zero voltage zero current

36
Zero-Voltage- and Zero-Current- Switching with Series Resonance in FB Converter Utilizing Leakage Inductance Presented by: Joemon Raju Joseph K Reg No.- 09HN026 M tech PE & D Guided By: Dr. S Suresh Kumar (Professor and Head) Dept. of EEE 6/13/22 1

Upload: joemon-raju

Post on 21-Jun-2015

4.746 views

Category:

Education


10 download

DESCRIPTION

DC-DC converters with Series Resonance Converter (SRC) topology

TRANSCRIPT

Page 1: Zero Voltage Zero Current

Zero-Voltage- and Zero-Current-Switching with Series Resonance in FB Converter Utilizing Leakage Inductance

Presented by:

Joemon Raju Joseph KReg No.- 09HN026

M tech PE & D

Guided By:

Dr. S Suresh Kumar(Professor and Head)

Dept. of EEE

Apr 13, 2023 1

Page 2: Zero Voltage Zero Current

Overview

• ZVS and ZCS• Literatures on ZV-ZCS• Base Paper Concept & Methodology• Simulation• Summary• Proposed Modification• References

Apr 13, 2023 2

Page 3: Zero Voltage Zero Current

Overview

• ZVS and ZCS• Literatures on ZV-ZCS• Base Paper Concept & Methodology• Simulation• Summary• Proposed Modification• References

Apr 13, 2023 3

Page 4: Zero Voltage Zero Current

Zero Voltage Switching &

Zero Current Switching

Apr 13, 2023 4

Page 5: Zero Voltage Zero Current

Merits

– Lossless switching transition

– Reduced EMI/RFI during switching due

to transition

– Short circuit toleration

– Reduction in switching stresses

Apr 13, 2023 5

Page 6: Zero Voltage Zero Current

Overview

• ZVS and ZCS

• Literatures on ZV-ZCS• Base Paper Concept & Methodology• Simulation• Summary• Proposed Modification• References

Apr 13, 2023 6

Page 7: Zero Voltage Zero Current

ZCS Circuit Methodology

Apr 13, 2023 7

Fig: 1 – Converter with hard switching Auxiliary Circuit

Fig:2- Fully resonant auxiliary circuit Reference [5]

Page 8: Zero Voltage Zero Current

ZVS Circuit Methodology

Apr 13, 2023 8

Reference [13]

Fig:3 FB Converter with ZVS

Page 9: Zero Voltage Zero Current

ZV-ZCS Circuit Methodology

• Using Additional Auxillary Circuits

Apr 13, 2023 9

Reference [11]Fig:4 FB Converter with Auxiliary Voltage Source

Page 10: Zero Voltage Zero Current

• Using Series Resonant Converters

Apr 13, 2023 10

Fig:5 HB LCL-T ResonantConverter Reference [16]

Page 11: Zero Voltage Zero Current

Preference for ZV-ZCS Topologies

• ZCS circuits – Auxiliary circuit Conduction losses, voltage stresses in boost diode

• ZVS circuits – high circulating losses, high valued inductor with increase in power

Apr 13, 2023 11

Page 12: Zero Voltage Zero Current

• Choice of IGBT– Has lower cost considering high power and

high voltage applications .– ZVS realizable by adding additional

lossless turn off snubber in parallel

Apr 13, 2023 12

Page 13: Zero Voltage Zero Current

Overview

• ZVS and ZCS• Literatures on ZV-ZCS

• Base Paper Concept & Methodology• Simulation• Summary• Proposed Modification• References

Apr 13, 2023 13

Page 14: Zero Voltage Zero Current

ZV-ZCS FB Converter with Secondary Resonance

Apr 13, 2023 14

Page 15: Zero Voltage Zero Current

• Concept– SRC based circuit– Leakage inductance of transformer participates

in resonance– Turn-on of leading legs possible under all

operating conditions and lossless snubber reduces their turn off losses

– Lagging legs can be turned on at ZV and turned off near ZC without additional aux. circuits

Apr 13, 2023 15

Page 16: Zero Voltage Zero Current

Control Signal

• Phase Shifted PWM • Normal PWM

Apr 13, 2023 16

Page 17: Zero Voltage Zero Current

Apr 13, 2023 17

Circuit Operation•Mode-1

im(t) = ip(t) = iT1(t) = −iT2(t) = im(t0) ...(1)

Page 18: Zero Voltage Zero Current

Apr 13, 2023 18

•Mode-2

Page 19: Zero Voltage Zero Current

Apr 13, 2023 19

is(t) = sin ωr(t − t1) x nVin − (Vo − Vc(t1))/Zo …(2)

ωr = 2πfr = 1/√(LlkCr) …(angular resonance frequency)

Zo = √(Lr / Cr) …(Characteristic Impedance)

im(t) = im(t1) + (Vin/Lm) x (t − t1) ….(3)

ip(t) = im(t) + nis(t) = iT1(t) = iB2(t) ....(4)

Page 20: Zero Voltage Zero Current

Apr 13, 2023 20

•Mode-3

is(t) = is (t2) cos ωr(t − t2) − [Vo − Vc(t2)] x sin ωr(t − t2)/Zo …(5)

ip(t) = im(t) + nis (t) = −iB1(t) = iB2(t) ...(6)

Page 21: Zero Voltage Zero Current

Apr 13, 2023 21

Operation Waveforms

tot1 t2

t3

t4t5 t6

Page 22: Zero Voltage Zero Current

Other Design Factors

Frequency Ratio: F = fr/fs

Quality Factor: Q =4ωrLlk/Ro

tch= (CT1+CB1) x Vin/ (Ip1+ Im2max)… Charging time of Capacitance

Apr 13, 2023 22

Page 23: Zero Voltage Zero Current

Overview

• ZVS and ZCS• Literatures on ZV-ZCS• Base Paper Concept & Methodology

• Simulation• Summary• Proposed Modification• References

Apr 13, 2023 23

Page 24: Zero Voltage Zero Current

Assumptions for Analysis

• Ideal Switches• Ripple free Input Voltage• Ideal transformer with magnetizing and

leakage inductances alone• Frequency ratio, F=1

Apr 13, 2023 24

Page 25: Zero Voltage Zero Current

PSIM Model

Apr 13, 2023 25

Control Signal

Page 26: Zero Voltage Zero Current

Model Parameters

Apr 13, 2023 26

Parameters Symbol Value

Input Voltage Vin 350

Transformer Turns ratio N1:N2 13:10

Magnetizing Inductance Lm 300uH

Leakage Inductance Llk 15.7uH

Quality Factor Q 0.62

Resonant Frequency fr 38.3kHz

Switching Frequency fr 38.3kHz

Resonant Capacitor Cr 1.1uF

Snubber Capacitor CT1, CB1 6.8nF

Page 27: Zero Voltage Zero Current

Phase Shifted PWM Generation

Apr 13, 2023 27

Page 28: Zero Voltage Zero Current

Apr 13, 2023 28

Carrier Wave ParametersSwitch T1tr B1tr T2tr B2trVp-Vp 2 2 2 2

Frequency 38300 38300 38300 38300

Duty Cycle 0.8 0.8 0.8 0.8DC offset 1 1 1 1

Tstart 0 0 0 0Ph. delay -143.25 -71.5 580 -68.8

Modulating DC

T1DC B1DC T2DC B2DC

2.025 1.975 2.025 1.975

Page 29: Zero Voltage Zero Current

Simulation Results

Apr 13, 2023 29

Phase Shifted PWM Signals

Page 30: Zero Voltage Zero Current

Simulation Results

Apr 13, 2023 30

Switching Currents

ZVS ON

ZCS OFF

ZVS ON

Page 31: Zero Voltage Zero Current

Overview

• ZVS and ZCS• Literatures on ZV-ZCS• Base Paper Concept & Methodology

• Summary• Proposed Modification• References

Apr 13, 2023 31

Page 32: Zero Voltage Zero Current

• Inference from Literatures: o ZV-ZCS has upper hand in effectiveness rather

than ZVS or ZCS aloneo IGBT is preferable for high power application

• Inference from Base Paper:o Transformer design plays a crucial role for ZV-

ZCS to avoid additional inductor

Apr 13, 2023 32

Page 33: Zero Voltage Zero Current

Overview

• ZVS and ZCS• Literatures on ZV-ZCS• Base Paper Concept & Methodology• Methodology• Summary

• Proposed Modification• References

Apr 13, 2023 33

Page 34: Zero Voltage Zero Current

Intended Modification

Realization of the concept with Bridge rectifier at

the transformer secondary.

Apr 13, 2023 34

Projected Circuit Configuration

Page 35: Zero Voltage Zero Current

References

1. Eung-Ho Kim and Bong-Hwan Kwon,” Zero-Voltage- and Zero-Current-Switching Full-Bridge Converter With Secondary Resonance”, IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 1017–1025, Mar. 2010.

2. X. Wu, J. Zhang, X. Ye, and Z. Qian, “Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 773–781, Feb. 2008.

3. J. J. Lee, J. M. Kwon, E. H. Kim, and B. H. Kwon, “Dual series resonant active-clamp converter,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 699–710, Feb. 2008.

4. C. M. Wang, “A novel ZCS-PWM flyback converter with a simple ZCSPWM commutation cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 749–757, Feb.

2008.5. X. Wu, X. Xie, C. Zhao, Z. Qian, and R. Zhao, “Low voltage and current stress

ZVZCS full bridge DC–DC converter using center tapped rectifier reset,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1470–1477, Mar. 2008.

6. M. Borage, S. Tiwari, and S. Kotaiah, “LCL-T resonant converter with clamp diodes: A novel constant-current power supply with inherent constant-voltage limit,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 741–746, Apr. 2007.

Apr 13, 2023 35

Page 36: Zero Voltage Zero Current

7. J. T. Matysik, “The current and voltage phase shift regulation in resonant converters with integration control,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1240–1242, Apr. 2007.

8. E. Adib and H. Farzanehfard, “Family of zero-current transition PWM converters,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3055–3063, Aug. 2008.

9. E. H. Kim and B. H. Kwon, “High step-up push-pull converter with high efficiency,” IET Power Electron., vol. 2, no. 1, pp. 79–89, Jan. 2009.

10. Y. Tsuruta, Y. Ito, and A. Kawamura, “Snubber-assisted zero-voltage and zero-current transition bilateral buck and boost chopper for EV drive application and test evaluation at 25 kW,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 4–11, Jan. 2009.

11. J. L. Russi, M. L. S. Martins, and H. L. Hey, “Coupled-filter-inductor soft-switching techniques: Principles and topologies,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3361–3373, Sep. 2009.

12. T. Citko and S. Jalbrzykowski, “Current-fed resonant full-bridge boost DC/AC/DC converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1198–1205, Mar. 2008.

13. Yungtaek Jang, Milan M. Jovanovic and Yu-Ming Chang, ”A New ZVS-PWM Full-Bridge Converter,” IEEE Trans. Power Electronics, Vol. 18, No. 5,pp.1122-1129, Sep 2003

Apr 13, 2023 36