wireless powertransfer electric vehicles

49
© 2011 ANSYS, Inc. 1 Wireless Power Transfer for EV 2011 REGIONAL CONFERENCES ANSYS Japan K.K. Takahiro Koga

Upload: jcgarciad

Post on 27-Oct-2015

84 views

Category:

Documents


3 download

DESCRIPTION

Electromagnetic tools for Wireless Power Transfer, Coupling Simulation:Electromagnetic ‐ Electrical Circuit , Application for Wireless Power Supply: Inductive type and Magnetic resonance type

TRANSCRIPT

© 2011 ANSYS, Inc.1

Wireless Power Transferfor EV

2011 REGIONAL CONFERENCES

ANSYS Japan K.K.Takahiro Koga

© 2011 ANSYS, Inc.2

Agenda

1. Electromagnetic tools for Wireless Power Transfer

2. Coupling Simulation:Electromagnetic ‐ Electrical Circuit

3. Application for Wireless Power Supply– Inductive type– Magnetic resonance type

© 2011 ANSYS, Inc.3

Wireless Power Supply

• Method :– Electromagnetic Induction–Magnetic Resonance– Microwave

Ref.: Nikkei Electronics Mar. 2007EE Times Japan Oct. 2009, Nov. 2010

© 2011 ANSYS, Inc.4

Method Map

Ref: EE Times Japan 2009.10

1mm         1cm               10cm                  1m                10m            100m

100%

50%

0%

Transfer Distance

Efficiency

Resonance type

Induction type(~15W) Induction type(~50kW)

Microwave type

© 2011 ANSYS, Inc.5

Electromagnetic tools

Which is the optimal simulation tool ? 

“Low Freq.”    “High Freq.”

HFSSMaxwell

© 2011 ANSYS, Inc.6

Differentiating Features

• Maxwell: Low Frequency Field Simulator– Separated Solver “Magnetic” and “Electric”– Time Transient and Lumped Circuit: L,R,C – Linear and Nonlinear Material– Application: Motor, Transformer/Inductor for power machine, 

Inductive noise

• HFSS:  High Frequency Structure Simulator– Electromagnetic Full Wave Solver– Distributed Circuit: S,Z,Y– Linear Material– Application: Antenna, Transformer/Inductor for signal, Radiation noise

© 2011 ANSYS, Inc.7

Resonance Type Coupling

1. Self Capacitance 

2. External Capacitance

Reference:  Wireless Power Transfer via Strongly Coupled Magnetic ResonacesA.Kurs, A.Kralis, R.Moffatt,B.J.Jonnapoulos, P.Fisher, Vo;.317, pp.83‐86, July 2007

Use Maxwell parasitic extraction and couple with circuit simulator for resonance

Magnetic → R, L, M

Electrostatic → C

Maxwell

C

R

C C

R

LLM

© 2011 ANSYS, Inc.8

Inductive Type Coupling

Principle physics is magnetic coupling

Magnetic → R, L, M

The resonant circuit is full realized via a lumped capacitance solved using circuit simulator

Maxwell

R

C C

R

LLM

© 2011 ANSYS, Inc.9

Resonance Type Coupling

1. Self Capacitance 

2. External Capacitance

Reference:Wireless Power Transfer via Strongly Coupled Magnetic ResonacesA.Kurs, A.Kralis, R.Moffatt,B.J.Jonnapoulos, P.Fisher, Vo;.317, pp.83‐86, July 2007

Use HFSS’ full wave capability when the resonance occurs by self capacitance

HFSS

© 2011 ANSYS, Inc.10

0 0

R1

(1/87) ohm

R2

(1/348) ohm

L1

0.19267mH

L2

0.048166mH

M1

0.5668

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

E1AMPL=200VFREQ=10kHz

Coupling Simulation Electromagnetic and Circuit

0 0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.87uF

Cp

5.23uF

Rload

10ohm

W

+WM1

W

+WM2

E1AMPL=200VFREQ=10kHz

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

© 2011 ANSYS, Inc.11

Calculation of Coil Resistance

11.5mohm 2.87mohm

Primary Coil:R1 = (2*100*pi*1e‐3)/(5.8e7*(0.25/2)^2*pi*1e‐6)*(1/384)*20  = 11.5mohm

Secondary Coil:R2 = (2*100*pi*1e‐3)/(5.8e7*(0.25/2)^2*pi*1e‐6)*(1/384)*10/2 = 2.87mohm

SlR

Sl

100mm

Coil slot center

Coil• Litz:0.25φ × 384parallel• σ:5.8×107[S/m]• Primary:20 turns• Secondary:10 turns x 2parallel

© 2011 ANSYS, Inc.12

Capacitance Calculation

Cp:1/((2*1e4*pi)^2*0.0048166) = 5.24e‐6 F = 5.24uF

Cs:1 /((2*1e4*pi)^2*(1‐0.5668^2)*0.0019267) = 1.93e‐6 F = 1.93uF

L1 = 0.19267mHL2 = 0.048166mHk = 0.5668

122

0

220

11

1

LkC

LC

s

p

Cs5.24uF

Cp1.93uF

L1 L2

k

f010kHz

© 2011 ANSYS, Inc.13

System Simulation

0

0

0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00

-100.00

100.00

300.00

Y1 [V

]

Curve Info rmsWM1.V

TR 154.9045

WM2.VTR 120.2425

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

-200.00

-100.00

0.00

100.00

200.00

Y2 [V

]

MX1: 1.9753MX2: 1.9783

-6.0797-1.2036-0.0090

131.1979

-0.51411.340627.9814

156.0455

0.0030

Curve Info Y Axis rmsWM1.I

TR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119.4615

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0

0

0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00

-100.00

100.00

300.00

Y1 [V

]

Curve Info rmsWM1.V

TR 154.9045

WM2.VTR 120.2425

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

-200.00

-100.00

0.00

100.00

200.00

Y2 [V

]

MX1: 1.9753MX2: 1.9783

-6.0797-1.2036-0.0090

131.1979

-0.51411.340627.9814

156.0455

0.0030

Curve Info Y Axis rmsWM1.I

TR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119.4615

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0

Rload

10ohm

Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

AC200V Rectify InverterWireless Power Transformer Battery

Controller

© 2011 ANSYS, Inc.14

Distinguishing Features for Coupled Simulation

• Integrated design environment– Easy and intuitive user interface

• Dynamically linked parameters between the Circuit and 3D FEA model – Geometry / Material / Gap etc…

Efficient workflow design enablesSimulation Driven Product DevelopmentTM

© 2011 ANSYS, Inc.15

1mm        1cm         10cm         1m          10m         100m

100%

50%

0%

Transfer Distance

Efficiency Resonance type

Inductive type(~15W) Inductive type(~50kW)

Microwave type

Application

• ANSYS Products for Wireless Power Supply

HFSSNEXXIM

MaxwellSimplorer

Ref: EE Times Japan 2009.10

© 2011 ANSYS, Inc.16

Wireless Power Supply System for EV

• Inductive type

1mm        1cm         10cm         1m          10m         100m

100%

50%

0%

Transfer Distance

Efficiency Resonance type

Inductive type(~15W) Inductive type(~50kW)

Ref: EE Times Japan 2009.10

ACPower

Inverter

Cable

Capacitor

Primary CoilPrimary Coil

Secondary CoilSecondary Coil

BatteryRectifier/Charger

MaxwellSimplorer

© 2011 ANSYS, Inc.17

Geometry

© 2011 ANSYS, Inc.18

Schematic

20kW @ 400V/20kHz

Core

CoilShield Plate

Secondary Coil

Primary Coil

© 2011 ANSYS, Inc.19

Materials

Secondary

Primary

500mm410mm

90mm

90mm330mm

400mm

Core• Material : FDK 6H40 (Bs=0.53T, μi=2400)

Coil• Litz wire : 0.25φ × 384 parallel turns• Conductivity : 5.8×107[S/m]• Primary : 10 turns• Secondary : 5 turns

© 2011 ANSYS, Inc.20

Solution Flow Chart

• Maxwell + Simplorer

MaxwellMagnetostatic

MaxwellEddy Current Simplorer

AC / TRImpedance Model

Circuit / Drive / Controller designWaveform, Efficiency, Power factor, Response

MaxwellEddy Current

Field, Loss

Core, Winding

GapSliding

© 2011 ANSYS, Inc.21

Maxwell / Magnetostatic

• L, M, k : – Self Inductance– Mutual Inductance– Coupling Coefficient

k=0.54

L1   MM    L2

M

L1

L2

© 2011 ANSYS, Inc.22

Maxwell / Magnetostatic

Inductance L, MCoupling factor kFieldCore saturation

Mag B

Coupling factor k – sliding gap

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00Sliding [mm]

0.00

0.20

0.40

0.60

0.80

1.00

Mat

rix1.

Cpl

Coe

f(Cur

rent

_1,C

urre

nt_2

)

3D_Static_sliding_kCoupling - k ANSOFT

Curve InfoMatrix1.CplCoef(Current_1,Current_2)

Setup1 : LastAdaptiveGap='50mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='100mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='150mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='200mm'

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00Sliding [mm]

0.00

0.20

0.40

0.60

0.80

1.00

Mat

rix1.

Cpl

Coe

f(Cur

rent

_1,C

urre

nt_2

)

3D_Static_sliding_kCoupling - k ANSOFT

Curve InfoMatrix1.CplCoef(Current_1,Current_2)

Setup1 : LastAdaptiveGap='50mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='100mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='150mm'

Matrix1.CplCoef(Current_1,Current_2)Setup1 : LastAdaptiveGap='200mm'

Core Shape/MaterialNumber of turnsCurrent Amp.Gap

© 2011 ANSYS, Inc.23

0.00 20.00 40.00 60.00 80.00 100.00Current [A]

0.00

0.01

0.10

1.00

Gap

[met

er]

2D_Static_BHMutual Inductance L12 ANSOFT

Matrix1.L(C [nH]

0.0000e+000

5.7000e+003

1.1400e+004

1.7100e+004

2.2800e+004

2.8500e+004

3.4200e+004

0.00 20.00 40.00 60.00 80.00 100.00Current [A]

1

10

100

1000

Gap

[mm

]

2D_StaticMutual Inductance L12 ANSOFT

Matrix1.L(C [nH]

0.0000e+000

5.7000e+003

1.1400e+004

1.7100e+004

2.2800e+004

2.8500e+004

3.4200e+004

Maxwell / Magnetostatic

Verification for core saturation:

Linear Material(Initial permeability)

Nonlinear Material(BH curve)

Specification Area

Saturation

X: Gap [mm] / Y: Input Current [A] / Z: Mutual inductance [nH]

21LLkM

Specification Area

© 2011 ANSYS, Inc.24

0.00 100.00 200.00 300.00 400.00H (A_per_meter)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

B (t

esla

)

Maxwell / Magnetostatic

• Verification for core saturation– Core’s BH curve, Mag_B field plot– No magnetic saturation

Nonlinear BH curve

~0.4T

Maximum point : 0.26T

0.00 20.00 40.00 60.00 80.00 100.00Current [A]

0.00

0.01

0.10

1.00

Gap

[met

er]

2D_Static_BHMutual Inductance L12 ANSOFT

Matrix1.L(C [nH]

0.0000e+000

5.7000e+003

1.1400e+004

1.7100e+004

2.2800e+004

2.8500e+004

3.4200e+004

Specification Area

© 2011 ANSYS, Inc.25

Maxwell / Eddy Current

• State Space Modeling for Simplorer– Frequency domain impedance(R,L) model for circuit simulation

• AC Field and Loss (after circuit simulation)

© 2011 ANSYS, Inc.26

Maxwell / Eddy Current Solver

Core Shape/MaterialNumber of turnsFrequencyGapShield Shape/Material

AC CharacteristicsInductance L, MCoupling factor kFieldCore HysteresisShield

Shield Plate (Aluminum)

Core(Power Ferrite)

No Shielding Shielding

© 2011 ANSYS, Inc.27

Simplorer with Maxwell State Space Model

AC / Frequency domain TR / Time domain

© 2011 ANSYS, Inc.28

Efficiency Map

• Output/Input Power

• Tuned capacitance for each conditions

90%

50%

20%

[%]100

cos

in

out

PPVIP

Efficiency[%]

Sliding [mm]Gap [mm]

Gap Sliding

Max.96%

© 2011 ANSYS, Inc.29

0

0

0

R1

7.2mOhm

R2

3.6mOhm

Cs

1.72uF

Cp

4.96uF

Rload

13ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=20kFrequency:=20k

DC_Source:=400Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1uF

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

Y1 [

A]

Curve Info rmsWM1.I

TR 41.6165

WM2.ITR 34.8648

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-800.00

-300.00

200.00

700.00

Y1 [

V]

Curve Info rmsWM1.V

TR 281.0066

WM2.VTR 321.9453

2.900 2.925 2.950 2.975 3.000Time [ms]

-250.00

-125.00

0.00

125.00

250.00

Y1 [A

]

-1000.00

-500.00

0.00

500.00

873.02

Y2 [V

]

MX1: 2.9200MX2: 2.9811

-408.7847-315.0105-64.8250

-40.2840-377.1247-319.5653 -53.6971

-0.0037

0.0610

Curve Info Y Axis rmsWM1.I

TR Y1 38.9542

WM2.ITR Y1 34.1140

WM1.VTR Y2 276.0822

WM2.VTR Y2 316.6292

PWRProbe

PWR_Probe1

Current_1:srcCurrent_2:src

Current_1:snkCurrent_2:snk

PWRProbe

PWR_Probe2

0

0

0

R1

7.2mOhm

R2

3.6mOhm

Cs

1.72uF

Cp

4.96uF

Rload

13ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=20kFrequency:=20k

DC_Source:=400Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1uF

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-150.00

-100.00

-50.00

0.00

50.00

100.00

150.00

Y1 [A

]

Curve Info rmsWM1.I

TR 41.6165

WM2.ITR 34.8648

2.00 2.20 2.40 2.60 2.80 3.00Time [ms]

-800.00

-300.00

200.00

700.00

Y1 [

V]

Curve Info rmsWM1.V

TR 281.0066

WM2.VTR 321.9453

2.900 2.925 2.950 2.975 3.000Time [ms]

-250.00

-125.00

0.00

125.00

250.00

Y1 [A

]

-1000.00

-500.00

0.00

500.00

873.02

Y2 [V

]

MX1: 2.9200MX2: 2.9811

-408.7847-315.0105-64.8250

-40.2840-377.1247-319.5653 -53.6971

-0.0037

0.0610

Curve Info Y Axis rmsWM1.I

TR Y1 38.9542

WM2.ITR Y1 34.1140

WM1.VTR Y2 276.0822

WM2.VTR Y2 316.6292

PWRProbe

PWR_Probe1

Current_1:srcCurrent_2:src

Current_1:snkCurrent_2:snk

PWRProbe

PWR_Probe2

Maxwell – Simplorer System Simulation

AC400V Rectify InverterWireless Power Transformer Battery

Controller

© 2011 ANSYS, Inc.30

Simplorer:  Design by Circuit Level Simulation

Circuit DriverController

AC/TR ResponseWaveformEfficiency

© 2011 ANSYS, Inc.31

Back to Maxwell: Core Hysteresis Loss Using the Current Amplitude and Phase from Simplorer

Hysteresis Loss 

Considering Magnetic Loss tangent

tan1 jj

Freq [kHz]Core1st_LossSetup1 : LastAdaptivePhase='0deg'

Core2nd_LossSetup1 : LastAdaptivePhase='0deg'

1 20.000000 0.909102 0.313144

3D_EddyCore Loss ANSOFT

Core loss[W]

Primary

Secondary

© 2011 ANSYS, Inc.32

Back to Maxwell: Shield Surface Loss Using the Current Amplitude and Phase from Simplorer

Surface Loss

Key Point:Impedance boundary BC

Primary Secondary

Freq [kHz]Shield1st_LossSetup1 : LastAdaptivePhase='0deg'

Shield2nd_LossSetup1 : LastAdaptivePhase='0deg'

1 20.000000 22.938675 37.886583

3D_EddyShield Loss ANSOFT

Freq [kHz]Shield1st_LossSetup1 : LastAdaptivePhase='0deg'

Shield2nd_LossSetup1 : LastAdaptivePhase='0deg'

1 20.000000 22.938675 37.886583

3D_EddyShield Loss ANSOFT

Shield Loss[W]

© 2011 ANSYS, Inc.33

Back to Maxwell: Field Solution Using the Current Amplitude and Phase from Simplorer

Magnetic Field Intensity

0.00 0.20 0.40 0.60 0.80 1.00Distance [meter]

0.00

0.00

0.01

0.10

1.00

10.00

Mag

_B [m

Tesl

a]

2D_EddyXY Plot 1 ANSOFT

Curve InfoMag_B

Setup1 : LastAdaptiveFreq='20kHz' Phase='0deg'

0.00 0.20 0.40 0.60 0.80 1.00Distance [meter]

0.00

0.00

0.01

0.10

1.00

10.00

Mag

_B [m

Tesl

a]

2D_EddyXY Plot 1 ANSOFT

Curve InfoMag_B

Setup1 : LastAdaptiveFreq='20kHz' Phase='0deg'

Magnetic Field Density

Distance

Distance

© 2011 ANSYS, Inc.34

Back to Maxwell     and Link to HFSS

• Maxwell → HFSS Dynamic Link– Magnetic source solved by Maxwell and Link to HFSS field solution– Far Field and Large Area electromagnetic solution– HFSS can handle a car body object as 2D sheet object

Maxwell

HFSS

© 2011 ANSYS, Inc.35

Back to Maxwell and Link to HFSS

• Maxwell → HFSS Dynamic Link– Magnetic source solved by Maxwell and Link to HFSS field solution– Far Field and Large Area electromagnetic solution– HFSS can handle a car body object as 2D sheet object

Maxwell

HFSS

© 2011 ANSYS, Inc.36

0

0

0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00

-100.00

100.00

300.00

Y1 [V

]

Curve Info rmsWM1.V

TR 154.9045

WM2.VTR 120.2425

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

-200.00

-100.00

0.00

100.00

200.00

Y2 [V

]

MX1: 1.9753MX2: 1.9783

-6.0797-1.2036-0.0090

131.1979

-0.51411.340627.9814

156.0455

0.0030

Curve Info Y Axis rmsWM1.I

TR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119.4615

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0

0

0

R1

(1/87-0.004) ohm

R2

(1/348-0.001) ohm

Cs

1.93uF

Cp

5.24uF

Rload

10ohm

W

+WM1

W

+WM2

D4

D3

D2

D1

IGBT4

IGBT3

IGBT2

IGBT1

C1

1000uF

TRANS4

DT4

TRANS3

SINE1.VAL > TRIANG1.VAL

TRANS2

DT1

TRANS1

SINE1.VAL < TRIANG1.VAL

STATE_11_4

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT4##Dead_Time

STATE_11_3

SET: TSV4:=0SET: TSV3:=1SET: TSV2:=1SET: TSV1:=0

STATE_11_2

SET: TSV4:=0SET: TSV3:=0SET: TSV2:=0SET: TSV1:=0DEL: DT1##Dead_Time

STATE_11_1

SET: TSV4:=1SET: TSV3:=0SET: TSV2:=0SET: TSV1:=1

TRIANG1

AMPL=1FREQ=Carrier_Freq

SINE1

AMPL=Modulation_IndexFREQ=Frequency

ICA: FML_INIT1

Modulation_Index:=0Carrier_Freq:=10kFrequency:=10k

DC_Source:=200Dead_Time:=2u

~

3PHAS

~

~

A * sin (2 * pi * f * t + PHI + phi_u)

PHI = 0°

PHI = -120°

PHI = -240°

THREE_PHASE1D5

D6

D7

D8

D9

D10 Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

Curve Info rmsWM1.I

TR 9.4139

WM2.ITR 10.5939

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00Time [ms]

-300.00

-100.00

100.00

300.00

Y1 [V

]

Curve Info rmsWM1.V

TR 154.9045

WM2.VTR 120.2425

1.90 1.92 1.94 1.96 1.98 2.00Time [ms]

-40.00

-20.00

0.00

20.00

40.00

Y1 [A

]

-200.00

-100.00

0.00

100.00

200.00

Y2 [V

]

MX1: 1.9753MX2: 1.9783

-6.0797-1.2036-0.0090

131.1979

-0.51411.340627.9814

156.0455

0.0030

Curve Info Y Axis rmsWM1.I

TR Y1 9.3501

WM2.ITR Y1 10.5176

WM1.VTR Y2 153.6594

WM2.VTR Y2 119.4615

Current_1st_1:src

Current_1st_2:src

Current_2nd_1:src

Current_2nd_2:src

Current_1st_1:snk

Current_1st_2:snk

Current_2nd_1:snk

Current_2nd_2:snk

0

Rload

10ohm

Battery- +

LBATT_A1

D11

D12

D13

D14

C2

1e-006farad

Conclusion

• Wireless power transfer for HEV/EV’s can easily be simulated with ANSYS’ electromagnetic and circuit simulation tools.

• The full solutions requires a system level approach. 

• ANSYS’ Products can also support multiphysics simulation, i.e. combined Thermal / Structure / Fluid

© 2011 ANSYS, Inc.37

Thank you!

Maxwell 14.0HFSS 13.0Simplorer 9.0Designer/NEXXIM 6.0

© 2011 ANSYS, Inc.38

• Add the following slides for an in‐depth discussion on how HFSS can be used to solve this type of problem.

© 2011 ANSYS, Inc.39

Resonance type wireless power supply

• Antenna coil

1mm        1cm         10cm         1m          10m         100m

100%

50%

0%

Transfer Distance

Efficiency

Resonance type

Inductive type(~15W) Inductive type(~50kW)

Microwave type

Ref: EE Times Japan 2009.10

HFSSNEXXIM

© 2011 ANSYS, Inc.40

Model

• Theoretically resonance type antenna coil 

Capacitor

Load

Load (Port)

© 2011 ANSYS, Inc.41

HFSS / Impedance Characteristics

• Z11

20.00 40.00m1

20.00 22.50 25.00 27.50 30.00 32.50 35.00 37.50 40.00Freq [MHz]

0.00

1250.00

2500.00

3750.00

5000.00

6250.00

7500.00

8750.00

re(Z

(1,1

))

-5000.00

-2500.00

0.00

2500.00

5000.00

im(Z

(1,1

))

Ansoft LLC Ring_resonant_singleXY Plot 2 ANSOFT

m1 Curve Infore(Z(1,1))

Setup1 : Sw eep1im(Z(1,1))

Setup1 : Sw eep1

Name X Ym1 29.7500 8579.4457

30MHz

© 2011 ANSYS, Inc.42

HFSS / Magnetic Field

• Frequency : 30MHz

© 2011 ANSYS, Inc.43

Resonance type Coil Antenna Transfer Model

• Transfer characteristics between primary and secondary coils by the distance(D1)

D1

© 2011 ANSYS, Inc.44

HFSS / Transfer characteristics

• S21

0.00 10.00 20.00 30.00 40.00 50.00Freq [MHz]

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

dB(S

(2,1

))

Ansoft LLC Ring_resonant_Two_distXY Plot 3 ANSOFT

m1

Curve InfodB(S(2,1))

Setup1 : Sw eep1D1='1000mm'

dB(S(2,1))Setup1 : Sw eep1D1='1500mm'

dB(S(2,1))Setup1 : Sw eep1D1='2000mm'

dB(S(2,1))Setup1 : Sw eep1D1='2500mm'

dB(S(2,1))Setup1 : Sw eep1D1='3000mm'

dB(S(2,1))Setup1 : Sw eep1D1='3500mm'

dB(S(2,1))Setup1 : Sw eep1D1='4000mm'

dB(S(2,1))Setup1 : Sw eep1D1='4500mm'

dB(S(2,1))Setup1 : Sw eep1D1='5000mm'

Name X Ym1 31.0100 -4.2888

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00D1 [meter]

-20.00

-17.50

-15.00

-12.50

-10.00

-7.50

-5.00

-2.50

0.00

dB(S

(2,1

))

Ansoft LLC Ring_resonant_Two_distXY Plot 4 ANSOFT

Curve InfodB(S(2,1))

Setup1 : Sw eep1Freq='0.031GHz'

Freq=31MHz

Distance (D1)

Frequency

© 2011 ANSYS, Inc.45

HFSS / Transfer efficiency

• Transfer efficiency calculated by S21

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00D1 [meter]

0.00

12.50

25.00

37.50

50.00

62.50

effic

ienc

y

Ansoft LLC Ring_resonant_Two_distXY Plot 5 ANSOFT

Curve Infoeff iciency

Setup1 : Sw eep1Freq='0.0314GHz'

Distance (D1)

[%]100221 S

© 2011 ANSYS, Inc.46

HFSS / Transfer characteristics

• Rotated secondary coil

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00Rot [deg]

-80.00

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

dB(S

(2,1

))

Ansoft LLC Ring_resonant_Two_angXY Plot 4 ANSOFT

Curve InfodB(S(2,1))

Setup1 : Sw eep1Freq='0.031GHz'

0.00 10.00 20.00 30.00 40.00 50.00Freq [MHz]

-150.00

-125.00

-100.00

-75.00

-50.00

-25.00

0.00

Y1

Ansoft LLC Ring_resonant_Two_angXY Plot 3 ANSOFT

m1 Curve InfodB(S(2,1))

Setup1 : Sw eep1dB(S(2,1))_1

Setup1 : Sw eep1Rot='0deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='10deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='20deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='30deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='40deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='50deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='60deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='70deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='80deg'

dB(S(2,1))_1Setup1 : Sw eep1Rot='90deg'

Name X Ym1 31.0100 -4.6050

Rotation angle(0~90deg)

S21

S21

Frequency

© 2011 ANSYS, Inc.47

HFSS / Rotated Antenna(Cont.)

• Rotated secondary coil

• Transfer null point at 90deg

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00Rot [deg]

-80.00

-67.50

-55.00

-42.50

-30.00

-17.50

-5.00

dB(S

(2,1

))

Ansoft LLC Ring_resonant_Two_angRotation S21 ANSOFT

Curve InfodB(S(2,1))

Setup1 : Sw eep1Freq='0.031GHz'

回転角度(0~90deg)

S21

0deg 70deg 90deg

Null Point

© 2011 ANSYS, Inc.48

Designer/NEXXIM with HFSS Direct Link

• HFSS + Designer/NEXXIM– HFSS model direct link to Designer– S‐parameter model by electromagnetic link to circuit  simulation– Push Excitation : Get excited condition for HFSS by Designer simulation

PushExcitation

HFSSelectromagnetic

Designer/NEXXIMcircuit

S-parametermodel

© 2011 ANSYS, Inc.49

HFSS – Designer/NEXXIM System Simulation

0.00 25.00 50.00 75.00 100.00 125.00 150.00Time [us]

0.00

5.00

10.00

15.00

0.00

5.00

10.00

15.00

0.00

5.00

10.00

15.00

0.00

5.00

10.00

15.00

-125.00

0.00

125.00

-125.00

-25.00

75.00

0.00

25.00

50.00

Curve Info

V(S4)Transient

V(S2)Transient

V(S3)Transient

V(S1)Transient

V(Vin)Transient

V(Vout1)Transient

V(Vout)Transient

With_InverterXY Stacked Plot 1 ANSOFT

64.31 64.38 64.50 64.63 64.75 64.88 65.00 65.13 65.25Time [us]

0.00

5.00

10.00

15.00

0.00

5.00

10.00

15.00

0.00

5.00

10.00

15.00

0.005.00

10.00

15.00

-125.00

0.00

125.00

-125.00

-25.00

75.00

0.00

25.00

50.00

0.00 150.00

Curve Info

V(S4)Transient

V(S2)Transient

V(S3)Transient

V(S1)Transient

V(Vin)Transient

V(Vout1)Transient

V(Vout)Transient

With_InverterXY Stacked Plot 1 ANSOFT

DC100V Inverter Rectifier

CoilAntenna