¼ ò| / 0 q / 2008, 24, 11-20 具有頻帶外終端技術之...

10
具有頻帶外終端技術之 WiMAX 低雜訊放大器設計 吳建銘 1 楊能凱 2 曹登揚 2 李世明 2 摘 要 本論文採用砷化鎵(GaAs)擬態高電子移動率電晶體(PHEMT)研製應用於全球互 通微波存取(WiMAX)系統之 2.6 GHz 高線性度低雜訊放大器混合式微波積體電路 (HMIC)。因為 WiMAX 系統選擇頻率範圍為 2.5 2.69 GHz 的美國多點微波分佈式 系統(MMDS)頻帶,所以設計 WiMAX 低雜訊放大器的中心頻率等於 2.6 GHz WiMAX 低雜訊放大器利用頻帶外終端技術使輸入端的二次諧波對接地具有低阻抗的特性而 予以消除。抑制二階非線性效應之低雜訊放大器可以有效提高線性度。電路實作之重 要參數量測結果,雜訊指數(NF)小於 2 dB,增益大於 8 dB,輸入 1 dB 壓縮點(IP 1 dB ) 等於 0 dBm,輸入三階交越點(IIP 3 )等於 7.5 dBm,所使用之供應電壓為 1.8 V,消耗 功率為 8 mW關鍵字:低雜訊放大器、頻帶外終端、線性化、全球互通微波存取 1 國立高雄師範大學電子工程學系助理教授 2 國立臺南大學通訊工程研究所教授、研究生 ϲ 高雄師大學報 2008, 24, 11-20 投稿日期:民國 97 3 20 日;接受刊登日期 97 6 5

Upload: others

Post on 01-Sep-2019

15 views

Category:

Documents


0 download

TRANSCRIPT

  • WiMAX

    1 2 2 2

    (GaAs)(PHEMT)

    (WiMAX) 2.6 GHz

    (HMIC)WiMAX 2.5 2.69 GHz

    (MMDS)WiMAX2.6 GHzWiMAX

    (NF) 2 dB 8 dB 1 dB(IP1 dB)

    0 dBm(IIP3) 7.5 dBm 1.8 V

    8 mW

    1 2

    2008, 24, 11-20

    97 3 20 97 6 5

  • 12

    Design of Low-Noise Amplifier with Out-of-Band Termination for

    WiMAX Applications

    Jian-Ming Wu* Neng-Kai Yang** Deng-Yang Tsao** Simon C. Li**

    Abstract

    A 2.6 GHz highly linear low-noise amplifier (LNA) is designed and implemented in hybrid microwave integrated circuit (HMIC) using GaAs pseudomorphic high electron mobility transistor (PHEMT) for WiMAX applications. The center frequency of a WiMAX LNA is designed at 2.6 GHz due to the selection of U.S. multi-point microwave distribution system (MMDS) band of frequency range from 2.5 to 2.69 GHz. The proposed design is based on the out-of-band termination. The second-order harmonic of a WiMAX LNA presents low impedance for grounding due to the out-of-band termination. A LNA eliminating the second-order nonlinear term enhances the linearity significantly. The crucial measured results form a WiMAX LNA in a noise figure (NF) is less than 2 dB, a power gain is greater than 8 dB, an input 1 dB compression point (IP1 dB) is equal to 0 dBm, and an input third-order intercept point (IIP3) is equal to 7.5 dBm. A supply voltage of 1.8 V is used and a power consumption is 8 mW.

    Key Words: Low-noise amplifier (LNA), out-of-band termination, linearization, WiMAX.

    * Assistant Professor, Department of Electronic Engineering, National Kaohsiung Normal University. ** Professor, Graduate, Institute of Communication Engineering, National University of Tainan.

  • WiMAX 13

    (Wireless local area network, WLAN)(Cellular network)[1][2]IEEE 802.16 (Worldwide interoperability for microwave access, WiMAX)[3]WiMAX (Orthogonal frequency division multiplexing, OFDM)

    (1)(Source degeneration)[4](2)(Predistortion) [5](3)(Postdistortion)[6](4)(Feedforward)[7]-[9](5)(Diode linearizer)[10](6)(Out-of-band termination)[11]-[17]

    (Single chip)

    (Third-order intermodulation product, IM3)(Noise figure, NF)

    WiMAX(GaAs)(Enhancement mode pseudomorphic high electron mobility transistor, E-PHEMT) WiMAX Agilent Technologies E-PHEMT [18](Hybrid microwave integrated circuit, HMIC)

    (Feedback)(Re-mixing)(Source impedance) E-PHEMT vs

  • 14

    vgsCgsidgm E-PHEMT Z1 Z2 [17](Input third-order intercept point, IIP3)

    3 31 1

    1 ,6Re( ( )) ( ) ( ) ( ,2 )

    IIPZ H A

    =

    (1)

    = 2f (Two-tone) f = 2ff H()A1()

    22

    31 1

    2 2 1( , 2 ) .3 ( ) (2 )gg

    g g g g

    = + + + (2)

    (2) g1g2 g3 Volterra k() A1()Z2 Z1()H() A1() WiMAX (, 2)(, 2)

    Z1

    Cgs+vgs-

    Z2

    id=gmvgs

    G D

    S

    vs

    E-PHEMT

    E-PHEMT

    21

    1(2 ) ,Zg

    >> (3)

    E-PHEMT (Unity-gain frequency) fT

    1 2 ,gs

    gC

    >> (4)

    1 2(2 ) (2 ),

    2T

    Z Zff

  • WiMAX 15

    4

    11

    3 31 1

    ( ) 11 6 ( )

    ,2 R e ( ( ) ) ( ) ( )

    G S t

    D

    V V gI Z

    I IPZ H A

    +

    (6)

    VGS-Vt E-PHEMT (Thresold voltage)ID

    (6) 1( )Z

    WiMAX WiMAX 1( )Z

    WiMAX WiMAX(Multi-point microwave distribution system, MMDS) 2.5 2.69 GHz

    WiMAX WiMAX (Heterodyne architecture)

    WiMAX 2.5 2.69 GHz MMDS 2.6 GHz WiMAX WiMAX [3](Cascade) WiMAX 8 dB1.5 dB 5 dBm WiMAX

    Q1 LS LD WiMAX (Q2 Q3)(R1R2 R3)(L1) 2.52.69 GHz2.52.69 GHz 2.5 2.69 GHz 2.5 2.69 GHz

    RFBPF LNA

    VGADownConverter

    LO

    RF IF

    IFBPF

    WiMAX

  • 16

    WiMAX

    RF BPF LNA Down Converter VGA IF BPF Power Gain (dB) -0.35 8 10 46/25 -0.1 NF (dB) 0.35 1.5 10 7/30 0.1 IIP3 (dBm) 100 5 -5 23/17 100 Cascade Power Gain (dB) -0.35 7.65 17.65 63.65/42.65 63.55/42.55 Cascade NF (dB) 0.35 1.85 4.88 4.98/13.06 4.98/13.06 Cascade IIP3 (dBm) 100 5 -5.04 22.93/15.22 22.83/15.12

    Input MatchingNetwork

    LD

    RFinQ1

    Q2

    LS

    VDD

    Q3

    C1C2

    R1 R2

    R3

    RFout

    Vdc

    C3L1

    Ibias

    ID

    Output MatchingNetwork

    Bias Circuitfor

    Out-of-BandTermination

    WiMAX

    WiMAX Agilent Technologies GaAs E-PHEMT Agilent Technologies GaAs E-PHEMT -(I-V) 1.8 V 8 mWWiMAX 23 mm 18 mm WiMAX R&S ZVB8 Mini-Circuits NC346C R&S FSP R&S SMJ 100A R&S FSP 1 dB (Input 1 dB compression point, IP1 dB)

    0 0.5 1 1.5 2

    VDS (V)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    I DS

    (mA

    )

    Agilent Technologies GaAs E-PHEMT I-V

  • WiMAX 17

    WiMAX

    Vector Signal GeneratorR&S SMJ 100A

    Network AnalyzerR&S ZVB8

    Spectrum AnalyzerR&S FSP

    WiMAX LNA

    Noise SourceMini-Circuits NC346C

    Vector Signal GeneratorR&S SMJ 100A

    Network AnalyzerR&S ZVB8

    Spectrum AnalyzerR&S FSP

    WiMAX LNA

    Noise SourceMini-Circuits NC346C

    WiMAX

    WiMAX 2.5 2.69 GHz WiMAX 1 dB 2 dB 2.5 2.69 GHz 8 dB 2.6 GHz 1.5 dB 8.1 dB WiMAX

  • 18

    2.5 2.55 2.6 2.65 2.7

    Frequency (GHz)

    0

    1

    2

    3

    4

    5

    Noi

    se F

    igur

    e (d

    B)

    5

    6

    7

    8

    9

    10

    Power G

    ain (dB)

    Power GainNoise Figure

    WiMAX

    2.6 GHz 20 MHz WiMAX(Channel bandwidth)WiMAX 1 dB 0 dBm 7 dBm 7.5 dBm WiMAX WiMAX 7.5 dBm WiMAX [9], [19]-[21] WiMAX 1 dB

    -25 -20 -15 -10 -5 0 5 10

    Input Power (dBm)

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    Out

    put P

    ower

    (dB

    m)

    IIP3=7.5dBmIP1 dB=0dBm

    Fundamental

    IM3

    WiMAX

  • WiMAX 19

    WiMAX

    Reference Frequency (GHz) IIP3

    (dBm) P1 dB

    (dBm) NF

    (dB) Power Gain

    (dB) Pdiss

    (mW) This Design 2.6 7.5 0 1.5 8.1 8

    [9] 2.6 3 -13 2.95 15.2 17 [19] 2.4 4 -7 2.9 10.1 11.7 [20] 0.9 6.7 -7 3 12.2 20 [21] 2.45 -1.5 --- 2.88 14.7 10.5

    WiMAX 2.6 GHz 2.5 2.69 GHz WiMAX 1.8 V 8 mW 2 dB 8 dB 1 dB 0 dBm 7.5 dBm

    NSC 96-2221-E-017-014

    [1] IEEE Std 802.11a-1999, Part11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 5 GHz band, IEEE Standard, Dec. 1999.

    [2] Juha Korhonen (2003). Introduction to 3G Mobile Communication, MA: Artech House Inc. [3] IEEE Std. 802.16e/D6, Part 16: Air interface for fixed broadband wireless access system,

    Amendment 2: for physical and medium access control layers for combined fixed and mobile operation in licensed band, IEEE Standard, Feb. 2005.

    [4] B. Razavi (2001). Design of Analog CMOS Integrated Circuits, NY: McGraw- Hill Inc. [5] G. Vitzilaios, Y. Papananos, Theodoratos, and G. K. S. Vryssas (2006). Magnetic-feedback-

    based predistortion method for low-noise amplifier linearization, IEEE Trans. Circuits Syst. II, Exp. Briefs, 53, 1441- 1445.

    [6] N. Kim, V. Aparin, K. Barnett, and C. Persico (2006). A cellular-band CDMA 0.25 m CMOS LNA linearized using active post-distortion, IEEE J. Solid-State Circuits, 41, 130-134. July 2006.

    [7] F. Iturbide-Sanchez, H. Jardon-Aguilar, and J. A. Tirado-Mendez (2002). Comparison of different high-linear LNA structures for PCS applications using SiGe HBT and low bias voltage, Electron. Lett., 38, 536-538.

    [8] Y. S. Youn, J. H. Chang, K. J. Koh, Y. J. Lee, and H. K. Yu (2003). A 2GHz 16 dBm IIP3 low noise amplifier in 0.25 um CMOS technology, IEEE Int. Solid-State Circuits Conf., paper 25.7.

  • 20

    [9] H. Y. Liao, Y. T. Lu, J. D. S. Deng, and H. K. Chiou (2007). Feed-forward correction technique for a high linearity WiMAX differential low noise amplifier, Radio-Frequency Integration Technology, 218-221.

    [10] E. Taniguchi, T. Ikushima, K. Itoh, and N. Suematsu (2003). A dual bias-feed circuit design for SiGe HBT low-noise linear amplifier, IEEE Trans. Microw. Theory Tech., 51, 414-421.

    [11] K. Vennema (1996). Ultra low noise amplifiers for 900 and 2000 MHz with high IIP3, Philips Semiconductors App. Note.

    [12] V. Aparin and C. Persico (1999). "Effect of out-of-band terminations on intermodulation distortion in common-eminer circuits," in IEEE MTT-S Int. Microwave Symp. Dig., 977-980.

    [13] K. L. Fong (2000). High-frequency analysis of linearity improvement technique of common-emitter trans-conductance stage using a low-frequency trap network, IEEE J. Solid-State Circuits, 35, 1249-1252.

    [14] P. Shah, P. Gazzerro, V. Aparin, R. Sridhara, and C. Narathong (2000). A 2 GHz low distortion low-noise two-stage LNA employing low-impedance bias terminations and optimum inter-stage match for linearity, in Proc. Europ. Solid-State Circ. Conf., 213-216.

    [15] J. Vuolevi and T. Rahkonen (2000). The effects of source impedance on the linearity of BJT common-emitter amplifiers, IEEE Int. Symp. on Circ. and Syst., 197-200.

    [16] J. Lee, G. Lee, G. Niu, J. D. Cressler, J. H. Kim, J. C. Lee, B. Lee, and N. Y. Kim (2002). The design of SiGe HBT LNA for IMT-2000 mobile application, in IEEE MTT-S Int. Microwave Symp. Dig., 1261-1264.

    [17] V. Aparin and L. E. Larson (2003). Linearization of monolithic LNAs using low-frequency low-impedance input termination, Europ. Solid-State Circ. Conf., 137-140.

    [18] Agilent ATF-55143 low noise enhancement mode pseudomorphic HEMT in a surface mount plastic package, Data Sheet, Agilent Technologies, 2004.

    [19] L. H. Lu, H. H. Hsieh, and Y. S. Wang (2005). A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier, Microwave and Wireless Components Lett., 15, 685-687.

    [20] W. Zhuo, S. Embabi, J. Pineda de Gyvez, and E. Sanchez-Sinencio (2000) Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design, in Proc. Europ. Solid-State Circ. Conf., 116-119.

    [21] R. Point, M. Mendes, and W. Foley (2002). A differential 2.4GHz switched-gain CMOS LNA for 802.11b and Bluetooth, IEEE Conference on Radio and Wireless, 221-224.