wave equation pda

26
Wave Equation Wave Equation Applications Applications 2009 PDCA Professor Pile 2009 PDCA Professor Pile Institute Institute Patrick Hannigan GRL Engineers, Inc.

Upload: mochammad-aswanto

Post on 11-Sep-2015

244 views

Category:

Documents


4 download

DESCRIPTION

aswan

TRANSCRIPT

  • Wave Equation Applications2009 PDCA Professor Pile InstitutePatrick HanniganGRL Engineers, Inc.

  • Analysis TypesBearing Graph- Proportional Resistance (most common)- Constant Shaft (i.e. pile driven to rock)- Constant Toe (i.e. friction pile)

    Analysis Results: Capacity, stress, stroke (OED) vs. Blow count

    Analysis Application: Hammer approvals, capacity assessments, hammer sizing.

  • Analysis TypesInspectors ChartFor a constant capacity (e.g. the required ultimate capacity), plots stroke vs blow countVariable energy hammers onlySingle acting diesel (open end)Double acting diesel (closed end)Single and Double Acting Hydraulic hammersPrimarily used for field controlFor an observed hammer stroke, what is minimum blow count?

  • Analysis TypesDriveabilityUser inputs detailed soil profile including expected soil strength losses, splice depths, wait times, etc. GRLWEAP calculates soil resistance and associated numerical results at user specified analysis depths.Analysis Result: blow count, stresses, and transferred energy versus depthAnalysis Interpretation: predicted blow counts and stresses allow determination of driveability through problematic dense layersApplication: frequently used in the offshore oil industry

  • Summary of Wave Equation ApplicationsDevelop Driving CriterionBlow Count for a Required Ultimate Capacity Blow Count for Capacity as a Function of Energy / Stroke

    Check DriveabilityBlow Count vs. Penetration DepthDriving Stresses vs Penetration Depth

    Determine Optimal Driving EquipmentDriving Time

    Refined Matching AnalysisAdjust Input Parameters to Fit Dynamic Measurements

  • WHAT INFORMATION

    DO WE NEED FOR

    GRLWEAP ANALYSIS ?

  • REQUIRED INFORMATION HammerModelStroke and Stroke ControlAny Modifications

    Driving SystemHelmet Weight (including Striker Plate & Cushions)Hammer Cushion Material (E, A, t, er)Pile Cushion Material (E, A, t, er)

  • REQUIRED INFORMATIONPile Length,Cross Sectional AreaTaper or Other Non-uniformitiesSpecific WeightSplice DetailsDesign LoadUltimate CapacityPile Toe Protection

  • REQUIRED INFORMATION SoilBoring Locations with ElevationsSoil DescriptionsN-values or Other Strength Parameters vs DepthElevation of ExcavationElevation of Pile Cut-offElevation of Water TableScour Depth or Other Later Excavations

  • Pile Driving and Equipment Data Form

  • GRLWEAP Example 1 & 2 Problem Ru = 330 kips

  • 68 blows / 0.25 m195 MPa1480 kN2.6 mGRLWEAP Example 1 Solution - SI

  • GRLWEAP Example 2 Solution - SI

  • GRLWEAP Example 3 Problem

    Depth

    4

    8

    12

    16

    (m)

    0

    20

    (ft)

    0

    10

    20

    30

    40

    50

    60

    Loose

    Silty

    Fine Sand

    N = 8

    Hammer:

    JUNTTAN HHK 3

    200 mm (7.9 inch) Monocast MC 901

    Helmet: 9.6

    kN

    (2.16 kips)

    Pile: Square

    Prestressed

    Concrete

    356 mm (14 inch)

    Toe Resistance, 52%:

    933

    kN

    (210 kips)

    Medium Dense

    Silty

    Fine Sand

    N = 14

    Dense Sand

    and Gravel

    N = 34

    Penetration Depth for

    Tension Evaluation

    Pile Cushion: 114 mm (4.5 inch) Plywood

    Shaft Resistance, 33%:

    597

    kN

    (134 kips)

    Shaft Resistance, 5%:

    97

    kN

    (22 kips)

    Depth

    4

    8

    12

    16

    (m)

    0

    20

    4

    8

    12

    16

    (m)

    0

    20

    (ft)

    0

    10

    20

    30

    40

    50

    60

    (ft)

    0

    10

    20

    30

    40

    50

    60

    Loose

    Silty

    Fine Sand

    N = 8

    Hammer Cushion:

    Pile Length 12 m (39 ft)

    Ultimate Capacity: 1807 kN (406 kips)

    Shaft Resistance, 10%:

    180

    kN

    (40 kips)

    Medium Dense

    Silty

    Fine Sand

    N = 14

    Dense Sand

    and Gravel

    N = 34

    Penetration Depth for

    Tension Evaluation

  • Example 3 Solution Shallow Depth

  • Example 3 Solution Final Depth

  • GRLWEAP Example 5 Problem

    0

    10

    20

    30

    40

    50

    60

    Depth

    4

    8

    12

    16

    (m)

    0

    20

    (ft)

    Loose Slit

    (Subject to

    Scour)

    Hammer:

    Conmaco

    140: 56.9 kJ (42 ft

    -

    kips)

    Hammer Cushion:

    152 mm (6 inch) Blue Nylon

    Helmet: 18.09

    kN

    (4.1 kips)

    Displacement Pile: Square Prestressed Concrete

    356 mm (14 inch) x 14 m (46 ft) long

    Driving Resistance: 2870

    kN

    (645 kips)

    Minimum Penetration Requirement

    Pile Cushion: 254 mm (10 inch) Plywood

    24

    70

    Extremely Dense

    Sand and Gravel

    N = 110

    Dense Sand

    and Gravel

    N = 33

    Bedrock

    Sheeting for Cofferdam

    Non

    -

    Displacement Pile: H

    -

    Pile

    HP 360x152 (14x102) x 16 m (52.5 ft) long

    Driving Resistance: 2405kN (540 kips)

    Ultimate Capacity: 1780

    kN

    (400 kips)

    after Scour

    0

    10

    20

    30

    40

    50

    60

    4

    8

    12

    16

    (m)

    0

    20

    (ft)

    5 m

    4 m

    11.5 m

    24

    70

    Non

    -

  • Example 5 Solution First Pile

  • Example 5 Solution Subsequent Piles

  • Example 5 Solution H-pile Alternate

  • 048121620Pile: Closed End Pipe Pile Length 20 m (66 ft) Pile Penetration 16 m (52.5 ft) 355 mm (14 inch) x 9.5 mm (3/8 inch) Ultimate Capacity 1800 kN (405 kips)Shaft Resistance, 30% Triangular Distribution 540 kN (121 kips)Toe Resistance, 70% 1260 kN (284 kips)Loose Silty Fine SandHammer: ICE 42-S: 56.9 kJ (42 ft-kips) or Vulcan 014: 56.9 kJ (42 ft-kips)Hammer Cushion: VariesHelmet: Varies0106050403020Depth(m) (ft)Very Dense Silty Fine SandGRLWEAP Example 6 Problem

  • GRLWEAP Example 6 Solution - SI

  • GRLWEAP Example 8 Problem

    Depth

    4

    8

    12

    16

    (m)

    0

    20

    (ft)

    0

    10

    20

    30

    40

    50

    60

    Hammer:

    Berming

    B 2005; 32.7 kJ (24 ft-kips)

    Hammer Cushion:

    152 mm (6 inch) Aluminum +

    Micarta

    Helmet: 7.1 kN

    (1.6 kips)

    Pile: Closed End Pipe

    324 mm (12.75 inch) x 15 m (50 ft) long

    Ultimate Capacity; 1470

    kN

    (330 kips)

    Toe Resistance, 53%:

    779

    kN

    (175 kips)

    Medium Sand

    N = 10,

    = 30

    Shaft Resistance, 2%: 28

    kN

    (7 kips)

    Medium Clay

    C

    u

    = 36

    kPa

    (0.8

    ksi

    )

    Dense Sand

    N = 35,

    = 37.5

    Shaft Resistance, 8%: 112

    kN

    (26 kips)

    Shaft Resistance, 37%: 551

    kN

    (122 kips)

    Depth

    4

    8

    12

    16

    (m)

    0

    20

    4

    8

    12

    16

    (m)

    0

    20

    (ft)

    0

    10

    20

    30

    40

    50

    60

    (ft)

    0

    10

    20

    30

    40

    50

    60

    Toe Resistance, 53%:

    779

    kN

    (175 kips)

    Medium Sand

    N = 10,

    = 30

    Shaft Resistance, 2%: 28

    kN

    (7 kips)

    Medium Clay

    C

    u

    = 36

    kPa

    (0.8

    ksi

    )

    Dense Sand

    N = 35,

    = 37.5

    Shaft Resistance, 8%: 112

    kN

    (26 kips)

    Shaft Resistance, 37%: 551

    kN

    (122 kips)

  • GRLWEAP Example 8 Solution - SI 6.3 mm 7.1 mm

  • GRLWEAP Example 8 Solution - SI 7.9 mm 9.5 mm

  • GRLWEAP Example 8 Solution 7.9 mm 9.5 mmCriteria 0.90 FY = 279 MPa or 40.5 ksi, Blow count of 25 98 bl/.25 m or 30 - 120 bl/ft

    Summary of Compression Stress and Blow Count Results Wall ThicknessCompressive StressBlow CountMminchMPaksiBlows/0.25 mBlows/ft6.30.25024435.41601957.10.28121330.91301587.90.31219728.61151409.50.37518326.5100120