what%can%tcap%observa1ons%tell%us%about...

1
What Can TCAP Observa1ons Tell Us about Temporal Aerosol Changes and Their Impact on Daily Radia1ve Forcing? Kassianov a , E., J. Barnard a , M. Pekour a , L. Berg a , J. Shilling a , J. Fast a , F. Mei a , J. Michalsky b , K. Lantz c , and G. Hodges c a Pacific Northwest Na/onal Laboratory; b NOAA/Earth System Research Laboratory; c CIRES/ University of Colorado File Name // File Date // PNNL-SA-##### 1. Mo1va1on o The eastern coast of North America is an area that is strongly affected by anthropogenic and natural aerosol. o The large varia;on among the model predic;ons of direct aerosol radia/ve forcing (DARF) for this coastal region has mo;vated the recent (20122013) TwoColumn Aerosol Project (TCAP), with focus on the temporal changes of chemical, microphysical and op;cal proper;es of aerosol and their impact on the DARF. o Commonly, observa;onalbased calcula;ons of daily average DARF involve “constant aerosol proper;es” assump;on: aerosol proper;es are assumed either constant or do not vary strongly during a given day. 4. Summary o Diurnal changes of aerosol op;cal depth observed on Cape Cod during the TCAP are strong (Kassianov et al., 2013). o Errors in the 24h average DARF associated with under sampled diurnal changes (e.g., morning only) of aerosol proper;es can be large (up to 100%). An accurate predic;on of 24h average DARF should involve data collected before and aPer local noon. o Accurate 24h average DARF can improve observa;onal based DARF es;mates at climatologically relevant ;me scales ranging from months to years. These es;mates are an important constraint for model predic;ons of aerosol impact on Earth’s radia;on budget. 3. Temporal Changes o The nearsurface aerosol chemical and microphysical proper;es (Fig. 3) and op;cal proper;es (not shown) do not reveal no;ceable diurnal changes. In contrast, the aerosol op;cal depth τ a shows large diurnal (~30% range on average) and daytoday (up to 150%) changes (Fig. 4). The same is true for the corresponding DARFs (Fig. 5). o Results obtained for all phase 1 TCAP days (Kassianov et al., 2013) illustrate importance of sampling issue: aerosol proper;es sampled in the morning/evening may not be representa;ve of condi;ons over the en;re day of interest (e.g., “am” versus “pm”; Fig. 5). Thus, a reliable es;ma;on of the 24h DARF may be thwarted (Fig. 5) by data (e.g., MODIS/AERONET) with incomplete temporal coverage . Fig. 1. Example of WRFsimulated air mass backtrajectories passing over Cape Cod (circle) at different al;tudes ranging from 0 to 5 km (iden;fied by different colors) for two days: 17 July (leP) and 22 July (right). 2. Groundbased Measurements o During TCAP, the groundbased Atmospheric Radia9on Measurement (ARM) Mobile Facility (AMF) was deployed on Cape Cod (Fig. 1), which is generally downwind of large metropolitan areas including Boston, Massachusebs. o The AMF site (41.87°N; 70.28°W) was equipped with a suite of instruments (Fig. 2) for sampling aerosol, cloud and radia;ve proper;es, including a Mul;Filter Rota;ng Shadowband Radiometer (MFRSR), a Scanning Mobility Par;cle Sizer (SMPS), an Aerodynamic Par;cle Sizer (APS), Aerosol Chemical Specia;on Monitor (ACSM) and a three wavelength nephelometer. 12 8 4 0 Mass Loading ( μ g m -3 ) 7/14/12 7/15/12 7/16/12 7/17/12 7/18/12 7/19/12 7/20/12 7/21/12 7/22/12 7/23/12 Date and Time (UTC) 1.0 0.8 0.6 0.4 0.2 0.0 Mass Fraction Total Org. SO 4 NO 3 NH 4 Cl Fig. 3. Time series of ACSM chemical proper;es – mass loading and mass frac;on (top panel) and combined SMPSAPS number size distribu;ons (bobom panel). The shading indicates complementary aircraP flight periods (top panel). Fig. 4. Average diurnal (a) and daytoday (b) variability of MFRSR aerosol op;cal depth τ a at 0.5μm wavelength as percent departure from the 29day average aerosol op;cal depth (τ* a, ave ). Fig. 5. Time series of the original (black), dailyaveraged (red), morning averaged (green) and eveningaveraged (blue) τ a values (a), and the corresponding instantaneous DARF values (b). The 24h average DARFs are also included (b). Contact Informa1on: [email protected] . Reference: Kassianov, E., and coauthors, 2013: Do diurnal aerosol changes affect daily average radia/ve forcing? GRL Fig. 2. Images of the AMF site with a suite of instruments from the air (top) and ground (bobom). al1tude

Upload: others

Post on 24-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: What%Can%TCAP%Observa1ons%Tell%Us%about ......What%Can%TCAP%Observa1ons%Tell%Us%about%Temporal%Aerosol%% Changes%and%Their%Impact%on%Daily%Radia1ve%Forcing?% Kassianova%,E.,J. Barnarda,%M.%Pekoura,L

What  Can  TCAP  Observa1ons  Tell  Us  about  Temporal  Aerosol    Changes  and  Their  Impact  on  Daily  Radia1ve  Forcing?  Kassianova  ,  E.,    J.  Barnarda,  M.  Pekoura,  L.  Berga,  J.  Shillinga,  J.  Fasta,  F.  Meia,  J.  Michalskyb,  K.  Lantzc,  and  G.  Hodgesc  a  Pacific  Northwest  Na/onal  Laboratory;  b  NOAA/Earth  System  Research  Laboratory;  cCIRES/  University  of  Colorado      

File

Nam

e //

File

Dat

e //

PN

NL-

SA

-###

##

1.   Mo1va1on  o  The   eastern   coast   of   North   America   is   an   area   that   is  

strongly  affected  by  anthropogenic  and  natural  aerosol.    o  The  large  varia;on  among  the  model  predic;ons  of  direct  

aerosol  radia/ve  forcing  (DARF)  for  this  coastal  region  has  mo;vated   the   recent   (2012-­‐2013)   Two-­‐Column   Aerosol  Project   (TCAP),   with   focus   on   the   temporal   changes   of  chemical,  microphysical   and   op;cal   proper;es   of   aerosol  and  their  impact  on  the  DARF.  

o  Commonly,   observa;onal-­‐based   calcula;ons   of   daily  average   DARF   involve   “constant   aerosol   proper;es”  assump;on:   aerosol   proper;es   are   assumed   either  constant  or  do  not  vary  strongly  during  a  given  day.      

4.  Summary  o  Diurnal  changes  of  aerosol  op;cal  depth  observed  on  Cape  

Cod  during  the  TCAP  are  strong  (Kassianov  et  al.,  2013).  o  Errors   in   the   24-­‐h   average   DARF   associated   with   under-­‐

sampled   diurnal   changes   (e.g.,   morning   only)   of   aerosol  proper;es   can   be   large   (up   to   100%).   An   accurate  predic;on   of   24-­‐h   average   DARF   should   involve   data  collected  before  and  aPer  local  noon.  

o  Accurate   24-­‐h   average   DARF   can   improve   observa;onal-­‐based   DARF   es;mates   at   climatologically   relevant   ;me  scales  ranging  from  months  to  years.    These  es;mates  are    an   important   constraint   for  model   predic;ons   of   aerosol  impact  on  Earth’s  radia;on  budget.        

3.  Temporal  Changes  o  The   near-­‐surface   aerosol   chemical   and   microphysical  

proper;es    (Fig.  3)    and  op;cal  proper;es  (not  shown)  do  not   reveal   no;ceable   diurnal   changes.   In   contrast,   the  aerosol  op;cal   depth  τa   shows   large  diurnal   (~30%   range  on  average)  and  day-­‐to-­‐day  (up  to  150%)  changes  (Fig.  4).  The  same  is  true  for  the  corresponding  DARFs  (Fig.  5).    

o  Results   obtained   for   all   phase   1   TCAP   days   (Kassianov   et  al.,  2013)   illustrate   importance  of   sampling   issue:  aerosol  proper;es   sampled   in   the   morning/evening   may   not   be  representa;ve  of  condi;ons  over  the  en;re  day  of  interest  (e.g.,  “am”  versus  “pm”;  Fig.  5).  Thus,  a  reliable  es;ma;on  of   the  24-­‐h  DARF  may  be   thwarted   (Fig.   5)   by  data   (e.g.,  MODIS/AERONET)  with  incomplete  temporal  coverage  .      

Fig.  1.  Example  of  WRF-­‐simulated  air  mass  back-­‐trajectories  passing  over  Cape  Cod  (circle)  at  different  al;tudes  ranging  from  0  to  5  km  (iden;fied  by  different  colors)  for  two  days:  17  July  (leP)  and  22  July  (right).  

2.  Ground-­‐based  Measurements  o  During   TCAP,   the   ground-­‐based   Atmospheric   Radia9on  

Measurement  (ARM)  Mobile  Facility  (AMF)  was  deployed  on  Cape  Cod  (Fig.  1),  which  is  generally  downwind  of  large  metropolitan  areas  including  Boston,  Massachusebs.    

o  The   AMF   site   (41.87°N;   70.28°W)   was   equipped   with   a  suite   of   instruments   (Fig.   2)   for   sampling   aerosol,   cloud  and   radia;ve   proper;es,   including   a  Mul;-­‐Filter   Rota;ng  Shadowband   Radiometer   (MFRSR),   a   Scanning   Mobility  Par;cle  Sizer  (SMPS),  an  Aerodynamic  Par;cle  Sizer  (APS),  Aerosol  Chemical  Specia;on  Monitor  (ACSM)  and  a  three-­‐wavelength  nephelometer.  

12

8

4

0Ma

ss Lo

ading

(µg m

-3 )

7/14/12 7/15/12 7/16/12 7/17/12 7/18/12 7/19/12 7/20/12 7/21/12 7/22/12 7/23/12

Date and Time (UTC)

1.0

0.8

0.6

0.4

0.2

0.0

Mass

Fracti

on

Total Org. SO4 NO3 NH4 Cl

Fig.  3.  Time  series  of  ACSM  chemical  proper;es  –  mass  loading  and  mass   frac;on   (top   panel)   and   combined   SMPS-­‐APS   number   size  distribu;ons  (bobom  panel).  The  shading  indicates  complementary  aircraP  flight  periods  (top  panel).  

Fig.   4.   Average  diurnal   (a)   and  day-­‐to-­‐day   (b)   variability   of  MFRSR  aerosol  op;cal  depth  τa  at  0.5µm  wavelength  as  percent  departure  from  the  29-­‐day  average  aerosol  op;cal  depth  (τ*a,  ave).  

Fig.  5.   Time  series  of   the  original   (black),  daily-­‐averaged   (red),  morning-­‐averaged   (green)   and   evening-­‐averaged   (blue)   τa   values   (a),   and   the  corresponding   instantaneous   DARF   values   (b).   The   24-­‐h   average   DARFs  are  also  included  (b).    

 

Contact  Informa1on:  [email protected].        Reference:  Kassianov,  E.,  and  co-­‐authors,  2013:  Do  diurnal  aerosol  changes  affect  daily  average  radia/ve  forcing?  GRL    

Fig.  2.  Images  of  the  AMF  site  with  a  suite  of  instruments  from  the  air  (top)  and  ground  (bobom).  

al1tud

e