limit (in)

    Defl. Check

    W40x149 9800 0.77 1.05 1.82 2.00 0.182

    Corridor

    Primary G7

    Trib. Length (ft)

    a (ft) Point Load (k) Mmax Center

    Point (k-ft) Mmax Flanking Points

    (k-ft) Total Mmax

    (k-ft) Vmax (k)

    40 10 67.2 672 672 1344 100.8

    Section Choice

    I (in^4) Deflect. Mid

    (in) Deflect. Flank (in) Deflection (in)

    Defl. Limit (in)

    Defl. Check

    W33x130 6710 0.80 1.09 1.89 2.00 0.110

  • FLEXURAL DESIGN IN CONCRETE & WIND CALCULATIONS WIND CALCULATIONS FOR THE BUILDINGS’ LONG SIDE

    Long Side Windward Leeward Loads

    Building Floor

    Heighth Above

    Ground

    Trib Area

    Kz qz Cp wind

    pressure (psf)

    Force (kip)

    Kh qh Cp wind

    pressure (psf)

    Force (kip)

    Total Shear (kip)

    Total Moment

    (k-ft)

    8 110 450 1.02 29.22 0.8 19.87 8.94 1.02 29.22 -0.5 -12.42 -5.59 14.53 1598.48

    7 100 1125 0.99 28.44 0.8 19.34 21.76 1.02 29.22 -0.5 -12.42 -13.97 35.73 3572.85

    6 85 1350 0.94 27.15 0.8 18.46 24.92 1.02 29.22 -0.5 -12.42 -16.77 41.69 3543.62

    5 70 1575 0.89 25.68 0.8 17.46 27.51 1.02 29.22 -0.5 -12.42 -19.56 47.07 3294.82

    4 50 1800 0.81 23.33 0.8 15.86 28.56 1.02 29.22 -0.5 -12.42 -22.36 50.91 2545.58

    3 30 1800 0.70 20.16 0.8 13.71 24.68 1.02 29.22 -0.5 -12.42 -22.36 47.03 1411.01

    2 10 1350 0.57 16.54 0.8 11.25 15.18 1.02 29.22 -0.5 -12.42 -16.77 31.95 319.50

    Ground 0 450 0.57 16.54 0.8 11.25 5.06 1.02 29.22 -0.5 -12.42 -5.59 10.65 0.00

    279.56 16285.87

    Risk Category 2

    V 115

    Kd 0.85

    Exposure B

    Kzt 1

    Gust 0.85

    Enclosure 0.18

    α 7

    zg 1200

    L 60

    B 90

    L/B 0.666667

    CONCRETE DESIGN FOR B17

    Material Properties

    f'c (ksi) 4 fy (ksi) 60 φ 0.9

    One End Continuous

    Length Delfection

    Limit Height (in) Width (in) Bar Type

    Bar diam. (in)

    # of bars

    25 16.21621622 18 10 5 0.625 2

    Classroom Int. Beam

    T Width (ft)

    Area Load (psf)

    Linear Load (klf) M max (k-ft) M max (k-in) V max (k)

    10 50 0.5 39.0625 468.75 6.25

    d Asreq (in^2) As prov. (in^2) a (in) φMn (k-in)

    16.1875 0.595833929 0.613592315 1.082809968 518.4174779

  • SAP2000 ANALYSIS: PROCEDURE

    1. Open SAP2000 and choose a blank template with the desired units. 2. Draw a grid based on the chosen floor plan to help place columns and beams. 3. Define the materials to use and the kinds of sections to use. 4. Draw the columns and beams according to the floor plan. 5. Specify the restraints of all the connections and supports (we assumed pinned connections for everything). 6. Map out floor areas for the various loading conditions in the building. 7. Assign area loads to the already defined floor areas. 8. Define the load combinations needed for the area loads (we only assume dead and live gravity loads and the

    controlling condition is 1.2D + 1.6L) 9. Run the model analysis. 10. Design the frame using the “Design” tab to assign beam and column sizes based on constraints, materials, and

    loadings chosen.

  • SAP2000: BUILDING MODEL

  • SAP2000 RESULTS: SHEAR AND MOMENT DIAGRAMS – 3D

  • AP2000 RESULTS: SHEAR AND MOMENT DIAGRAMS – 3D

  • AP2000 RESULTS: FLOOR DESIGN WITH 3D DESIGN