w+charm poster

1
Measurement of the produc1on of a W boson in associa1on with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector Giacomo Snidero (Queen Mary University of London) Giacomo Snidero for W+charm analysis team (G. Aad, H. Arnold, L. Caminada, L. Cerrito, K. Lohwasser, M. Shapiro, G. Snidero, M. Vanadia, C. Weiser) • Select events sample with a charmjet, idenFfied by a semileptonic decay into a muon within the jet (soJ muon tagging, cjet: p T >25 GeV, |η| <2.5). • Cutandcount events to obtain signal yield. • Major backgrounds (datadriven esFmated): W+lightjets, mulFjets, Z+jets (muon chan. only). Other backgrounds (Monte Carlo esFmated): tquark, dibosons. • Leading systemaFc uncertainFes: cquark decay modelling, jet energy scale. W+cjet analysis • Select events sample with D (*) meson hadronic decays, reconstructed from tracks with the correct charge combinaFon. 4 decay channels: D→ Kππ , D* → D 0 π with D 0 → Kπ/Kππ 0 /Kπππ (D (*) :p T >8 GeV, |η| <2.2). • Signal yield measured from fits to the mass distribuFons in the different decay channels. • Major backgrounds (datadriven esFmated): W+lightjets, mulFjets. Other backgrounds: tquark. • Leading systemaFc uncertainFes: tracking efficiency, signal modelling. W+D (*) analysis The producFon of a W boson in associaFon with a single charm quark (W+charm) is studied using 4.6 pb −1 of pp collision data at √s = 7 TeV collected with the ATLAS detector at the Large Hadron Collider (LHC) [1]. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to muons (W+cjet) or by the presence of a charmed meson (W+D (*) ). Cross secFons integrated over a fiducial kinemaFc range and differenFal as a funcFon of the pseudorapidity of the lepton from the W boson decay are reported. Results are compared to the predicFons of nexttoleading order QCD calculaFons obtained from different parton distribuFon funcFon (PDF) sets. The measured cross secFons support the hypothesis of an SU(3) symmetric composiFon of the light quark sea in the proton. Abstract • W+charm cross secFon measured with a total uncertainty of ~ 57%. • W+charm favours PDF sets with enhanced squark contribuFon (ATLAS epWZ12, NNPDF2.3coll), supporFng symmetric light quark sea. PDF sets with suppressed squark sea (NNPDF2.3, MSTW2008) are disfavoured. • Consistent picture from the W+cjet and the W+D (*) analyses. • Measured strangetodown PDF raFo: •W + +c/W +c cross secFon raFos, which provide sensiFvity to strange/ anFstrange PDF difference, indicate a symmetry to within ~ 3%. Results • W+charm is produced at LO by the scauering of a gluon with a downtype quark (d, s, b). The contribuFon of each quark flavour is determined by CKM matrix. At LHC energy, the strangequarks iniFated processes account for about 90% of the total. • W+charm is thus sensiFve to the strange PDF, which is loosely constrained by neutrinonucleon deep inelasFc scauering data [2]. Some PDF analyses suggest squark sea is suppressed with respect to the dquark sea; others, like an ATLAS analysis using W/Z cross secFons data [3], support a SU(3) flavour symmetric sea. • The W boson is selected via its leptonic decay into muon or electron (p T l >20 GeV, p T ν >25 GeV, m T W >40 GeV). • Two independent analyses, differing in the the cquark tagging method, are performed: W+cjet and W+D (*) . • The W boson and cquark charges have a full correlaFon → signal has "opposite sign" events. Backgrounds are (moistly) charge symmetric and thus reduced by evaluaFng the signal yields as the difference between opposite and same charge (OSSS) events. (W+cc/bb backgrounds cancel out). Measurement moFvaFon & strategy m(D) [GeV] 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 OS-SS Events/12 MeV 0 500 1000 1500 2000 ATLAS Internal -1 Ldt = 4.6 fb = 7 TeV s WD ± π ± π ± K ± D Data Fit Signal Background m(D) ATLAS UK 2014 r s 0.5(s + s)/ d = 0.96 +0.16 +0.21 -0.18 -0.24 [GeV] T SMT jet p 30 40 50 60 70 80 90 100 110 120 OS-SS Events / 5 GeV 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 3 10 × Data W+c W+light Z+jets Multijet Top+Diboson Internal ATLAS -1 Ldt = 4.6 fb = 7 TeV, s 1,2 jets ν μ W [1] ATLAS CollaboraFon, ATLCOMPHYS20131354; [2] NuTeV CollaboraFon, Phys.Rev. D64 (2001) 112006; [3] ATLAS CollaboraFon, Phys.Rev.Leu. 109 (2012) 012001. References x -3 10 -2 10 -1 10 d )/ s = 0.5 (s+ s r 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 data ) * ( HERAPDF1.5 + ATLAS Wc/WD ATLAS-epWZ12 HERAPDF1.5 ATLAS internal W 2 = m 2 Q c) - (W fid OS-SS σ )/ c + (W fid OS-SS σ 0.4 0.6 0.8 1 1.2 1.4 CT10 MSTW2008 NNPDF2.3 HERAPDF1.5 ATLAS-epWZ12 NNPDF2.3coll aMC@NLO ATLAS Internal -1 Ldt = 4.6 fb = 7 TeV (2011) s Data 0.02 ± 0.03 ± 0.90 Stat Stat+syst [pb] OS-SS fid σ 5 10 15 20 25 30 35 Data 1.0 [pb] ± 0.9 ± 21.2 Stat Stat+syst aMC@NLO CT10 MSTW2008 NNPDF2.3 HERAPDF1.5 ATLAS-epWZ12 NNPDF2.3coll ATLAS Internal -1 Ldt = 4.6 fb = 7 TeV (2011) s [pb] fid OS-SS σ 10 20 30 40 50 60 70 CT10 MSTW2008 NNPDF2.3 HERAPDF1.5 ATLAS-epWZ12 NNPDF2.3coll aMC@NLO ATLAS Internal -1 Ldt = 4.6 fb = 7 TeV (2011) s Data 1.9 [pb] ± 0.8 ± 37.3 Stat Stat+syst σ(W +cjet) σ(W + +D* ) σ(W + )/σ(W ) W+cjet r s parton momentum fraction x -5 10 -4 10 -3 10 -2 10 -1 10 ) d / s fraction of anti-strange to anti-down quarks ( 0 0.5 1 1.5 2 2.5 NNPDF2.3 collider only CT10 NNPDF2.3 epWZ MSTW2008 HERA1.5 PDF raFo s/ d cjet p T (meas.+theo.) (scale)

Upload: snidero

Post on 05-Aug-2015

39 views

Category:

Presentations & Public Speaking


1 download

Tags:

TRANSCRIPT

Page 1: W+charm poster

Measurement  of  the  produc1on  ofa  W  boson  in  associa1on  with  a  charm  quark  in  pp  collisions  at  √s  =  7  TeV  with  the  ATLAS  detector

Giacomo  Snidero  (Queen  Mary  University  of  London)

Giacomo  Snidero  for    W+charm  analysis  team    (G.  Aad,  H.  Arnold,  L.  Caminada,  L.  Cerrito,  K.  Lohwasser,  M.  Shapiro,  G.  Snidero,  M.  Vanadia,  C.  Weiser)

• Select  events  sample  with  a  charm-­‐jet,  idenFfied  by  a  semileptonic  decay  into  a  muon  within  the  jet(soJ  muon  tagging,  c-­‐jet:  pT  >25  GeV,  |η|  <2.5).

• Cut-­‐and-­‐count  events  to  obtain  signal  yield.

• Major  backgrounds(data-­‐driven  esFmated):W+light-­‐jets,  mulF-­‐jets,Z+jets  (muon  chan.  only).  Other  backgrounds  (Monte  Carlo  esFmated):  t-­‐quark,  di-­‐bosons.

• Leading  systemaFc  uncertainFes:c-­‐quark  decay  modelling,  jet  energy  scale.

W+c-­‐jet  analysis• Select  events  sample  with  D(*)  meson  hadronic  decays,  reconstructed  from  tracks  with  the  correct  charge  combinaFon.  4  decay  channels:  D→  Kππ  ,  D*  →  D0π  with  D0  →  Kπ/Kππ0/Kπππ  (D(*):  pT  >8  GeV,  |η|  <2.2).

• Signal  yield  measured  from  fits  to  the  mass  distribuFons  in  the  different  decay  channels.

• Major  backgrounds  (data-­‐driven  esFmated):  W+light-­‐jets,  mulF-­‐jets.Other  backgrounds:  t-­‐quark.  

• Leading  systemaFc  uncertainFes:tracking  efficiency,  signal  modelling.

W+D(*)  analysis

The  producFon  of  a  W  boson  in  associaFon  with  a  single  charm  quark  (W+charm)  is  studied  using  4.6  pb−1  of  pp  collision  data  at  √s  =  7  TeV  collected  with  the  ATLAS  detector  at  the  Large  Hadron  Collider  (LHC)  [1].  In  events  in  which  a  W  boson  decays  to  an  electron  or  muon,  the  charm  quark  is  tagged  either  by  its  semileptonic  decay  to  muons  (W+c-­‐jet)  or  by  the  presence  of  a  charmed  meson  (W+D(*)).  Cross  secFons  integrated  over  a  fiducial  kinemaFc  range  and  differenFal  as  a  funcFon  of  the  pseudorapidity  of  the  lepton  from  the  W  boson  decay  are  reported.  Results  are  compared  to  the  predicFons  of  next-­‐to-­‐leading  order  QCD  calculaFons  obtained  from  different  parton  distribuFon  funcFon  (PDF)  sets.  The  measured  cross  secFons  support  the  hypothesis  of  an  SU(3)  symmetric  composiFon  of  the  light  quark  sea  in  the  proton.

Abstract

• W+charm  cross  secFon  measured  with  a  total  uncertainty  of  ~  5-­‐7%.

• W+charm  favours  PDF  sets  with  enhanced  s-­‐quark  contribuFon  (ATLAS-­‐epWZ12,  NNPDF2.3coll),  supporFng  symmetric  light  quark  sea.  PDF  sets  with  suppressed  s-­‐quark  sea  (NNPDF2.3,  MSTW2008)  are  disfavoured.

• Consistent  picture  from  the  W+c-­‐jet  and  the  W+D(*)  analyses.  

• Measured  strange-­‐to-­‐down  PDF  raFo:

• W++c/W-­‐+c  cross  secFon  raFos,  which  provide  sensiFvity  to  strange/anF-­‐strange  PDF  difference,  indicate  a  symmetry  to  within  ~  3%.

Results

• W+charm  is  produced  at  LO  by  the  scauering  of  a  gluon  with  a  down-­‐type  quark  (d,  s,  b).  The  contribuFon  of  each  quark  flavour  is  determined  by  CKM  matrix.  At  LHC  energy,  the  strange-­‐quarks  iniFated  processes  account  for  about  90%  of  the  total.  

• W+charm  is  thus  sensiFve  to  the  strange  PDF,  which  is  loosely  constrained  by  neutrino-­‐nucleon  deep  inelasFc  scauering  data  [2].  Some  PDF  analyses  suggest  s-­‐quark  sea  is  suppressed  with  respect  to  the  d-­‐quark  sea;  others,  like  an  ATLAS  analysis  using  W/Z  cross  secFons  data  [3],  support  a  SU(3)  flavour  symmetric  sea.

• The  W  boson  is  selected  via  its  leptonic  decay  into  muon  or  electron  (pTl    >20  GeV,  pTν  >25  GeV,  mTW  >40  GeV).• Two  independent  analyses,  differing  in  the  the  c-­‐quark  tagging  method,  are  performed:  W+c-­‐jet  and  W+D(*).• The  W  boson  and  c-­‐quark  charges  have  a  full  correlaFon  →  signal  has  "opposite  sign"  events.  Backgrounds  are  (moistly)  charge  symmetric  and  thus  reduced  by  evaluaFng  the  signal  yields  as  the  difference  between  opposite  and  same  charge  (OS-­‐SS)  events.  (W+cc/bb  backgrounds  cancel  out).    

Measurement  moFvaFon  &  strategy

m(D) [GeV]1.75 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2

OS-

SS E

vent

s/12

MeV

0

500

1000

1500

2000 ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeVs

WD±π±π

±

K→±D

DataFitSignalBackground

) [MeV]0 m = m(D*)-m(DΔ135 140 145 150 155 160 165 170 175 180 185

OS-

SS E

vent

s/M

eV

0200400600800

1000120014001600 ATLAS Internal

-1 Ldt = 4.6 fb∫ = 7 TeVs

WD*±π)±π

±

(K→±π0D →±D*

DataFitSignalBackground

) [MeV]0 m = m(D*)-m(DΔ135 140 145 150 155 160 165 170 175 180 185

OS-

SS E

vent

s/M

eV

0100200300400500600700800900 ATLAS Internal

-1 Ldt = 4.6 fb∫ = 7 TeVs

WD*±π)0π±π

±

(K→±π0D →±D*

DataFitSignalBackground

) [MeV]0 m = m(D*)-m(DΔ135 140 145 150 155 160 165 170 175 180 185

OS-

SS E

vent

s/M

eV

0200400600800

1000120014001600 ATLAS Internal

-1 Ldt = 4.6 fb∫ = 7 TeVs

WD*

±

π)±π

±

π±π

±

(K→±π0D →±D*

DataFitSignalBackground

Figure 17. Results of the fits to the distributions of m(D) and �m = m(D

⇤) � m(D

0) in

OS-SS WD

(⇤) events. The fit results are shown in the inclusive sample defined by p

DT > 8GeV

and |⌘D| < 2.2: D

± ! K

⌥⇡

±⇡

± (top left), D

⇤± ! D

0⇡

± ! (K

⌥⇡

±)⇡

± (top right),D

⇤± ! D

0⇡

± ! (K

⌥⇡

±⇡

0)⇡

± (bottom left) and D

⇤± ! D

0⇡

± ! (K

⌥⇡

±⇡

⌥⇡

±)⇡

± (bottomright). The data distributions are shown by the filled markers, where the error bars show the sta-tistical uncertainty. The fit result is shown by the solid line. The filled histogram represents thesignal template normalised according to the fit result, while the contribution of the combinatorialbackground is shown by the dotted line.

– 51 –

m(D)

ATLAS  UK  2014

25

where

�ki = µ

ikm

i

1�

X

j

ij,kbj �

X

j

(�theo)ij,kbtheoj

!. (12)

The notation follows that introduced in Equation 9.1624

The matrix (�theo)ij,k represents the relative correlated1625

systematic uncertainties on the theory predictions and1626

quantifies the influence of the uncertainty source j on the1627

prediction in bin i and data set k. The parameters btheoj1628

are defined analogously to the parameters bj and rep-1629

resent the shifts introduced by a correlated uncertainty1630

source j of the predictions. The �2-function is minimized1631

with respect to bj and b

theoj with the cross-section mea-1632

surements, µ, fixed to the values determined in Section1633

IXA.1634

Equation 11 is further extended to account for asym-1635

metric uncertainties on the predictions. The asymmetric1636

uncertainties are described by parabolic functions1637

fi(btheoj ) = !i,j(b

theoj )2 + �i,jb

theoj , (13)

which replace the terms (�theo)ij,kbtheoj of Equation 11.1638

The coe�cients of fi(btheoj ) are determined from the val-1639

ues of the cross sections calculated when the parameter1640

corresponding to source j is set to its nominal value +S

+i,j1641

and �S

�i,j where the S±

i,j are the up and down uncertain-1642

ties of the respective PDF sets [75]. The coe�cients are1643

given by1644

�i,j =1

2

�S

+i,j � S

�i,j

�(14)

!i,j =1

2

�S

+i,j + S

�i,j

�. (15)

The �

2-minimization procedure implemented in the1645

HERAFitter framework [72, 76–78] is used. The cross-1646

section measurements di↵erential in |⌘`| are used to as-1647

sess the quantitative agreement between the data and the1648

PDF predictions.1649

The results of the �

2-minimization procedure are1650

shown in Table IX. The measured cross sections are1651

in agreement with all PDF predictions but disfavor1652

NNPDF2.3. In addition to the total �2, Table IX also1653

shows the individual contributions to the �

2 from the1654

experimental uncertainties, the uncertainties on the pre-1655

dictions and the scale uncertainty. For the predictions1656

obtained with MSTW2008 and NNPDF2.3 the scale1657

uncertainty is the dominant uncertainty. An improved1658

accuracy in the theory calculation could enhance the sen-1659

sitivity of the presented measurements to the PDF sig-1660

nificantly.1661

For values x 0.1, the HERAPDF1.5 PDF is mainly1662

constrained by the precise measurement of the proton1663

structure function F2(x,Q2) at HERA [72] which fixes1664

the quark-charge-squared weighted sum of quark and1665

anti-quark contributions but has no sensitivity to the fla-1666

vor composition of the total light sea. In the HERA-1667

PDF1.5 PDF, the strange quark distribution is ex-1668

pressed as an x-independent fraction, fs = s/(d + s).1669

The central value fs = 0.31 at Q

2 = 1.9 GeV2 is cho-1670

sen to be consistent with determinations of this fraction1671

using the neutrino-nucleon scattering data with an un-1672

certainty spanning the range from 0.23 to 0.38. This1673

model uncertainty is parameterized as an eigenvector in1674

the �

2-minimization.1675

The �

2-minimization procedure not only gives infor-1676

mation about the overall compatibility of the predictions1677

with the data, but also allows constraints on the PDF1678

eigenvectors to be obtained. HERAPDF1.5 is the only1679

publicly available PDF set where the e↵ect of varying the1680

strange density is parameterized by one eigenvector (fs).1681

The �

2-minimization procedure discussed above can be1682

used as follows to calculate a value for fs based solely1683

on the measurements discussed here while ignoring all1684

previous measured or assumed values of fs. The �

2-1685

minimization is repeated for theHERAPDF1.5 PDF set1686

after artificially increasing the uncertainty of the strange1687

fraction fs. This procedure corresponds to a free fit of the1688

eigenvector representing fs while all other eigenvectors1689

are constrained to the values determined for the HERA-1690

PDF1.5 PDF. A value of1691

rs ⌘ 0.5(s+ s)/d = fs/(1� fs) = 0.96+0.16�0.18

+0.21�0.24

is determined at Q

2 = 1.9 GeV2 and is independent of1692

x as implemented in the HERAPDF1.5 PDF. The first1693

uncertainty represents the experimental and theoretical1694

uncertainties and the second uncertainty corresponds to1695

the scale uncertainty of the W + c calculation. Since the1696

scale uncertainty is the dominant uncertainty, its e↵ect1697

is assessed separately by repeating the fit under the as-1698

sumption of perfect knowledge of the scale. The resulting1699

strange fraction is shown in Figure 14 as a function of x1700

at Q2 = m

2W . For the HERAPDF1.5 PDF the s-quark1701

sea density is similar to that of the d-quark sea at low1702

values of x, while it is suppressed at higher values of x.1703

The ATLAS Wc/WD

(⇤) data on the other hand favor a1704

symmetric light quark sea over the whole x range relevant1705

for the presented measurement (10�3 to 10�1).1706

The value of rs determined in this study is in ex-1707

cellent agreement with the value of rs = 1.00+0.25�0.28 ob-1708

tained in the combined analysis of W and Z production1709

at Q2 = 1.9 GeV2 and x = 0.023 by ATLAS [9] and sup-1710

ports the hypothesis of an SU(3) symmetric light quark1711

sea. Figure 14 also shows that the x-dependence of rs ob-1712

tained from the ATLAS-epWZ12 PDF is in good agree-1713

ment with this study.1714

X. ADDITIONAL RESULTS1715

A. WD(⇤)1716

In this section, the measurements of the cross-section1717

ratio �

OS�SSfid (WD

(⇤))/�fid(W ) di↵erential in p

D(⇤)

T are1718

presented. The measurements are compared to theo-1719

retical predictions obtained from aMC@NLO using the1720

0.96 +0.16 +0.21�0.18 �0.24

[GeV]T

SMT jet p30 40 50 60 70 80 90 100 110 120

OS-

SS E

vent

s / 5

GeV

00.20.40.60.8

11.21.41.61.8

22.2

310×

DataW+c W+lightZ+jetsMultijetTop+Diboson

InternalATLAS-1Ldt = 4.6 fb∫ = 7 TeV, s

1,2 jetsνµ→W

[GeV]T

Soft muon p5 10 15 20 25 30

OS-

SS E

vent

s / 2

GeV

0

0.5

1

1.5

2

2.5

310×

DataW+c W+lightZ+jetsMultijetTop+Diboson

InternalATLAS-1Ldt = 4.6 fb∫ = 7 TeV, s

1,2 jetsνµ→W

Figure 9. Distribution of the SMT jet pT (left) and soft muon pT (right) in OS-SS events ofthe W+1,2 jets sample for the muon channel. The normalisations of the W+light and Z/�

⇤+jetsbackgrounds and the shape and normalisation of the multijet background are obtained with data-driven methods. All other backgrounds are estimated with MC simulations and normalised to theirtheoretical cross sections. The signal contribution is normalised to the measured yields.

7 Cross-section determination697

7.1 Definition of the fiducial phase space698

The cross sections �

OS�SSfid (WD

(⇤)) and �

OS�SSfid (Wc) are measured in a common fiducial699

region defined in terms of the W -boson kinematics as follows:700

• p

`T > 20GeV and |⌘`| < 2.5701

• p

⌫T > 25GeV702

• m

WT > 40GeV703

where `, ⌫ are the lepton and the neutrino from the decay W ! `⌫. The leptons are704

defined at the Born level, i.e. before QED FSR radiation. As discussed in the following,705

the measured raw yields are corrected for detector effects to obtain the cross sections in the706

fiducial region of the measurement. The charm quark is identified either by a D

(⇤) meson,707

and the corresponding cross section measures the production of events with p

D(⇤)T > 8GeV708

and |⌘D| < 2.2, or through a muon from the semileptonic decay of a charmed hadron709

embedded in a jet of particles with p

jetT > 25GeV and |⌘jet| < 2.5. In the latter case, the710

cross section measures the production of events with exactly one c-jet and any additional711

jet, or with a total of 1 or 2 jets exclusively of which only one is a c-jet (the 1-jet and 2-jet712

exclusive cross sections are discussed in Section 10.2). Truth jets are constructed from stable713

truth particles, including muons and neutrinos, using the anti-kT algorithm with a distance714

parameter of 0.4. The lepton, all photons within �R < 0.1 from it, and the neutrino715

originating from the W decay are not used to construct the jets. The c-jet is defined as716

– 23 –

[1]  ATLAS  CollaboraFon,  ATL-­‐COM-­‐PHYS-­‐2013-­‐1354;  [2]  NuTeV  CollaboraFon,  Phys.Rev.  D64  (2001)  112006;  [3]  ATLAS  CollaboraFon,  Phys.Rev.Leu.  109  (2012)  012001.

References

26

CT10 MSTW2008 HERAPDF1.5 ATLAS-epWZ12 NNPDF2.3 NNPDF2.3coll

W

+c (partial �2

/ndof) 3.8/11 6.1/11 3.5/11 3.1/11 8.5/11 2.9/11

W

�c (partial �2

/ndof) 9.0/11 10.3/11 8.3/11 6.3/11 10.5/11 6.1/11

W

+D

� (partial �2/ndof) 3.6/4 3.7/4 3.7/4 3.4/4 3.8/4 3.4/4

W

�D

+ (partial �2/ndof) 3.7/4 4.6/4 3.3/4 2.0/4 4.7/4 1.6/4

W

+D

⇤� (partial �2/ndof) 2.9/4 6.0/4 2.2/4 1.7/4 8.1/4 1.6/4

W

�D

⇤+ (partial �2/ndof) 3.0/4 4.4/4 2.4/4 1.6/4 4.2/4 1.4/4

Nexp 114 114 114 114 114 114

Ntheo 28 22 16 20 40 40

Correlated �

2 (exp) 0.8 1.8 0.9 1.1 2.2 1.0

Correlated �

2 (theo) 6.8 4.4 3.7 0.1 10.1 0.2

Correlated �

2 (scale) 0.6 2.5 1.1 0.0 2.7 0.0

Total �2/ndof 33.6/38 41.3/38 28.0/38 19.2/38 52.1/38 18.2/38

Probability 67.4% 32.9% 88.4% 99.5% 6.4% 99.7%

TABLE IX. Quantitative comparison of fiducial cross sections to di↵erent PDF predictions. The table shows the partial �2/ndof

for the di↵erent cross-section measurements, the number of nuisance parameters for the experimental sources of systematicuncertainties (Nexp), the number of nuisance parameters for the uncertainties on the predictions (Ntheo) as well as the correlated�

2 corresponding to the experimental uncertainties, the uncertainties on the predictions and the scale uncertainty. Furthermore,the total �2

/ndof and corresponding probability are given.

x

-310 -210 -110

d)/s =

0.5

(s+

sr

0.50.60.70.80.9

11.11.21.31.41.5

data)*(HERAPDF1.5 + ATLAS Wc/WDATLAS-epWZ12HERAPDF1.5

ATLAS internal W2 = m2Q

FIG. 14. Ratio of strange-to-down sea quark distributionsrs = 0.5(s + s)/d as a function of x as assumed in HERA-PDF1.5 PDF compared to the ratio obtained from the fitincluding the ATLAS Wc/WD

(⇤) data and the ratio obtainedfrom ATLAS-epWZ12. The ratio rs is shown at Q2 = m

2W .

CT10 NLO PDF in Figure 15. The ratio is on average1721

8% higher in data than in simulation. The shape of the1722

p

D(⇤)

T spectrum is reasonably well described by the MC,1723

although a slight excess in data compared to MC simula-1724

tion is observed in the highest pD(⇤)

T bin, suggesting that1725

the pD(⇤)

T spectrum in data might be slightly harder than1726

the aMC@NLO prediction.1727

The measured integrated cross-section ratios in the1728

fiducial region are shown in Table X.1729

OS�SSfid (WD

(⇤))/�fid(W ) [%]

W

+D

� 0.55± 0.06 (stat)± 0.02 (syst)

W

+D

⇤� 0.66± 0.03 (stat)± 0.03 (syst)

W

�D

+ 1.06± 0.08 (stat)± 0.04 (syst)

W

�D

⇤+ 1.05± 0.04 (stat)± 0.05 (syst)

TABLE X. Measured fiducial cross-section ratios�

OS�SSfid (WD

(⇤))/�fid(W ) together with the statisticaland systematical uncertainty.

B. Wc1730

In addition to the Wc fiducial cross section for a W bo-1731

son with exactly one jet containing a c-hadron and any1732

number of additional jets, the cross section is measured1733

with the requirements defined in Section VIIA, except1734

for requiring either exactly 1 or 2 jets of which only one1735

contains a c-hadron. The results, including the ratio R

±c ,1736

averaged between the electron and muon channels, are1737

shown in Table XI. Figure 16 shows the measured Wc1738

fiducial cross sections with exactly one or two jets com-1739

pared to aMC@NLO predictions with the CT10 NLO1740

PDF set. The aMC@NLO central values do not describe1741

the one-to-two-jets ratio well. The Alpgen predictions1742

normalized to the W -inclusive NNLO cross section are1743

also shown for reference. The Alpgen central values1744

underestimate the data measurements for both samples1745

with one and two jets however the one-to-two-jets ratio1746

is well described.1747

Finally, in order to minimize the systematic uncertain-1748

ties due to the extrapolation to the fiducial phase space,1749

the cross sections are determined in a phase space as spec-1750

23

(aMC@NLO,CT10)fidOS-SSσ(Data)/fid

OS-SSσ

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

(aM

C@NL

O,C

T10)

fidOS-

SSσ

(Dat

a)/

fidOS-

SSσ 0.6

0.81

1.21.41.61.8

22.22.4

-D+ vs W-D*+W

c+ vs W-D+W

c+ vs W-D*+W

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s68% CL ellipse area

Hashed: meas. uncert.Open: tot. uncert.

y=x

(aMC@NLO,CT10)fidOS-SSσ(Data)/fid

OS-SSσ

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

(aM

C@NL

O,C

T10)

fidOS-

SSσ

(Dat

a)/

fidOS-

SSσ

0.81

1.21.41.61.8

22.22.42.6

+D- vs W+D*-W

c- vs W+D-W

c- vs W+D*-W

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s68% CL ellipse area

Hashed: meas. uncert.Open: tot. uncert.

y=x

FIG. 11. 68% C.L. contours of the measured cross sections normalized to the theoretical prediction obtained from theaMC@NLO simulation using the CT10 PDF. The filled ellipses show the experimental uncertainties, while the open ellipsesshow the total uncertainties, including the uncertainties of the prediction. The left figure shows the correlations among theW

+D

⇤�, W+D

� and W

+c cross sections, while the right figure is for W�

D

⇤+, W�D

+ and W

�c.

c)-(WfidOS-SSσ)/c+(Wfid

OS-SSσ0.4 0.6 0.8 1 1.2 1.4

CT10MSTW2008NNPDF2.3HERAPDF1.5ATLAS-epWZ12NNPDF2.3collWc

aMC@NLO

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

Data 0.02 ± 0.03 ±0.90

StatStat+syst

)+)*(D-(WOS-SSfidσ)/-)*(D+(WOS-SS

fidσ0.4 0.6 0.8 1 1.2 1.4

Data 0.01± 0.05 ±0.92

StatStat+syst

)*(WD

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

FIG. 12. Measured ratios �

OS�SSfid (W+

c)/�OS�SSfid (W�

c) (left) and �

OS�SSfid (W+

D

(⇤)�)/�OS�SSfid (W�

D

(⇤)+) (right) resultingfrom the averaging procedure compared to di↵erent PDF predictions based on aMC@NLO. The blue vertical lines show thecentral values of the measurements, the inner error bands show the statistical uncertainties and the outer error bands the totalexperimental uncertainties. The PDF predictions are shown by the black markers. The error bars on the predictions correspondto the 68% C.L. PDF uncertainties.

in Figure 13. Similar predictions of the shapes of the1619

|⌘`| distributions are obtained by the di↵erent PDF sets.1620

The predictions mainly di↵er in their normalization. The1621

predicted shapes are in reasonable agreement with the1622

measured distributions.1623

In order to perform a quantitative comparison of themeasurement and the di↵erent PDF predictions, the �

2-function introduced in Equation 9 is extended to include

the uncertainties on the theoretical predictions:

2 =

X

k,i

w

ik

ik �m

i⇣1 +

Pj �

ij,kbj +

Pj(�

theo)ij,kbtheoj

⌘i2

(�ista,k)2�k

i + (�iunc,kmi)2

+X

j

b

2j +

X

j

(btheoj )2, (11)

22

[pb]fidOS-SSσ

10 20 30 40 50 60 70

CT10MSTW2008NNPDF2.3HERAPDF1.5ATLAS-epWZ12NNPDF2.3collc+W

aMC@NLO

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

Data 1.8 [pb]± 0.9 ±33.6

StatStat+syst

[pb]fidOS-SSσ

10 20 30 40 50 60 70

CT10MSTW2008NNPDF2.3HERAPDF1.5ATLAS-epWZ12NNPDF2.3collc-W

aMC@NLO

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

Data 1.9 [pb]± 0.8 ±37.3

StatStat+syst

[pb]OS-SSfidσ

5 10 15 20 25 30 35

Data 0.8 [pb]± 1.9 ±17.8

StatStat+syst

-D+W

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

[pb]OS-SSfidσ

5 10 15 20 25 30 35

Data 1.0 [pb]± 1.8 ±22.4

StatStat+syst

+D-W

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

[pb]OS-SSfidσ

5 10 15 20 25 30 35

Data 1.0 [pb]± 0.9 ±21.2

StatStat+syst

-D*+W

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

[pb]OS-SSfidσ

5 10 15 20 25 30 35

Data 1.0 [pb]± 0.8 ±22.1

StatStat+syst

+D*-W

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

FIG. 10. Measured fiducial cross sections compared to di↵erent PDF predictions based on aMC@NLO. The solid vertical lineshows the central value of the measurement, the inner error band corresponds to the statistical uncertainty and the outer errorband to the quadratic sum of the statistical and systematic uncertainties. The PDF predictions are shown by markers. Theinner error bars on the theoretical predictions show the 68% confidence level uncertainties obtained from the error sets providedwith each PDF set, while the outer error bar represents the total theoretical uncertainty (quadratic sum of PDF, parton shower,fragmentation and scale uncertainties).

can be written as1611

Ass =< s(x,Q2) > � < s̄(x,Q2) >

< s(x,Q2) >⇡ R

±c (CT10)�R

±c (Data),

(10)

where the s and s distributions are averaged over the1612

W + c phase space. A value of Ass = (2 ± 3)% is ob-1613

tained for the combination of the Wc and WD

(⇤) analy-1614

ses. The quoted uncertainty is dominated by statistical1615

uncertainties.1616

The dependence of the cross section on |⌘`|, along with1617

predictions of aMC@NLO with various PDFs, is shown1618

22

[pb]fidOS-SSσ

10 20 30 40 50 60 70

CT10MSTW2008NNPDF2.3HERAPDF1.5ATLAS-epWZ12NNPDF2.3collc+W

aMC@NLO

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

Data 1.8 [pb]± 0.9 ±33.6

StatStat+syst

[pb]fidOS-SSσ

10 20 30 40 50 60 70

CT10MSTW2008NNPDF2.3HERAPDF1.5ATLAS-epWZ12NNPDF2.3collc-W

aMC@NLO

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

Data 1.9 [pb]± 0.8 ±37.3

StatStat+syst

[pb]OS-SSfidσ

5 10 15 20 25 30 35

Data 0.8 [pb]± 1.9 ±17.8

StatStat+syst

-D+W

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

[pb]OS-SSfidσ

5 10 15 20 25 30 35

Data 1.0 [pb]± 1.8 ±22.4

StatStat+syst

+D-W

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

[pb]OS-SSfidσ

5 10 15 20 25 30 35

Data 1.0 [pb]± 0.9 ±21.2

StatStat+syst

-D*+W

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

[pb]OS-SSfidσ

5 10 15 20 25 30 35

Data 1.0 [pb]± 0.8 ±22.1

StatStat+syst

+D*-W

[email protected]

ATLAS Internal-1 Ldt = 4.6 fb∫

= 7 TeV (2011)s

FIG. 10. Measured fiducial cross sections compared to di↵erent PDF predictions based on aMC@NLO. The solid vertical lineshows the central value of the measurement, the inner error band corresponds to the statistical uncertainty and the outer errorband to the quadratic sum of the statistical and systematic uncertainties. The PDF predictions are shown by markers. Theinner error bars on the theoretical predictions show the 68% confidence level uncertainties obtained from the error sets providedwith each PDF set, while the outer error bar represents the total theoretical uncertainty (quadratic sum of PDF, parton shower,fragmentation and scale uncertainties).

can be written as1611

Ass =< s(x,Q2) > � < s̄(x,Q2) >

< s(x,Q2) >⇡ R

±c (CT10)�R

±c (Data),

(10)

where the s and s distributions are averaged over the1612

W + c phase space. A value of Ass = (2 ± 3)% is ob-1613

tained for the combination of the Wc and WD

(⇤) analy-1614

ses. The quoted uncertainty is dominated by statistical1615

uncertainties.1616

The dependence of the cross section on |⌘`|, along with1617

predictions of aMC@NLO with various PDFs, is shown1618

σ(W-­‐+c-­‐jet) σ(W++D*-­‐)

σ(W+)/σ(W-­‐)W+c-­‐jet rs

No

trev

iew

ed

,fo

rin

tern

al

circu

la

tio

no

nly

November 15, 2013 – 11 : 44 DRAFT 13

parton momentum fraction x-510 -410 -310 -210 -110

)d/s fr

actio

n of

ant

i-stra

nge

to a

nti-d

own

quar

ks (

0

0.5

1

1.5

2

2.5NNPDF2.3 collider onlyCT10NNPDF2.3epWZMSTW2008HERA1.5

Figure 2: Depicted is the ratio of the anti-strange to the anti-down quark PDF distribution for di↵erentPDFs evaluated at the scale Q2 = M2

W = (80.385GeV)2. This is a measure of di↵erences in the partondistributions for strange and down sea quarks. The range in x relevant for the measurement presentedin here is from 10�1 to 10�3. If no error bands are present, the PDF set in question fixes this fractionwithout assigning an uncertainty.

PDF  raFos/d

c-­‐jet  pT

(meas.+theo.)    (scale)