xeniya g. koss 1,2 olga s. vaulina 1 1 jiht ras, moscow, russia 2 mipt, moscow, russia

23
Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials Xeniya G. Koss Xeniya G. Koss 1,2 1,2 Olga S. Vaulina Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia MIPT, Moscow, Russia

Upload: lecea

Post on 19-Mar-2016

67 views

Category:

Documents


2 download

DESCRIPTION

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials. Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia. Introduction Basic equations Approximations Our approach Theories of 2D melting - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systemswith isotropic pair interaction

potentials Xeniya G. KossXeniya G. Koss1,21,2

Olga S. VaulinaOlga S. Vaulina11

11JIHT RAS, Moscow, RussiaJIHT RAS, Moscow, Russia22MIPT, Moscow, RussiaMIPT, Moscow, Russia

Page 2: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Object of simulation

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

qE(z) = qz

mg

A monolayer of grains with periodical boundary conditions in the directions x and y.

Page 3: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Dust layers in the linear electrical field*

pN

iii rrq

1

/)('2

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

pNconst

*O.S. Vaulina, X.G. Adamovich and S.V. Vladimirov, Physica Scripta 79, 035501 (2009)

Page 4: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Basic equations

• Introduction• Basic

equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

СV =(U/T)V V = n-1 (P/T)V

Т = T (n/P)T

0

1)()()1(2

drrrgrnmTmU m

0

2

)()()1( drrrgrr

mnmnTP m

m – dimensionality of the system

Page 5: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Some useful parameters

• Introduction• Basic

equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

TTmUUU /)2

( 0

2/mCC VV

Mfr

1Trp 2/5.1 2*

pTrq2

O.S. Vaulina and S.V. Vladimirov, Plasma Phys. 9, 835 (2002):

For the Yukawa systems, )/exp(/ pc rr

)exp()2/1( 2*

Page 6: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Approximations

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

“Zero” approximation

In case of T 0 Up U0, Pp P0,

Т / T Т0 / T,

where U0, P0 and Т0 / T

can be easily computed

for any known type

of the crystal lattice

Page 7: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Approximations

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

[TLTT] H. Totsuji, M.S. Liman, C. Totsuji, and K. Tsuruta, Phys. Rev. E. 70, 016405 (2004)

[HKDK] P. Hartmann, G.J. Kalman, Z. Donko and K. Kutasi, Physical Review E 72, 026409 (2005)

10005.0 2

30 2

/)/()( 03/2

32122 TUCCCUU HKDK

12005.0 2

25.0 2

)}05.0(55.2exp{)( 18.018.022212 BBUU TLTT

2 /2

Bi = functions (Γ2, κ2)

Ci = polynomials (Γ2, κ2)

Page 8: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Our approach

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

“Jumps” theory: analogies between the solid and the liquid state of matterWa - the energy of “jump” activation

21 NNN 2/01 mTUU

faUU 112

12 f

2,1

2/)(32 ccaaf TTaTaQW

cT3,2,1a

- the energy of state per one degree of freedom

- crystallization temperature- coefficients dependent on the type of crystalline lattice and on the total number of degrees of freedom

Page 9: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Our approach

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

The energy density of analyzed systems

The normalized value for the thermal componentof the potential energy

The pressure

where

)/exp(121

0 Ta

TmUUUf

fa

)/exp(1/

/)2

( 10 T

TaTTmUUU

f

f

mUnnTPPa /0

** )/( pp rr

Page 10: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Our approach

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

The heat capacity

where

The thermal coefficient of pressure

The normalized isothermal compressibility

)/exp(1)/exp()5.0/(5.0

21

TTUTamC

f

ffaV

)2/(1 1 mCm aV

aV

U

mm

UT

UaT

ff

Ta

T

120

0120

101

)1()/exp(1

)5.0/(

1

m/0 1)//()/( 2*2*2*1 pp drddrd,

Page 11: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Theories of 2D melting

• Introduction• Basic equations• Approximations• Our approach• Theories of

2D melting• Numerical

simulation• Conclusion

We considered two main approaches in the 2D melting theory that are based on unbinding of topological defects

KTHNY theory:two phase transitions from the solid to fluid state via “hexatic” phase.The hexatic phase is characterized by•the long-range translational order combined with the short-range orientational order•the spatial reducing of peaks (gs) for pair correlation function g(r) is described by an exponential law [gs(r) exp(-r), const], •the bond orientational function g6(r) approaches a power law [g6(r) r -, > 0.25].

The theory of grain-boundary-induced melting:a single first-order transition from the solid to the fluid state without an intermediate phase for a certain range of values of the point-defect core energies.

Page 12: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: parameters

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

•The Langevin molecular dynamics method

•Various types of pair isotropic potentials (r):

qE(z) = qz

mg

Np = 256..1024

lcut = 8rp .. 25rp

β = 10-2V/cm2..100V/cm2

4..04.01

Mfr

pN

iii rrq

1

/)('2

250..12/5.1 2* Trp

)/exp()/()/exp( 2211 pn

ppc rrrrbrrb

Page 13: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: results

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

0

1

2

3

0 1 2 3

g(r/r p )

r/r p

(a) )/4exp(/ pc rr

3

rrrr ppc /05.0)/3exp(/

12.0

3)/(05.0/ rrpc

5.0

Page 14: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: results

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

Our approximation

Yukawa system, )/exp(/ pc rr

0,6

0,8

1,0

1,2

0 50 100 150 200

U (b)

2

3

4

5.5

Page 15: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

0,2

0,4

0,6

0,8

1,0

1,2

0 50 100 150 200

U

P

Numerical simulation: results

)/5.5exp(/ pc rr

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

)/2exp(/ pc rr

rrrr ppc /05.0)/3exp(/

3)/(05.0/ rrpc

2)/(01.0)/4exp(/ rrrr ppc

Our approximations

Page 16: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: results

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

1,5

2,0

2,5

0 50 100 150 *

C V

(b)

Our approximation

Yukawa system, )/exp(/ pc rr

2

5.5

2

5.5

2.0

2.0

2

2

Page 17: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: results

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

1

2

3

4

0 40 80 120 160 *

V Our approximation

Yukawa system, 86.1

2

3

4

)/exp(/ pc rr

Page 18: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: results

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

0,54

0,56

0,58

0 40 80 120 160 200

*

T

Yukawa system, )/2exp(/ pc rr

Our approximation

23.0

86.1

Page 19: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: comparison

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0 40 80 120 160

U (a)

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

0 40 80 120 160

C V (b)

Yukawa system, )/exp(/ pc rr

Our approximations 123

HKDKTLTT

Page 20: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: comparison

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

-1,6

-1,4

-1,2

-1,0

-0,8

-0,61 10 100

U c / {T }

(c)

Yukawa system, )/exp(/ pc rr

Our approximations

123

HKDKTLTT

Page 21: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Numerical simulation: comparison

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation: parameters results comparison• Conclusion

-1,2

-1,0

-0,8

-0,61 10 100

U c / {T }

12

3

Yukawa system, )/2exp(/ pc rr

1 – Our approximation

2 – HKDK

3 – TLTT

84.1

92.0

23.0

Page 22: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Conclusion

• Introduction• Basic equations• Approximations• Our approach• Theories of 2D

melting• Numerical

simulation• Conclusion

• The analytical approximation of the energy density for 2D non-ideal systems with various isotropic interaction potentials is proposed.

• The parameters of the approximation were obtained by the best fit of the analytical function by the simulation data.

• Based on the proposed approximation, the relationships for the pressure, thermal coefficient of pressure, isothermal compressibility and the heat capacity are obtained.

• The comparison to the results of the numerical simulation has shown that the proposed approximation can be used for the description of thermodynamic properties of the considered non-ideal systems.

Page 23: Xeniya G. Koss 1,2 Olga S. Vaulina 1 1 JIHT RAS, Moscow, Russia 2 MIPT, Moscow, Russia

Thermodynamic functions of non-ideal two-dimensional systems with isotropic pair interaction potentials, X. KossWorkshop on Crystallization and Melting in Two-Dimensions, MTA-SZFKI, May 18, 2010

Thank you for attention!

This work was partially supported by the Russian Foundation for Fundamental Research (project no. 07-08-00290), by CRDF (RUP2-2891-MO-07), by NWO (project 047.017.039), by the Program of the Presidium of RAS, and by the Federal Agency for Science and Innovation (grant no. МК-4112.2009.8).