第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 taiwan esd and reliability...

23
第 13 第第第第第第第第第第第第第第第第第第第第 2014 Taiwan ESD and Reliability Conference Resistive switching Resistive switching and device reliability and device reliability in ZnO-based in ZnO-based nonvolatile memory nonvolatile memory devices devices Ming Chuan University Department of Electronic Engineering Wen-Ping Chiang, Min-Yu Yang , Chin Wang, Ge-Jia Liao, Hsien-Mei Wang, and Fu-Chien Chiu *

Upload: logan-brooks

Post on 21-Jan-2016

236 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Resistive switching and device Resistive switching and device reliability in ZnO-based reliability in ZnO-based

nonvolatile memory devicesnonvolatile memory devices

Ming Chuan UniversityDepartment of Electronic Engineering

Wen-Ping Chiang, Min-Yu Yang, Chin Wang, Ge-Jia Liao, Hsien-Mei Wang, and Fu-Chien Chiu*

Page 2: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

2第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

OutlineOutline

Introduction Experiment Results and discussion Conclusions References

Page 3: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

3第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Overview of memoriesOverview of memories

Page 4: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

4第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

IntroductionIntroduction Because traditional Flash memory device are approaching

physical limitations, the developments of next generation nonvolatile memory devices are in urgent need.

Resistive random access memory (RRAM) has attracted a great deal of attention.

Why? Structural simplicity Low operation voltage Excellent durability Area miniaturization CMOS process compatibility High speed Multibit function

Page 5: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

5第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Classification of RRAMClassification of RRAM

RRAM materials:

Perovskite-type oxides

Binary metal oxides

Solid-state electrolytes

Organic compounds

Amorphous Si

Page 6: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

6第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

ExperimentsExperiments In this work, Pt/ZnO/Pt MIM diodes were fabricated.

Si

SiO2

Ti

Pt

ZnO(25nm)

Pt Pt

V Topelectrode Bottom

electrode

Pt

Device fabrication process:

Substrate wafers (Pt/Ti/SiO2/Si)

ZnO (25 nm) deposition

(RF magnetron sputtering)

Shadow mask

Pt top electrode deposition

(RF magnetron sputtering)

Device formation

(Pt / ZnO (25 nm) / Pt)

Page 7: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

7第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Results and discussionResults and discussion

Physical analysis of thin filmPhysical analysis of thin film

Electrical characteristicsElectrical characteristics

Resistive switching behaviorResistive switching behavior

Pulse width effect on VPulse width effect on VSETSET/V/VRESETRESET

Temperature effect on VTemperature effect on VSETSET/V/VRESETRESET

Conduction mechanism in ZnOConduction mechanism in ZnO

Endurance and memory windowEndurance and memory window

Page 8: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

8第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

XPS in Pt/ZnO/PtXPS in Pt/ZnO/Pt

X-ray photoelectron spectroscopy (XPS) spectrum of O 1s in ZnO film.The peaks at 530 and 532 eV are due to lattice oxygen (ZnO) and nonlattice oxygen (oxygen vacancy).

Page 9: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

9第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

XPS in Pt/ZnO/Pt XPS in Pt/ZnO/Pt

XPS spectrum of Zn 2p in ZnO film. Zn 2p1/2 and 2p3/2 for Zn2+ correspond to the peaks at 1046.2 and 1023.2 eV. Zn 2p1/2 and 2p3/2 for Zn0 correspond to the peaks at 1047 and 1024 eV.

Page 10: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

10第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Resistive switching characterizationResistive switching characterization

In Pt/ZnO/Pt structure, bipolar resistive switching behavior was found and electroforming was required.

Page 11: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

11第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Switching voltage vs. ac voltage pulse widthSwitching voltage vs. ac voltage pulse width

Both set voltage (VSET) and reset voltage (VRESET) are increased with decreasing ac voltage pulse width.

Page 12: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

12第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Switching voltage vs. temperatureSwitching voltage vs. temperature

Temperature dependence on set/reset voltage.

Page 13: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

13第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

I-V characteristics in HRSI-V characteristics in HRS

Temperature-dependent I-V characteristics in high-resistance state (HRS).

Page 14: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

14第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Hopping conduction in HRSHopping conduction in HRS

Trap spacing (a) extraction of hopping conduction in high-resistance state (HRS).

Page 15: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

15第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Arrhenius plotArrhenius plot

Arrhenius plot for trap level (Φ t) extraction.

Page 16: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

16第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

J-E curves in LRSJ-E curves in LRS

Temperature-dependent J-E curves in low-resistance state (LRS).

Page 17: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

17第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

DC Cycling EnduranceDC Cycling Endurance

Voltage-swept I-V characteristics of dc cycling endurance.

Page 18: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

18第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Weibull plots in HRS and LRSWeibull plots in HRS and LRS

Weibull plots of HRS/LRS resistances during dc switching cycles.

Page 19: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

19第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

AC/DC memory windowAC/DC memory window

Memory window as a function of the number of dc/ac switching.

Page 20: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

20第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

ConclusionConclusion1. The bipolar resistive switching behavior was found in Pt/ZnO/Pt

structure.

2. The amplitude of resistive switching voltage is dependent on the

applied ac voltage pulse width (Wac).

3. During the set process, the conductive filaments formed are

associated with the defect state of interstitial zinc in ZnO film. The

defect trap spacing is about 2 nm and the trap energy level is about

0.46 eV.

4. For the test of dc cycling endurance, a serious memory window

closure is considered. Whereas, the ac cycling endurance can be over

106 switching cycles.

Page 21: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

21第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

ReferencesReferences[1] W. W. Zhuang et al., “Novell colossal magnetoresistive thin film nonvolatile resistance random

access memory (RRAM),” in IEDM Tech. Dig., 2002, pp. 193-196.

[2] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM) based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237-2251, Dec. 2010.

[3] A. Sawa, “Resistive switching in transition metal,” Materials Today, vol. 11, no. 6, pp. 28-36, Jun. 2008.

[4] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges,” Adv. Mate., vol. 21, pp. 2632-2663, Jun. 2009.

[5] D. Lewis and H. Lee, “Architectural evaluation of 3D stacked RRAM caches,” in IEEE International Conference on 3D System Integraion (3DIC), 2009, pp. 1-4.

[6] M. Colle, M. Buchel, and D. M. de Leeuw, “Switching and filamentary conduction in non-volatile organic memories,” Organic Electronics, vol. 7, pp. 305-312, 2006.

[7] S. H. Jo, K. H. Kim, and W. Lu, “Programmable resistance switching in nanoscale two-terminal devices,”, Nano Lett., vol. 9, no. 1, pp. 496-500, 2009.

[8] I. G. Baek et al., “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” in IEDM Tech. Dig., 2004, pp. 587-590.

[9] H. Morkoc and U. Ozgur, Zinc Oxide: Fundaments, Materials and Device Technology, Berlin: Wiley-VCH; 2009.

Page 22: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

22第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

ReferencesReferences[10] M. Villafuerte, S.P. Heluani, G. Juárez, G. Simonelli, G. Braunstein, and S. Duhalde, “Electric-pulse-induced

reversible resistance in doped zinc oxide thin films,” Appl. Phys. Lett., vol. 90, no. 5, p. 052105, Jan. 2007.

[11] W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen, and M.J. Tsai, “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Appl. Phys. Lett., vol. 92, no. 2, p. 022110, Jan. 2008.

[12] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories,” Appl. Phys. Lett., vol. 92, no. 23, p. 232112, Jun. 2008.

[13] S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.K. Choi, “Resistive switching characteristics of sol–gel zinc oxide films for flexible memory applications,” IEEE Trans. Electron Devices, vol. 56, no. 4, pp. 696-699, Apr. 2009.

[14] S. Peng, F. Zhuge, X. Chen, X. Zhu, B. Hu, L. Pan, B. Chen, and R. W. Li, “Mechanism for

resistive switching in an oxide-based electrochemical metallization memory,” Appl. Phys. Lett., vol. 100, no. 7, p. 072101, Feb. 2012.

[15] F. C. Chiu, “A review on conduction mechanisms in dielectric films”, Advances in Materials Science and Engineering, vol. 2014, Article ID 578168, 18 pages, Feb. 2014.

[16] A. B. Djurisic and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small vol. 2, no. 8-9, pp. 944-961, 2006.

[17] D. Ielmini, F. Nardi, and C. Cagli, “Universal reset characteristics of unipolar and bipolar metal-oxide RRAM,” IEEE Trans. Electron Devices, vol. 58, no. 10, pp. 3246-3253, Oct. 2011.

[18] A. W. Strong, E. Y. Wu, R. P. Vollertsen J. Sune, G. L. Rosa, T. D. Sullivan, and S. E. Rauch, Reliability Wearout Mechanisms in Advanced CMOS Technologies. John Wiley & Sons, Hoboken, NJ, 2009.

[19] E. L. Lehmann, Theory of Point Estimation. John Wiley & Sons, New York, 1983.

Page 23: 第 13 屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference Resistive switching and device reliability in ZnO-based nonvolatile memory

第 13屆台灣靜電放電防護技術暨可靠度技術研討會 2014 Taiwan ESD and Reliability Conference

Thank you for your attention.Thank you for your attention.