wendy eisner -hans kamermans -alex t. wymstra … · canale mussolini (blanc et al. 1957) and at...

10
-_._-- WENDY EISNER - HANS KAMERMANS - ALEX T. WYMSTRA THE AGRO PONTINO SURVEY: RESULTS FROM A FIRST POLLEN CORE Estratto da Dialoghi di Archeologia, n. 2, 1986 EDIZIONI QUASAR

Upload: duongxuyen

Post on 17-Feb-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

-_._--

WENDY EISNER - HANS KAMERMANS - ALEX T. WYMSTRA

THE AGRO PONTINO SURVEY:RESULTS FROM A FIRST POLLEN CORE

Estratto da Dialoghi di Archeologia, n. 2, 1986

EDIZIONI QUASAR

-----~

5 . METODl DELLA RICERC1 SUL TERRITORfO E MODULI DIIN5EDlAMENTO

THE AGRO PONTINO SURVEY: RESULTS FROM A FIRST POLLEN CORE

Wendy Eisner, Ham Kamermans & Alex T Wymstra*

I. Introduction

Over the pas~ decades theory and praccice in archaeology haveshifted coward more regional and system;ltic approaches.Nowadays the major goal of research projects is more often thannot the understanding of the socio-economic processes that pro­duced the observable archaeological record of a region. The almsof archaeological surveys have changed accordingly. Surveys orrendo not concentrate anymore on ',{tnding sites», but instead on ob­taining a picture, be it a rough one, of tbe spatial and temporalvari:J.tions in human organization from rhe distribution of materialsavailable in larger regions, and rhus are complementary co flne­grained excavation activities. A variety of survey methods, adaptedto differing goals and scopes, has been and is developed, as is shown,for example, in a recent BAR report (Kel1cr & Rupp, 1983).The re.,ults of an archaeological survey cannot be sensiblyunderstood, however, if knowledge abouc the environmental set­ting and constraints in a region is not avaible as welt. This meansth:1t at the beginni ng, or even before, an archaeological survey,information abouc the geology, the soils, the prehistoric vegeu­tion, etc., needs to be collected and processed.In this paper we present the outline of an archaeological survey'along these lines and concentrate on che interpretation ofpalynological data in terms of - ch:tnge in - the vegetation inprehistOric times of the arEa under study.The Albert Egges van Giffen Institute for Pre-and Prowhistory,University of Amsterdam, began an extensive archaeological surveyprogram in the Agro PominD (Italy) in 1982. Preliminary workconsLSled of two small surveys in June 1979 and June 1980 andche collection of material for palynological studies in June 1981.A major theme in the Agro Pontioo project is the developmentand evolution of prehistoric social systems in the area and the coo­maims imposed by che palaeoecological situ:ltions. The survey wilJdocument rhe distribution and density of archaeological sites

through time; palynological, pedologic;ll and geomorphologicalstudies wiH be used to reconstruct pase environmental conditionsin as much detail as possible in order co construct and test modelsfor the evolution of land use, technology, and social organisationduring prehistory. The land evaluation approach has been selectedby the Agro Pontino survey project as a framework for synrhesiz.­ing the palaeoenvironmclHal data and for anaJyzing [he ar­chaeological data with regard to prehisroric man land relalionships(Kamermans el al. 1985, 1986).Land evaluation is a cechnique developed by che FAO and usedin third world coumries for estimatiog the potential of land foralternative kinds of use (Beek 1978; Brinkman & Smith 197J~

Brinkman & Young 1976; Dem & Young 19B1; McRae & Burn­ham 19B1). The definition is as fol.lows: «the processs of mllacingand interpreting basic inventories of soil, vegetation, c1irn;ne andother aspects of land in order to identify and make a first com­parison of promising land use alternatives in simple soci()(;conomicterms» (Brinkman & Smith 1973: 7, figure 1). The basic fealureof land evaluation is the comparison of lhe requirements of I"nduse with che resources offered by the land. Land evaluation re­quires information from three sources: land, land use, andeconomics (Dent & Young 1981).There are somc important differences (figure 1) for using landevaluation in archaeology. First, it is, of (Ourse, impossible comeasure prehistoric land qualities directly; they have co bereconstructed from data obtained by surveys of rtcem landcharacteristIcs. Second, lhe economic and social analysis of rhe Jp-

, W. Eisl1er, former ,t1Jdcnr of the Albcrl Eggcs van GiHen In't;'UUI "oor Prle- en Prmohistoric University of Amsccrdam (The NCtherlands); H. Kun<:rll1ans,lnsLi,ulll voor Prehisroric, Univcr~ilY of Leiden (The Nerherlands); A.T. Wymslra,Hugo de Vries Laboralorium, University of AmSlerOJm (The Ne[herl~nds) DOW

living ;n New Jersey (USA.)

t45

fig. 1 . Sta~es in th" I.ncl evaluation approach in Physical GeD~raphy And Archaeo·logy (Adapmj from Erinkm;\)'\ & Young 1976).

proach as used in physical geography has ro be replaced by mo­dels of prehistoric socio-economic siruations. To construct thesemodels i..n.formation on the ecological and technjcal requirementsof different kinds of land use as well as data on the economic :tndsocial conrexr has ro be generared by using erhnographic, archaeo­logical aod historical sources. The outcome is an expected formof land use for every chosen socio-economic model. Third, thepurpose of using rhe land evaluation approach in archaeology isto evaluare our model.s. The comparison of the expected form ofland use with the archaeologically recorded land use provides abasis for modifyng rhe models. We repear this procedure until rbeoutcome fits besr wirh the archaeological record.In the land evaluation approach our reconstructions of rhe pa­laeoenvironmenr are based upon basic surveys and arc currendy~vailable from geology (Segre 1957b), pedoJogy (Sevink et al. 1984),and the zoological material from excavations ill and around theAgro Pontino (Bienj 1984; Blanc & Segre 1953; Segre & Ascenzi1956; Segre 1957a; Taschini 1964; lei 1953). Data from a palyno-

logical survey of the area, however, are notab] y lacking, and it isthis lack thar prompted the collection of the Mezzalu na pollencore (Eisner er al. 1984).In this article, we first mention previous archaeological and eco·logical studies, and summarize the pedological evidence. We thenpresent the analyrical resulrs of rhe Mezzaluna pollen core, rhefirst continuous core from the Tyrrhenian coast, and give threetentative reconstructions of the vegetation in the survey area fordifferent rime periods using rhe present-day distriburion of soil cy­pes and the pollen data.

2. The Agm Pontino Survey

The Agro Pontino is a coastal plain, about 60 km long and 15 kmwide, between Roma and Naples. Previous archaeological workindicares that the area has been cominuously ill habitared since theMiddle Palaeolirhic. The most important Palaeolithic sites are Ca­nale Mussolini (Blanc 1937; Blanc et aL 1957) and the oves in Mon­te Circeo (Blanc & Segre 1953). Surface scmers of Palacolithic Illmrools are found in many parts of the plain (Bierti 1969; Blanc 1937,1957; la Rosa 1984; Radmil1i 1974, 1978; Voorrips et a1. 1981).Mesolithic-Epipalaeolithic sites in the Agro Pontino are Grom]olanda (Monri Lepi..ni) (lei 1953), Riparo Blanc on Monte Cir­ceo (Taschini 1964,1965,1968) and several surface sites (Bimi 1969;Muss; & lampeui 1978; Voorrips et al. 1981).The evidence for habitation during the Neolithic and Bronze Ageis less well-documented. Neolithic ponery has been found at theCanale Mussolini (Blanc et al. 1957) and at some surface locarions(Blanc & Segre 1953). Bronze Age finds come from Caterattino(Blanc & Segre 1953) and several sites at the perimeter of rhe AgroPomino (Colonna 1974).The scone tools arc fabricated almost exclusively from flint peb­bles which are found in the coa.~ral zooe where fossil beach-ridgeshave beeD incised. The Mousterian assemblages made from thesepebbles h;lVe been designated as Pontinian (Blanc 1939). Similar­ly, rhe Circeiano (Blanc 1939) is considered to be tbe regional va­riant of the Aurignacian. The lighter stOne indusrries (Gravertiano,Epigravertiallo, Mesolirico), as well as the industries found in as­sociation wirh Neolithic and Bronze and Iron Age pottery, arealso fashioned primarily from beach pebbles bur have not beengiven local names. It is norable that the artifacrs of obsidian, whichis opaque and very hlack and comes from Palmarola 30 km offthe coast, rend not to be associated with pre-Neolithic assemblages.Very lildc information about the evolution of palaeoenvironmenrsof rhe Agm Pomino is available. Fauna! remains in the stratifiedsites on Monte Ci reeo (Blanc & Segre 1953; Piperno 1976-77), the

BasicSu rveys

!QualitativeLandClassification

!Economic andSocial Models -

1QuantitativeLandClassification

1PrehistoricLand Use f---

BasicSurveys

~

IQualitativeLand

i Classification

!Economic andSocial Analysis

!QuantitativeLandClassification

1FutureLand Use

146

THE AGRD PONTINO ~IJRV[V: R£SUliS t-ROM ;, HRST rOLl1'.N COJU:

~~ --- - - - -.

"/

\

........... "

\\

.' ~.

..r.... ...""'­, -''-v-.-t:.

'.; M') -', r I

-",

S ru. 'Co C!RC:~O

,'-.

.,'~ ", .

i ./ (

'.,

H 0 ~i .(~, it' Er, '" ;-~'" \:1',

T JP,~ C ,V 0

M t.. f? C

XI

. f, \

l

\

i ~,t ) .'

"/ r

" , I.,'t.

"J";'\

.' \/

/)),

.:\' .

//-

.~,./

,\ ./

.~/" i, ./I

.::...

Fig. 2- The major ;edinlcnr..ry complexes in the Abm Pontino (AdlplCd from DUlveJwoo, den 19S.\, 1985; "an Huime.de 1983; K,mtrmons 1980; Sevink cI.1 19R2.\984; drawing HIP).1 beJch rid~e depo~it~, TerrJcina levd; lIlagoon.1 depost;', TCHacilla level, 11l be~(h ndt;c etepos;t<, Borg.o Errn3da level; IV bl\oon.l deposils, l3oTgo Ernud. Icvtl;V l",,,h ndge depmits, Mimunlo level; VI bgoo,uJ deposits, Milllurno level; VII beach ridj\e deposits, Lu;na level; VIII IagoonJJ deposits, Latin, I~",.I; IX ;\coJj~nJeposifs; X lUff deposils; XI Iral'crllnc; XII alluvial ,\Od L'olluviol dCI'Osits; XIII recenr eolluvi".,lllJviJI valley fills.

147

THE AGXO rONTINO SURvty: HSULTS fROM A flRST rOLl-EN eou

Momi Lepini (Zei 1953), the Monti Ausoni (Biwi 1984), and thePontinian Plain (Blanc 1935; Segre & Ascenzj 1956; Segre 1957a)show changes io the larger mammalian species throughout muchof the Wiirm and possibly somewhat earlier. The only site withfaunal remains dated to the Holocenc (Barker 1975), Riparo Blanc(Tascbini 1964), indicares that shellfish were part of the diet ofMesolithic peoples. The larger mammal species found there arealso present at sites dared to the end of roe Pleisrocene.There have been no previous palynologic.al Studies of this area.Macrofloral remains preserved in the peat layers and associatedwith Mousterian wols (Tongiorgi 1936) provide evidence for 10­01 vegetation changes during a limited period of the Wiirm. PriorCO our scudy, vcgerarional changes during tbe Late Glacial and Ho­locene could only be inferred from extraregional evidence (see espe­cially Bonatri 1970; Frank 1971; for general overview and referencessee Butzer 1971 and PhiHips 1980).Since 1967, the area has been studied by the Institute for PhysicalGeography and Soil Science of rhe University of Amsterdam,which has resulted in a detailed soJ map of part of the Agro Pon­tino (Sevink et al. 1984). Now the mapping of the area has beencompleted.

J. Physiography and soils

The Agro Pomino is surrounded by the Mont! Lepini, the MontiAusoni, the Tyrrhenian sea and tuff covered hills south of Rome.Tbe mountains) including the isolated Monte Circeo, consist main­ly of calcaric material and were iormed during the Mesozoic. Thetuff cover on the hills NW of the Agro Pontino dates from a pe­riod oi volcanic activity tbat staned about 1.0 MY and ended about0.35 MY ago. The Agro Pontino can be divided intO two parrs:a graben, approximately 7 km wide running the length of the re­gion, and a more elevated 20ne bordering the Tyrrhenian sea. Thegraben is part of a hon and graben system, formed mainly duringthe Middle-Pleistocene. This formation was accompanied by ex­tensive volcanic dctivity. The graben is mainly filled with Holo­cene peary and clayey sedimems, but in its nortbwestern panPleistocene clays, travertines, and tuff deposits of the lower ruffcomplex of the Lazio Volcano occur at the surface, and near themountains parr of it is covered with nuvio-colluvial deposits. Onthe basis of the soil surveys four marine terraces have been distin­guished in the coastal zone. Each terrace consistS of a sandy beachridge and a clayey lagoon (Sevink 1977), representing different sealevel changes during the Pleisrocene.The soils (figure 2) in the area reflect the influence of parent ma­terial, drainage, slope class, and time. The drainage in the graben

148

is poor and there is no copographic relief. The dominant soils inthe central and southeastern parrs of the graben are HisrosoJs andGleysols (FAO/Unesco 1974), and those in the clayey north­western part are Verrisols. The soils developed in the well drai­Qed fluvio-colluvial deposits, where the slope class is level 10 gen­tly rolling, are Luvisol and Cambisols. The dominant soils in rn.etravertine and the tuU depositions are Chromic Luvisols (Duiven­voorden 1975, Sevink er al. 1984). Luvisols are formed in the well­drained, coarsely textured deposils of the older beach ridges of chemarine terraces; in (he youngesl beach ridge Calcaric Regosols arethe dominaoc soils. In general, the slope class for the beach ridgesis rolling to billy. In the fine and medium textured lagoona! depo­sits Gleysols, Venisols and Planosols are dominant and the slopeclass is level. In the southwestern part of the region rhe macinecomplex has been covered by extensive aeolian deposirs; in thisarea the slope class is rolling to hilly and Pbaeozems and Areno­sols are the dominant soils (Sevink et al. 1984).

4. The Mezzaluna Pollen Core

The location of the Mezzaluna pollen core is indicated on fig. 4.The pollen diagram (figure J) included in this report is a concen­tration diagram and depicts the estimated number of pollen grainsper cubic centimeter, which are assembled intO groups of specieson a synoecological basis (t3ble I) (Rick!i 1943; WaIter 1968).A piston core system was use 10 extract 910 cm of graben fillingfrom Mezzaluna area of the Agro Pontino. Tbe section obtainedby the core was composed of clay, sand, shell, and peal.Tbe samples, which were caken al approximately 10 cm intervals,were boiled in KOH and coocenrrared with a bromoformlateo­hol mixrure. A fixed amount of exotic pollen (Eucalyptus) was ad­ded to each sample. The concentration diagram is calculated on(he basis of the Eucalyptus Count and drawn by computer (Ben­ninghoff 1962; SlOckmarr 1971).The poUen sequence was divided into zones based on gener;!1 ve­getation lrends combined with rhe major strata identified in thecore. The zones have only local significance; for a more regionalzoning system, more sections would have 10 be analysed. The pol­len of dry, open vegetation, characreri2ed by Poaceae Artemisia,and Chenopodiaccae, alternates with arboreal pollen, primarilyQuerClls, Alnus and Pint/so

Zone A (9 [0-842 cm) is composed of clay sedimenl, with Poaceaebeing the dominant pollen type and high values for Arumisw. Pol­len and spores of fresh water plants arc also present in highamounts.

Zone B (814-770 cm) consists of a layer of sand with shells from

W<N'DY ETSN'Elt. Ii.\NS ~'MEltMANS 8< AI.£X T. WYMnKA

MEZZALUNA

LDcation 41 0 22' N 130 \0' E anal. W. Eisner

;El(D'"-09:

S cQ Ul'" 1; a- '"!(>~ ':. o 0 :.:n.. '" 3- ~ " ",3

~[ e. :l: -< g,:;s'" '" '" it ~ ~ ~~:i' '" ~;:;;-< '"

Cl

Dl

C2

0/

D3

N umber of POllen Grains per cm 3

----....~--

9.860~130

GrN-HO&1

1/,590:220Gr~ .. I'S'Q

15.850:500GrN ·"Q35

}(.!:;50=9S0GrN.tt30t

p p

• •p p

p •

p •

3

4

p

p

6 ppp

p

7 7~\ c

~>~-A

IIIo(l.I: ~C'~I

Wlth ch:l(~u~!

l.it:'U "',own peltWllk \Vorwj Tcmtln,EEl.. fI.gfa".1 Arboreal Ex"a·local

Arbor8i/1FrSfhwall,'f Sreppe IJry, If/d,,"r.,.,

Of/M 01 HumnnInHuence

local 'Ierbs & Gram" local Arboreel

EEl 0,(.1( d.t)'l')" pnl .... ,l~!

MJ((O pl"nt yt'm.m,

CO,""posile Groups Df ';peclBS

Tu.((

S:IIn,J ...... '11 m"'flnc

~"'cll

[[]]]]] CI,y

Fig. 3 - Men.,I"n., poUen ,{jal;r,rn.

149

nn: AGRO rONTINO SU~V(;Y: lU'.SU1.TS fROM A H~ST POLLEN eou

Table I: Species included ;n composile I;rollP~ used for lhe M~-naJuna poUen dio­gra.m (Figure J).

which virtually no pollen could be extracted. Remains of Hystri­chosphaerideae signify a marine envlronmenr.

Zone Cl (769-490 cm) consists of peat and is characterized by thepredominance of pollen from herbaceous vegetation; fresh watervegetation pollen is also well represented. From 640 to 630 cmtbere is a ruff layer with granules of fioe volcanic material mixedwith organic soil. From 570 to 560 cm there i~ a greenish layerwhich contains volcanic m;lteriaJ. Both of these layers are charac·rt:rized by high and abrupt rises of the values for Chenopodiaceae.

Zooe C2 (489-390 cm) shows a rist' and decline of Pinus, the be­ginning of a sharp dedi.ne of Poaceae, and a sready rise of Quer.(us. Small amounts of other woodland pollen appear.

Zooe DJ (389-220 cm) consists of pear. A/nllS and Que-rcus beco­me abruptly dominant, whereas Artemisia and Chenopodiact<le

Regional arborc~!

Abh'f;I,,,,8~"lJla

CDryj"U~

CoryJ'tJi

rog'LL-:

O'rryoPicnPiIH.J~

Quercusf/,dtt'(J

IndiC'3tors of

Hllma..n influence

ClJtldnt!"(J

PI4fJ1agoRbJJS

s,<"pp<

£phlldT"}£Juiprnrr

A,r~mi&ju

Aruuth/)b.CI!"lij&l'~tJ

HcliD",blf,.,."n1,S4t,gtJiso,bo

~xrr.a·loc.a.l :nboreaJ

Frax;,msTamonx[j/ip

Uh-ff11.f

Plo/m/JI

Rbiurmauu

Locll herbs and ~tl1KS

Chr"opoJiou;aePoaceD~

RtDJIJn(;'U/,,£nu

CYPUIUCD(

Sympby","'ApiD'~lU'

Dry. open

PirlQCln8/)rtJgo

8fJ~U!

C'SllJ~

DfJpJmt'DrOUN

Dipu'lJsEriC6Hyp".n(umLArnuu~'Je

MyrtuJ

LoC:tJ arboreal

AJ"us

Sol",

L~mna

My";epby(Jum

Nupb,,,Nymph~fO

POIt:lm/)gf'(on

Srr. a/oiduTypbil,(rlJe

SpblJgnfJnJ

become negligible. Other indicators of increased forest cover alsooccur in this zone.

Zone 02 (219-120 cm) consi.m of very black pear in which highproponions of charcoal afe found. Alnus is (probably) dispbcedby Dyopt.eris as a local element Jnd high values for Vit!5 sp. arepre~enL The proportion of herbs to [feeS increases for the firsttime aher zone Cl.

Zone D3 (119-50 cm) consists of woody peat which gradually be­comes drier until the top soil is reached at 50 cm. Alnus rises again,Vilis sp. drops sharply and, with the exception of Ulmus ;lnd Sa­/ix, other arboreal types also diminish. There is a strong increasein berbs, notably Asteraceae.

5. InterpretatIOn a/the pollen diagram and pa/aeoenvironmental re­constructions.

The interpretation of the palynological results is presented accor­ding co the 2On<ltion scheme above. Limited and tentative p~laeoen­

vironmenral reconstructions relating the vegetation represented inthe pollen core lO the soil rypes have been devised for zone Cl,Dt and D2. The division of the Agro Pontino into subareas is in­dicated on figure 4. Figure 3 gives lhe C14 dates.

Zone A: It is most likely that this section is the deposition of .:I

fresh water lake.

Zone B: The strong possibility of a sea [ransgression is indicatedby the unbroken shells of the Zone B sand layer, and by the Hy­strichospbaeridea remains.

Zone Ct: The dominant vegetation postulated for t.:lch subarea(figure 4) is as follows:A - vegetation of Poaceae, Plnus and Chenopodiaceae;B- Steppe vegetation with Ephedra, Rumex, Juniper and Arlemisla;C - fen vegetation with Phragmites and Cyperaceae;D - sparse oak woods;E - Pinus, Betula and Abies.

Zone C2: A general cominuarion of the previous situation, witha natural succession to climax vegetation influenced by more hu­mid conditions.

Zone Dl: The dominant vegetation is as follows:A - vegetation of Pinus, Poaceae and Pislacia;B - parkland vegetation with Artemisia and low shrubs;C - alder {en;D - oak fores[;E - mixed oak forest belt with Fagus, with Carpinus occurringat higher elevations.

150

\'('rNDY EISl''fJ<, HAN$ llAt.lERMANS & HEX T. WYMSTPu\

fig. 4 . Map of th" Agro Ponlino region showing the di,tnhution of dominanl....il tyjXs and are.tl. subdivision (or synoccolo~jcalgroup' used in p.uacOCllviron·mt'nla.1 reconstructions 01 pollen wnes Cl, D I aM D2 (map ~dapted from ScvlnkCl .tl. 1984).

d. Pollen Zone D 2" - 1)Uflot' "'~l'(ation

B· Dry ope" l,IegCllri()n

C DryoPI/,u.

1'). QJJt'fCUj "e>.: {ores., mJ.cchll-g3mgue. ~nd V,e'f rp...: - Mn(c.l O:lK (lrcrt l.dt

LEGENDX - Ifn J( io,~ of

Mt.lI.:llurn ltlt<..

QJ - AD-B_-cQ2j-D[ID -ED-r_ -mnJl:rfl (1\~'Snl

I:IFil\ln~

... Dominam So~ Types,\ • Chto.-nl~ IU\luo11 (omlcJ In s:Jndy lJCJd,

Ilrl,'" .$(lJ ;u:llhan dCPOiltiB - ¥hntKols. fmmL"J .n (()S"5.1 IJogo(\n~

C .. t1l!lo~l" '0,1 (;1t..\I~nl~ furmed III lhe

gOht .... ~f\"

n . l.UV']":U::l~5: 3nd C3ml'lsol-t (UnTlnJ In

("olluvlI.unJ- . I.llhosoh;'loo Rc(ul'.II\;u (ormcLl on

m<Junt~1n t.ltlpCi,

I - A'<:J~ ~lfl1 muhiplc: ~()IIIYP':'S (.I/I(

IJIlIIIIJt",1 III ptJIIJI'rn'JJv"u»nlt"'ll1l

"'ff'")"'nJf ,iuJI()

~===~==~10.l<rn

o. Pollen Z<)nc Cl" . J'oau.;1t." Pi,,/A$ .Inl.J cJut7opodt.4u'QI'

It .. $tt'ppc VC'gc1.uionc .. Fnl vt"ger:uion

o . Sparw 031< wooJsI': .. P;JH.lt, f)~w/jJ J.nJ A bi~)

c. Pollen Zone 0 tA .. Pmvs. P/)d'f:Jl an.d !1J/tuja

B l-'<1.r.kl:md "'t~<-'I'UlOn

C' Aide: (enD Oak (nreS1

(: M I'(CJ 0.1" (orcsl heir

Zone D2: the domioant vegetation:A - dune vegetation of Pin us) Poaceae and PiSlaciajB - dry open vegetation;C - the alder vegetation is sudden.ly replaced by DIYDplms whichoften occurs when alder woods are thinned;D - rhis area supports rh ree types of vegetarion;!1 ~sseJl)blages:

1 - Quercus ilex forest;2 - macchia-garrigue. caused by deforestation of evergreen woods;3 - Vitis sp_, which is a~umed to be domesticated because of thehigh. concentration values;E - mixed oak forest belt.

Zone D3: The lower arboreal pollen cOD<:entration could be due

to human activity or [0 drier climatic conditions.General climatic trends c;ln be inferred from rbe palynological re­sulrs and Iheir interpretation. In zone C, dated by He to the LateGlacial, there is :\ predominance of open vegetarion, Poaceae andArtemisia) and typical steppe herbs suggesting chat che climace wasprobably cool and especially dry. During zone 01 rhe veget:\clo­na! trend is towards;1. closed arboreal vegetation consisting main­ly of climatic foreSl species, indicating a more humid and possiblywarmer clim;1tc. In zone 02 there is :\ (ecurrence of more openvegetation, but now the vegetation is more coosisrem with themodern Mediterr<1ncan environment. On che basis of 14C daresthis zone can be correlaced to the Central Italian Neoucruc period.Ic begins sometime after the Early Neolitbic and extends co theinception of the Aeneolithic. The vegetational reconstruction abovesuggests [he presence of human influence at about this time be­cause of the combined evidence of diminishing alder woods, lo­wer Que-rcus value.~, a macchia-garrigue, and pOSSIbly dornest icateclgrapes. This <1ssemblage, however, could just as e<1sil)f appear illa natural setting, given the drier climatic conditions, and more pol­len zones must be analyzed in order co reach any conclusions re­garding human acrivity. in zone D2.

6. Conclusions and plans for future research

Analysis of [he Mezzaluna core IS a significant contribution to thepalaeoenvironmental study of rhe Mediterranean in general andto the centralltalian Tyrrhenian coastal region in particular. On­ly three orher analyses of pollen cores covering approx.im;H~ly thesame period have been reported for Central Italy (Bonatti J970;Fr<lnk 1969); all of these cores were taken from deposics inlandat higher elevarions.The Mezzaluna core is only a first step, however, roward the re­construction of palaeoenvironmems. At least twO more cores ofcomparable quality must be analyzed before we can achieve an

151

Tl-1E AG~O PONTINO SURVI"t: R.ESULTS FROM A FIRST POU.EN CORE

acceptable level of evidence for the regional vegetatioo changes.It is also desirable that we obtain samples of deposits dating fromearlier periods. These deposits can be found i..n the graben aDd atsites near tbe coast (Tongiorgi 1936).We have secured a series of poJlen cores from lagoonal depositsalong the coast. While we expect the individual cores to cover arelatively shore span of time, we hope that with aid of radiocar­bon dating and association of regional pollen changes the corescan be seriated. These samples wiU also be used for palaeoenvi·ronmencal reconstruction of the areas not included in this study.This article has shown the data from basic surveys can be integra·ted (0 reconstruct the paJeoenvironmenc or, in land evaluationterms, to construct a qualitative land classi£iC2tion. Even thoughthe paJynological survey is incomplete, there is sufficieor infor­mation co begin to develop procedures for the remaining steps dee­med necessary for using land evaluation in archaeology.

Acknowledgements

We especially wish to thank S.H. Loving for her help in editingthis reporr. Sincere thanks are also due to Dr. A. Voorrips, Prof.W. Groenman-van Waateringe, A. Vis.ser, and C.D. Troostheidefrom Albert Egges van Giffen Instiwul voor Prae-en Protohisto­rie, University of Amsterdam; Dr. J. Sevink and Drs. J. Duiven­voorden from the Fysisch Gcografisch en BodemkundingLaboratorium, University of Amsterdam; the staff from tbe Hu­go de Vries Llboracorium, University of Amsterdam, especiallyProf. T. van der Hammen; L. Boonstra; Dr. C. Stibbe from theISlttuto Glandese, Roma; Dr. A. Bietti from the Istituw ftalianodi Paleomologia Umana, Rome; Dr. M. Piperno from the MuseaPreiscorico Ernografico Luigi Pigorini, Rome; and A. Arnoldus­Huyzendveld, Rome.

R.EfERENCF.5

Barker G., 1975, Prehiswyic ternwne> and economies in Ceilll'allLaly, inE.S. Higgs (ed.) Pall.l.eoeconomy. Papers in economic prehistory vel. IT. Cam­bridge, pp. t 11-175

BArker G., 1981, Landscape and society. Prt·hi"tonc Centya!llaly. London.Beek K.j., 1978, Land evaluation JOY agrimltural de"Jelopmmt, iLlH Pu­blication 23. WagCtllngen.Benningho({ WS., 1962, Calwla1irm oj pollen and spores density in sedi­ments by addition oj eXMic pollen in known quantities, ~n Pollen et Spores4, pp. 332-.333.

Bieni A., 1969, DJ.II: stA7.ioni di wperficie del Palevli/ico Superiore mUd Pia­mn'a Pontina. in BP! n.S. 20. 78, pp. 7-.39.

152

l>iwi A., 1984, Primi multAti della scavo ne! giacimemo I!pigraveIl41r1o fi·na/eeli Ripam Salvini (ferracina, Latina); Attt dell~ XXIV riunione scien­tlfica dell'[slituro ltaliano di preiswria e protoslOria, pp. J95·205.

BI.ne A.C., 1935, Sulla jauna qualemaria ddl'Agro Pontino, in Aui Soc.To~ cll Se. Nat. XLIV, 5, pp. 1·3.

Blanc A.C., 1937. Nuovi gidcimenti paleolitici del Lazia e della Toscana.in StEtr 11. pp. 273·J04.

Blanc A .C, 1939. Un giacimemo aurignaziano rnedlO ne/La Grotla del Fos·sel/one a/ Monte Cin:eo, Atti della XXVU riUlltOnC dell. Soc. Ital. Prog.Sci. 27 (6), pp. 215-221.

Blanc A.C., 1')57, On the PletsLOeene sequence o/Rome. Pal.aeoec%gic andA rchaeologie correlations in Quaternarifl 4, pp. 95·109.

Blanc A.C. & A.G. Segre, 1953, Excur"ion au Mont Circe. Guides rNQUA.TVe congrcs internarional, Roma.

Blanc A.C., HI. de Vries & M. Follicri, 1957, AfiY'St CI4 d.J.tejor the Wltml1 chronology on the Italian (oast. in Quaternaria 4, pp. 83-9).

BonartJ E., 1970, Pollen sequence in the lake sedimmts, in G.E. Hutchi.n­son, lanula·an account ojthe history and the development ojthe lago di Mon·lerDsi, La,ium, Italy, in Transactions oj the Ammcan Philosophical Society60, pan. 4, pp. 26-3 I.

Bou m~n D. & G. ROI, 1982. Bodcm/warJ omgeving Fog/iano, Internal re·po" fysisch Geografisch en Bodemkundig Laboratorillm Universlteil vanAmsterdam.

Brinkman R. & A. Young (eds.), 197(" A jramework/or land l.'7.Jaluatwn,ILRI Publ 22, Wageningen.

Brinkman R. & A.J. SmYlh (ed.), 1973, Land evaluatlOnjor rural purpo·ses. 1LRI Pub!. 17. Wagemngen.

Butz.er. K. W. 1971, Environmmt and archaeolof;Y. An ecolof!.ical approachtu Prehistory, ChIcago.Colonna G., 1974. Preistoyia e ProtoslQria di Roma e del U:tzlo, in Popolie CiviltA dell'rtAlia Antica 11, Rama, pp. 275·.H6.Dent D. & A. Young, 1981, Soil StlYvryand Land Evaluation, London.Duivcnvoorden j., In\ Een bodemkt1.flrt in de omgeving van Borgo Mon·cello, Latium, ItalUi, Internal repon Fysisch Geograflsch en Bodemkun­dig Laboralorium Universiteir van Amsterdam.Duivenvoordc:n J., 1985, Soils and Landscape developmmt ofthe area NWof utina, Agro Pontino (1Ialy), Inlcrnal report Fysisch Geogmfisch en Bo·dedemkundig Laboratorium Universileir van Amsrerdam.

Eisner W., H. Kamermans & S.H. Loving, 1984, Ri~ultati preltmmari diWla nCeYCa pa/molog~a ndl'Agru Pontino. Ani della xxrv riunionc scien­ttfica dell'!slitulo Ttaliano di prei~loria e protosloria, pp. 207·211.

FAO/Unesco, 1974, Soil mdp Dj/be world 1 : 5.000.000 volume I, Paris.

Frank A.H.E., t 969, Pollen sltatigraphy o/,he lake njl/ico (Central ItAly).iD Pa/ncography. Pal<U!ociimatology, PaLuoccology, 6, pp. 67-85.

Huissreden K. v.m, 198.3, Bodemwyt omgevin~Borgo Baini1'ZZ1:l·B0"X0 Pia.-:Jt>,Internal report Fysj~ch Geogra(jsch en Bodemkundig Laboracorium Uni­versileir van Am~{erdam.

Kamermaos, H., J980, l/erslagfysisch gl!ografisch onder'loek omg('1)ing Leferriere, Imernal report ISli[UlO Olandese, Roma.Kamermans H., S. Loving & A. Voorip~, 19115, Changitlg pal/erns ({pre·historic land use in che Awo Ponllno, in C. Malone & S. StOdd<l,r1 (c(k) Pa·

WENDY "ISN Ell , KhNS llAMEIlMANS ilL AL£J( T. WYM5TR.A

pers in [/dLian ArchaeoLogy rv, rarr i. The Human Landsc~pe,BAR inter­nacion:d Series 24), pp. 53-68.

K~mermans H., S.H. Loving & A. Voorrips, 1986, Anhaeology and landeva.lualion in the Agm Pomino, Ani del COClvegoo di studio sulla vaUe Pon­[ina nell'~ntichi[a, in press.

Keller D.R. & D.W. Rupp (ed,.) 1983, ArchaeoLogical rur<ve-y lT1 the Medi·{('"YTrmean area, British Archaeologiol Reports, Jmern:Hional Series 155,Oxford.La Rosa M., 1984, L'imieme li/ieo pontinumo del Podere lA Rosa (Bm-goS. Maria - Uttina), in Studi per I'Ecologw del Quaten1rJrin 6, pp. 9-27.

McRae S.G. & cr Burham, 1981, Land evaluation, Oxford.Mussi M. & D. bmpeni, 1978, Sili prei5lorici di superfwc nel/en7lOrlOdi S. Felil:e Circeo (Prov. di LotintJ), in Quaecmaria 20, pp. 41-48.

PhiUips P., 1980, The prehistory 01 Europe, London.

Piperno M., J976-77, Analy.'c du sol MouSll:rien de la Groac Guat/an auMone Circi, in Qua/ernaria 19, pp. lI-92.R.admdli A.M., 1974, Popoli c ei-viltA dell'[tLllia Antiea, T, Roma.

Radmil.li A.M., 1978, GUiM del/a preiHoria ItaLiana, Fircnze.

RikJi M, 1943, Das fflanzenkle-i.d der MiaeLmeerlander, Bern.Segre A.G., 1957a, Contri!nllo al/o studiO del Qualernttrio dell'Agro Ponti·nO: il travertino di Cisterna di Latina. GiaeimC1llO del Paleolilico Superiore~ del Bron7.o, in QuateYJ1t11w 4, pp. 191-197.

Segre A.G., 1957b, NotLl SUI n.1R-vamenti ~1;Uiti nel Foglio 158 Lalirw. de/la,-drtll geologiat d'ltdia, in BalLettino del servizUJ gcologim d'ltalio 73, pp. 569-584.

Segre A.G. & A. Ascenzi, 1956, Glaclmenti del pa/eo/itJen supmore e dcl

brOJlZO nei eravertilJi tii Cisterna (Laeina), in RIVlSla dj' Antyop%gia 43,pp. 367-382.

Sevink J., 1977, Hel bodemnnderlOck In de fysirchc geof,rafie, in KN.A.G.Geografisch tiJi:i>ehrifi 11, pp. 189-194.

SevinkJ., P. Vos, W.E. Weslerho((, A. Stierm~n & H. Kamcrmans, 1982,Sequencc of marine terraces near utina (Ag'm famina, Central It.aly), in

Cauma 9, pp. 361-)78.

Sevink J-, A. Rtmmelzw~1 & O.c. Spaargaren, 1984, The soils olsouthernLazio fl'uI adja~:r:nr Campania, Amslerdam.

SlOckmarr]., 1971, Tablets with spores used 1Yl absolute pollen analySIS, inPollen e/ Spores D, pp. 615-621.

Taschini M., 1964, l1/ivello mesoli/iw del Rlparo Blanc al Mume Ci'rcco,in BP} n.s. IS: pp. 65-88.

Taschini M., 1965, Nuovi or/nomi oJwraLi nel Ripar() Blanc al M()nte Cir­ceo, Ani VI Congr. lntern. Scienze Preist. e Protmt. vol. Il, pp. 143-144.

TJ.Schini M., 1968) La data/ion au C14 de l'abri Blanc (MoTll Cm?). Quel·ques ob1.er-varions sur Le mesolitbiquc en [la/le, in QfidlenUJna 10, pp. l37-165.

T ongiorgi E., 1936, Documentl per Jp s/on'a del/a veget.azione deL/a. Tosca·no e del Lazio, in Nuovo Giomale Bntaniw Italiano 43, 4, pp. 119~224.

Voorrips A., S.H. Loving & H. Kamermans, 1981, Report on a preliminA'ry archaeological sur<vry oj/be Agro Pontino (Province of Lalina, Italy), Jo~

teroal report, Amsterd~m.

Waiter H., 1968, Die Vegecation der [rde in oko-physiologische Betraehtung,Band il, Jena.Zei M., 1953, Esplorazione di groue ne! p-res5i rii Sezze Romona., in BN Tl.s 9, pp. 102-107.

153