virginia mathematics teacher - vctm · virginia mathematics teacher 1 general interest...

40
Virginia Mathematics Teacher A Resource Journal for Mathematics Teachers at all Levels. Volume 37, No. 2 Spring, 2011 The Five Platonic Solids

Upload: hangoc

Post on 20-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

VirginiaMathematicsTeacher

A Resource Journal for Mathematics Teachers at all Levels.

Volume 37, No. 2 Spring, 2011

The Five Platonic Solids

Volume 37, No. 2 Spring, 2011

VirginiaMatheMatics teacher

The VIRGINIA MATHEMATICS TEACHER (VMT) is published twice yearly by the Virginia Council of Teach-

ers of Mathematics. Non-profit organizations are granted permission to reprint articles appearing in the VMT provided that one copy of the publication in which the material is reprinted is sent to the Editor and the VMT is cited as the original source.

EDITORIAL STAFFDavid Albig, Editor, e-mail: [email protected] Radford University

Editorial Panel Bobbye Hoffman Bartels, Christopher Newport University; David Fama, Germana Community College; Jackie Getgood, Spotsylvania County Mathematics Supervisor; Sherry Pugh, Southwest VA Governor’s School; Wendy Hageman-Smith, Longwood University; Ray Spaulding, Radford University Jonathan Schulz, Montgomery County Mathematics Supervisor

MANUSCRIPTS & CORRESPONDENCEFor manuscript, submit two copies, typed double spaced. We favor manuscripts on disk or presented electronically in Word. Drawings should be large, black line, camera ready, on separate sheets, referenced in the text. Omit author names from the text. Include a cover letter identifying author(s) with address, and professional affiliation(s).

Send correspondence to Dave Albig at: Box 6942 Radford University Radford, VA 24142

Virginia Council of Teachers of MathematicsPresident: Beth Williams, Bedford County SchoolsPast-President: Carolyn Williamson, Retired from Hanover County Public SchoolsSecretary: Debbie Delozier, Stafford County Public SchoolsNCTM Rep.: Margaret Coffey, Fairfax County Public SchoolsMath Specialist Rep.: Corinne MageeElected Board Members: Elem. Rep: Sandy Overcash, Virginia Beach City Schools; Meghann Cope, Bedford County Schools Middle School Reps: Anita Lockett, Fairfax County Public Schools; Alfreda Jornegan, Norfolk Public Schools Secondary Reps: Ian Shank, Hanover Public Schools; Cathy Shelton, Fairfax County Public Schools. 2 Yr. College Rep: Joseph Joyner, Tidewater Community College 4 Yr. College Rep: Joy Whitenack, Virginia Commonwealth; Maria Timmerman, Longwood University Membership: Ruth Harbin-Miles

Publicity: Laura Rightnour, Hanover County Public Schools

Treasurer: Diane Leighty, Powhatan County Public Schools

Webmaster: Jennifer Springer, Charlottesville City Schools

Webpage: www.vctm.org

Membership: Annual dues for individual membership in the Council are $20.00 ($10.00 for students) and include a subscription to this journal. To become a member of the Council, send a check pay-able to VCTM to: VCTM c/o Pat Gabriel; 3764A Madison Lane, Falls Church, VA 22041-3678

Printed by Wordsprint Christiansburg225 Industrial Drive, Christiansburg, VA 24073

TABLE OF CONTENTSGrade Levels Titles and Authors ................................................................. Turn to Page

General President’s Message ..........................................................................1 (Beth Williams)

General Statistical Outreach and the Census: A Summer Learning Experience. ..........................................................................2 (Gail Englert) General Teaching Time Savers: Reviewing Homework....................................3 (Jane M. Wilburne)

General Enlivening School Mathematics Through the History of Mathematics ...................................................................................4 (Martin Bartelt and Stavroula K. Gailey)

General Affiliates’ Corner .................................................................................5

General The Five Platonic Solids .....................................................................6 (Theoni Pappas)

General VCTM Awards Two Scholarships ........................................................7

General Problem Corner ................................................................................10 (Ray Spaulding)

General William C. Lowry Award Winners ......................................................34

Grades K-5 Clearing the Confusion over Calculator Use in Grades K-5 .............18 (Barbara J. Reyes and Fran Arbaugh)

Grades 2-6 Teaching Addition and Subtraction Facts: A Chinese Perspective ...22 (Wei Sun and Joanne Y. Zhang)

Grades 3-6 Dividing Fractions: Reconciling Self-Generated Solutions with Algorithmic Answers ..................................................................25 (Marcela Perlwitz)

Grades 3-6 Developing Ratio Concepts: An Asian Perspective ..........................29 (Jane-Jane L, Tad Watanabe, and Jinga Cai)

Grades 7-10 Pick a Number ..................................................................................33 (Margaret Kidd)

Grades 7-12 Those Darn Exponents: Fifty Challenging True-False Questions .....35 (Tim Tilton)

Grades 13-16 Abstractmath.org: A Web Site for Post-Calculus Math .....................36 (Charles Wells)

ABOUT THE COVER: From the book “The Joy of Mathematics” by Theoni Pappas. Reprinted by permission of Wide World Publishing (http:/www.wideworldpublishing.com) Please see the The Five Platonic Solids article on page 6.

 Virginia Mathematics Teacher  1

GENERAL INTEREST

President’s MessageBeth Williams

  This  spring has been a busy one  for our organization!  If you didn’t get to attend our Annual Conference in Rich-mond,  you  missed  an  extraordinary  event.    Fabulous speakers led every session.  Our Department of Education mathematics colleagues keynoted two sessions.  Deborah Wickham and Michael Bolling shared upcoming events and happenings at the state level to keep us informed and en-ergized to move forward in our work.  Many thanks to our Conference Program Chair, Lisa Hall, the VCTM Executive Board, and the Greater Richmond Council volunteers who made the “Making Mathematics Monumental” conference a wonderful affair!  VCTM is an affiliate of the National Council of Teachers of Mathematics, and we support the work that they advocate.   In 2010, NCTM released a position paper recommending the  use  of mathematics  specialists  to  enhance  teaching, learning  and  assessing  of  mathematics  to  improve  stu-dent achievement.  In Virginia, we have been blessed with many grants through the National Science foundation, the Virginia  Department  of  Education  Mathematics  and  Sci-ence Partnership (MSP), NCLB Title II funds and through the ExxonMobil Foundation that support developing math-ematics specialist programs.    In  addition,  a program  to provide additional  leadership opportunities  for  25  specialists  has  been  implemented through  Virginia  Commonwealth  University,  University  of Virginia, and Norfolk State University with  funds from the National Science Foundation.  During the Annual Conference, a large group of mathe-matics specialists and coaches from across the state came together  for  the  first  time  to  begin  to  formulate  ways  to engage  in professional growth and networking opportuni-ties.  This social time allowed one group of specialists that has been supported by the Leadership Program to identify and connect with other professionals who share similar job responsibilities.     Our  annual  conference  banquet  Friday night was a celebration of many accomplishments.   Con-tina Martin and Vickie Inge shared exciting work from this Leadership Program.  If you are interested in more informa-tion about  this networking fellowship, seek out  the  link  to mathematics specialists on our website.  Our 2011 Fall  Journal will  be dedicated  to  the work of Mathematics Specialists.   For  this special Journal under-taking to be a success, we need to have many colleagues submit  articles.    Please  consider  writing  an  article  from your experiences as a practicing specialist, or from work-ing with one.  All articles must be submitted to Dave Albig by July 1, 2011.  His email address is [email protected]  our  last  Journal,  Virginia  Council  of  Teachers  of Mathematics  has  awarded  several  grants  and  scholar-ships.   Five First Timers grant awardees and two college scholarship  recipients  were  honored  during  our  banquet celebration.   The monies  they received are given  to con-tinue the work of high quality mathematics education for all. Find out more about these funds that are allocated by our organization as you read further in the Journal. 

  Two Virginia finalists were also recognized as Presiden-tial Awardees for Excellence in Mathematics and Science Teaching on Friday night. These colleagues have advanced to the state selection in this prestigious mathematics award.  We wish Pamela Bostwick and Victoria Hugate both well as the PAEMST selection process continues.Part of being a teacher is being a lifelong learner, studying, researching, and listening to find ways to improve our  in-struction and help more students succeed.  To this end, my goal will be to pose a new question to you in each Journal edition.  This month my question for you would be:  What do you know about the Common Core Standards and their implementation?  In  January, NCTM  released  news  of  a  joint  task  force made up of the Association of Mathematics Teacher Edu-cators, The Association of State Supervisors of Mathemat-ics, The National Council of Supervisors of Mathematics, and  the National Teachers of Mathematics.   The work of the task force is to develop actions and resources needed to help teachers implement the Common Core State Stan-dards in Mathematics (CCSSM).  This task force also con-sidered ways  in which  the  organizations  can  collaborate in supporting their members and other groups to advance their vision of school mathematics.  The task force report identifies five priority actions to be taken as soon as pos-sible.  There are also PowerPoint presentations that can in-form all stakeholders.  These information opportunities are available for you to read at www.nctm.org/news/highlightsNCTM is working with other groups like NCSM to write sup-porting tasks, videos and documents for implementing the CCSSM.  Dr. William G. Mccallum led the work to write the standards using the NCTM Focal Points and High School Sense Making as  their  foundation.   His group  is working on a new website, www.illustrativemathematics.org   where good tasks for formative assessments and videos of good teaching strategies will be shared.  Dr. Mccallum also has a blog at commoncoretools.wordpress.com  Even though Virginia has not adopted the Common Core State Standards, The Virginia Board of Education has ad-opted a supplement to the Curriculum Frameworks to bring our Standards into closer alignment with the CCSSM. Our State Superintendent, Dr. Patricia Wright, wrote  in a Su-perintendents Memo in February that the supplement will ensure that Virginia Standards are equal to or more rigor-ous in content and scope than the CCSSM.  If you have not already done so, you should read the supplement found on the Virginia Department of Education website.    The implementation of more rigorous standards requires better teaching for more learning. All of these resources will be valuable to us as we consider new ways to increase our students’ success.  Your VCTM organization will continue to work to improve your learning, living and love of math-ematics.  

Best wishes to you all!Beth

2   Virginia Mathematics Teacher

GENERAL INTEREST

Statistical Outreach and the Census: A SummerLearning Experience

Gail Englert

  “Car A traveled 150 miles in 6 hours, and took another half hour to go the final 40 miles.”  My mathematical adventure to Washington, DC  to attend  the American Statistical As-sociation’s Meeting Within a Meeting, a statistics workshop held August 3-4, 2009 for teachers of grades K–12, started off  sounding  like a badly written word problem.   Lesson #1 – don’t leave Norfolk with DC as the destination on a Saturday in August without allowing extra time!  Fortunately, after arriving, my plan to take advantage of our nation’s capital before the workshop began unfolded beauti-fully.  At one museum, the admission fee was $19.95.  When I mentioned I was a teacher, I was allowed to enter FREE!!!   At another, purchases in the gift shop qualified for a teacher discount.  Lesson #2 – ask for the educator discount; it may be a financially rewarding experience!    The American Statistical Association  (ASA),  (http://www.amstat.org/) is a 170-year-old scientific and educational professional society whose goal is to enhance lives through informed decision-making by providing its members and the public with up-to-date, useful  information about statistics.   The ASA website contains a wealth of topics to explore…from  “Making Sense  of Statistical  Studies”  (the Student Module  and  accompanying Teacher’s Module  includes supporting  resources with 15 hands-on  investigations  for upper middle-school or high-school students to explore as they design and analyze data) to “Statisticians in the News”.  Clicking the “Education” tab displays a welcome message from Dr. Martha Aliaga, Director  of Education,  and other useful classroom resources.  This year’s annual Joint Statistical Meeting was held in Washington, DC.  As part of an outreach to educators, the  organization  provided  a  day-long  workshop  focusing on  the  teaching and  learning of data analysis, probability and  statistics  concepts.  Workshop  participants,  who  were divided along grade bands (k – 4, 5 – 8, 9 – 19, and BAPS  [advanced  placement  statistics]),  spent  the  day exploring  content,  classroom  instruction and assessment through hands-on activities and presentations by dynamic statisticians and educators.  During the workshop I learned about GAISE(Guidelines for Assessment and Instruction in Statistics Education): A Pre-K–12 Curriculum Framework.   Participants in the GAISE project have created  two reports of  recommendations  for introductory statistics courses (college level) and statistics education  in Pre-K-12 years with  the ultimate goal being statistical  literacy.   More  information  and materials  to  be used with students can be found at http://www.amstat.org/education/gaise/index.cfm.   Also  explored  was  data  in  a variety of contexts and representations,  from Old Faithful (complete with a live link to Yellowstone to view an eruption online)  to  smokers  vs.  non-smokers  (using  a  matrix  to consider conditional and marginal probabilities).  We even 

looked at the mean as the balancing point of a set of data, considering  how  far  each  data  point  fell  from  the mean.  In  every  case,  the material  covered was presented  as  a lesson on a continuum of learning, with background about the planning and assessment.  Lesson #3 – realizing that statistics is all about informed decision-making. I have never presented the reason for collecting, presenting and analyzing data quite that explicitly to my students, but I will now.  K  –  12  teachers  are  encouraged  to  enroll  in  a  K-12 teachers  free trial membership  to  the ASA.     The  trial membership offers subscriptions to Amstat News (the ASA’s monthly membership magazine), and CHANCE (a magazine focusing on the use of statistics in everyday life).   It also provides members-only access  to  the ASA’s  top  journals and discounts on all ASA meetings and products.  After the trial, ASA offers a discounted annual membership ($50.00 instead of $125.00) for K-12 teachers.  The following day a visit to the US Census Bureau head-quarters in nearby Suitland, MD was offered.  This included interactive presentations and activities organized by Renée Jefferson-Copeland, Chief of the Census in Schools Branch.  We were introduced to the 2010 Census process, Census in Schools activities, and Census’ data and on-line data access tools.   The following  links have wonderfully rich data that could be used for lessons in not only math, but also social studies classrooms.   

Main URL: http://www.census.gov/

Census in the schools: http://www.census.gov/schools/  

Fact finder:http://factfinder.census.gov/home/saff/main.html?_lang=en

Kids corner:http://factfinder.census.gov/home/en/kids/kids.html 

State facts for students:http://www.census.gov/schools/facts/ 

  Lesson #4 – there is a lot going on at the Census Bureau, even during “the other 9 years”! The visit ended with the presentation of US Census gift bags containing a treasure  trove of materials any math  teacher would  love, state fact sliders and wheels, mugs and pencils emblazoned with the Census logo, and a huge double-sided wall map of the US with demographical information displayed.     The next Joint Statistical Meeting for ASA will be held from July 31 - August 5, 2010, at the Vancouver Convention 

 Virginia Mathematics Teacher  3

Center in Vancouver, British Columbia, Canada.  While this location isn’t as accessible for Virginia math educators as Washington, DC was, the ASA website contains a variety of  great  information  to  enhance  statistics  and  probability instruction in my 7th grade classroom and the classrooms of my colleagues at Ruffner Academy in Norfolk.   Fifth and 

GENERAL INTEREST

Teaching Time Savers: Reviewing HomeworkJane Murphy Wilburne

  The classroom practice of assigning homework is a ne-cessity  to  reinforce  the  topic  of  the  day’s  lesson,  review skills and practice them in a variety of problems, or chal-lenge students’ thinking and application of the skills. Effec-tive mathematics teachers know how to choose worthwhile assignments  that can significantly  impact students’  learn-ing and understanding of the mathematics. The challenge, however,  is how  to manage and  review  the assignments in  a manner  that  will  benefit  students’  learning,  and  use classroom time effectively.  Over  the years,  I have  tried various approaches  to  re-viewing and assessing students’ homework. Collecting and grading every students’ homework can be very time con-suming,  especially when  you  have  large  classes  and  no graduate assistants to help review students’ work. On the other hand, while  it  is  important  to provide students with immediate feedback on their homework, it does not benefit them much to have the professor work out each problem in front of the class.  I believe  it  is  important  for college students  to  take  re-sponsibility  for  their  learning.  By  promoting  opportunities for them to communicate with and learn from each other, we can help students come to rely less on the professor to provide them with all the answers, and teach them to pose questions that enhance each other’s understanding.  One technique that has been effective in my classes is to assign homework problems that vary in concept application and level of difficulty. The students were instructed to solve each problem and place a  check  () next to any problem they could not solve. As the students entered class the next day, they would list the page number and problem number of the problems they could not solve, on the front board in a designated area. If the problem was already listed, they placed a check ( ) next to  it. Once the class started, they were not allowed to record problem numbers at the board. Other students, who were successful in solving these prob-

final  lesson – even  if my average  speed  traveling  to  the workshop destination was a  lot slower  than  I expected,  I am so glad I attended!   Thank you, VCTM, for providing a grant to offset my travel and lodging expenses.

GAIL ENGLER, Ruffner Academy, Norfolk Public Schools

lems,  immediately  went  to  the  board when  they  entered the class, indicated that they would solve one of the listed problems, and worked it out in detail. When they finished they signed their name to the problem.  By the time I entered the classroom, students were busy solving problems at the board while others were checking their homework at their seats. If there were any questions about  the problems,  the student who solved  the problem at  the board would explain his work  to  the class.  If  there was a problem which no one was able  to  solve,  I would provide  a  few  details  about  the  problem  and  reassign  it for the next class. In a short period of time, all homework was reviewed, and I recorded notes as to which students posted solutions on the board. Rather than collecting every student’s homework, I noted the problems that gave most students difficulty and would assign similar problems in a future assignment. Students who listed the problems they had difficulty with were not penalized. Instead, those who solved the problems would receive a plus (+) in my grade book. A series of five pluses (+) would earn them a bonus point on a future exam.  My  classroom  quizzes  would  always  include  several homework problems to help keep students accountable for completing their assignments and motivate them to review problems they had difficulty with. Those who did typically received an A!  Time spent in class: approximately 5-12 minutes review-ing the homework. Time saved: abut 30 minutes per class.

JANE M. WILBURNE is assistant professor of mathematics at Penn State Harrisburg.

Reprinted with permission from FOCUS The Newsletter  of  the Mathematical Association of America, copyright November 2006. All rights reserved.

Statistical Outreach and the Census continued from page 2

4   Virginia Mathematics Teacher

GENERAL INTEREST

Enlivening School Mathematics Through The Historyof Mathematics

Martin Bartelt and Stavroula K. Gailey

  This article describes an alternative History of Mathemat-ics course and it demonstrates how such a course can be beneficial for teachers and in turn for their students.      According to the Curriculum and Evaluation Standards of the National Council of Teachers of Mathematics (NCTM) a major goal of mathematics education is to produce students who value mathematics.  This goal, of valuing mathematics, requires  learning about  and understanding  the origins of mathematics as well as appreciating the role mathematics plays in today’s society.    Another  goal  is  to  create  a  learning  environment  that fosters students’ confidence in doing mathematics.  In addi-tion to the NCTM Standards, the Mathematical Association of America (MAA)  in  its 1992 Call for Change states  that mathematics teachers also need continuing experience in developing perspectives and in appreciating the historical and cultural development of mathematics.    These NCTM and MAA goals  have been  incorporated in  the Master  of Arts  in Teaching Mathematics  program at Christopher Newport University.   One of the program’s courses, MATH  573: The History  of Mathematics,  both fosters mathematical confidence and contributes to an ap-preciation of mathematics.  The course is a survey of the origins, philosophy and development of mathematics from classical antiquity through the twentieth century.    However, MATH 573 is different from the typical History of Mathematics course. In addition to problem solving, MATH 573  emphasizes  how  to  incorporate  both  concepts  and content in the pre-college classroom, particularly in middle school mathematics.   The  course  is  intended  to  enable teachers to learn about the history of mathematics and also how to apply this knowledge in their classroom.  After examining some well-known texts -such as that by C. Boyer- used in standard History of Mathematics courses, it  is apparent  that  the objectives of  these courses do not emphasize how school teachers could use the material in their classrooms.  And although William Dunham’s Journey Through Genius - The Great Theorems of Mathematics il-lustrates a lively approach to the history of mathematics, still the book does not refer directly to teacher-use in the class-room.  In this sense, the CNU MATH 573 course is atypical.     Since  the  students  in MATH 573  are  either  practicing teachers or interning graduate students, they continuously ask  themselves and  the  instructor  about  how  they  could implement what they are learning, in the History of Math-ematics course, in their own classrooms.  Overview Of Course Content  The text books used in MATH 573 are Great Moments in Mathematics Before 1650 and Great Moments in Mathemat-ics After 1650 by Howard Eves.  Beyond standard homework and exams, students in MATH 573 are required to complete projects,  biographical  reports,  and  presentations  on  the 

in-classroom  implementation of  topics  from  the history of mathematics.  Projects are intended to  illustrate various ideas associ-ated with  the  history  of mathematics.    For  example,  the students make simple versions of a Roman abacus, design posters of mathematical symbols and/or  terms explaining how they originated, construct Moebius strips, and create a “sphere” from a collection of cylinders in order to estimate the sphere’s volume.  One teacher, after canvassing local stores, found that she could buy all the materials to make a good, small version of an abacus, which she intended to use in her classroom to aid in teaching place value, for less than a dollar.    The teachers, after researching, write one-page biographi-cal reports for four different mathematicians.  However, these too  are  not  typical  biographies.    First,  the  reports must include the biography of a woman, of an American, and of someone  from a non-Western  culture.   The  reports may also include mathematicians who have not been studied in class and particularly living mathematicians.  Second, and more important and difficult, the biographies must contain information of interest to middle and/or high school students.    The following are some examples of interesting informa-tion included in some of the biographies: Hero of Alexandria invented the first vending machine; Ada Byron Lovelace, to whom the poet Byron was married, was the first person to describe the process of computer programming; and Grace Hopper, the contemporary American mathematician, created COBOL.  Referring to personal traits and events enlivens the biographies.    In addition to the projects and biographies, the teachers choose two concepts/topics from the history of mathemat-ics and develop strategies and activities  for  incorporating these topics in their classrooms.  In turn, each teacher gives a fifteen minute presentation to the others in the class so ideas from these presentations can be shared and used by the rest of them in their own classrooms.     For example, one of the topics presented, which is ap-propriate for use in a general mathematics class, was that of using and writing checks.  It referred to the history of count-ing by tally sticks and how the word “check” originated in England.  Another interesting idea included the story of zero, and how for hundreds of years people refused to believe in it.  In another presentation a teacher explained how she would have students do some important work particularly on biographies in order to learn about the disadvantaged back-grounds of some mathematicians and the effect of sociology and psychology on a mathematician’s career.  

The Middle School/High School Student  In addition  to  learning new material and  the means by which it can be presented to students there is another im-portant and atypical facet of MATH 573 which relates to the 

 Virginia Mathematics Teacher  5

“confidence” goal for students.  There is a conscious effort throughout the course to empower the middle school teach-ers to influence their students.    For  example,  one  goal  of  the  biographies  is  to  affect the mindset of the student.  Knowing about the existence of  female mathematicians can change  the perspective of female  students  toward mathematics.   Also,  a  physically handicapped  student  benefits  by  knowing  that  there  are physically handicapped mathematicians.    Students tend to believe that mathematics is, and always was, error-free, complete, contradiction-free, and completely logical.  Since middle school and high school students usu-ally do not have these characteristics, they sometimes feel estranged from mathematics.  Students will feel better when they learn that great mathematicians made mistakes; that some mathematical questions can not be answered because they are undecidable; that whole societies had trouble with the number zero; that there have been crises in mathemat-ics (e.g. the discovery of non-Euclidean geometry), and that controversy exists even now.  

Conclusion  This type of History of Mathematics course as part of a M.A.T. program can enable teachers to enliven their class-room teaching.  It provides a way to look at material, which one may already have seen before, from a new viewpoint, to introduce and to give depth to new material, and to influ-ence the mindset of the student. 

BIBLIOGRAPHYDunham, William.  Journey Through Genius, The Great

Theorem of Mathematics. New York: John Wiley, 1990.Boyer, Carl, and Uta Merzbach. A History of Mathematics. 

New York:  John Wiley, 1989.  Eves, Howard.  Great Moments in Mathematics Before

1650.  Washington, D.C.:  Mathematical Association of America, 1983.  

Eves, Howard. Great Moments in Mathematics After 1650.  Washington, D.C.: Mathematical Association of America, 1983.

Edeen, Susan and  John Edeen. Portraits for Classroom Bulletin Boards, Book 1. Palo Alto, California: Dale Sey-mour, 1988.

Edeen, Susan and  John Edeen. Portraits for Classroom Bulletin Boards, Book 2. Palo Alto, California: Dale Sey-mour, 1988.

Leitzel, James (ed.).  A Call for Change: Recommendations for the Mathematical Preparation for the Teachers of Mathematics.  Washington, D.C.: Mathematical Associa-tion of America, 1992.  

National Council  of Teachers  of Mathematics. Historical Topics for the Mathematics Classroom.  Reston,  VA: NCTM, 1989.  

Reiner, Luetta & W. Reiner.   Mathematicians Are People, Too.  Palo Alto, California: Dale Seymour, 1990. 

MARTIN BARTELT ([email protected]) and STAVROULA K. GAILEY ([email protected]) teach mathematics and mathematics education courses at Christopher Newport University, Newport News, Virginia. 

GENERAL INTEREST

Affiliates’ CornerAffiliate Grant:   VCTM awarded a $500 grant  to  the Battlefields Council  to be used  to defray expenses  for a keynote speaker for their March conference.

Blue Ridge Council:  Will award a $500 scholarship to a high school senior who will pursue college studies to become a mathematics teacher.  Applications are due April 15. Contact:  Jonathan Schulz:  [email protected]<mailto:[email protected]>

Greater Richmond Council:  Will award a Professional Development grant up to $1000 to a member.  Applications are due May 1. Contact: Andrew Derer:  [email protected]<mailto:[email protected]>

Northern Virginia Council:  Annual banquet will be May 12.  The guest speaker will be Albert Goetz, NCTM Journal Editor.  At the banquet, NVCTM awards a scholarship to a high school senior intending to become a mathematics teacher and also recognizes top place schools in their Middle School and Junior Math Leagues. Contact:  Gail Chmura:  [email protected]<mailto:[email protected]>

6   Virginia Mathematics Teacher

GENERAL INTEREST

The Five Platonic SolidsTheoni Pappas

  Platonic solids are convex solids whose edges form con-gruent regular plane polygons. Only five such solids exist. The word solid means any 3-dimensional object, such as a rock, a bean, a sphere, a pyramid, a box, a cube. There is a very special group of solids called regular solids that were discovered in ancient times by the Greek philosopher, Plato. A solid is regular if each of its faces is the same size and shape. So a cube is a regular solid because all its faces are the same size squares, but this box, on the right, is not 

a regular solid because its faces are not all the same size rectangles. Plato proved that there were only five possible regular convex solids. These are the tetrahedron, the cube or hexahedron, the octahedron, the dodecahedron, and the icosahedron.

Here are patterns  for making all  five  regular  solids. Why not copy them, cut them out and try to fold them into their 3-dimensional forms?

tetrahedron hexahedron or cube

octahedron

icosahedron dodecahedron

tetrahedron

hexahedron

octahedron

icosahedron

dodecahedron

From the book “The Joy of Mathematics” by THEONI PAPPAS. Reprinted by permission of Wide World Publishing (http:/www.wideworldpublishing.com) Those wanting to reprint this article should contact Wide World Publishing.

 Virginia Mathematics Teacher  7

GENERAL INTEREST

VCTM Awards Two $2000 Scholarships to Future Math Teachers  This  year, VCTM,  through  its Board of Directors,  gave authorization  to  the  Scholarship  Committee  to  award  a $2000 scholarship to up to two candidates that were qual-ity,  prospective  mathematics  teachers.    To  receive  this award, candidates must be Virginia residents that are full-time students attending a Virginia college or university with a major in mathematics and plan to teach mathematics in a Virginia school.  This year’s selection process was based on  the  students’  academic  achievements  (transcripts), faculty  recommendations, and personal narratives (which were required  to  include a field experience, class experi-ence, volunteer experience, or life experience that has in-fluenced their decisions to be a teacher of mathematics).  Each  candidate  will  also  receive  a  complimentary,  one-year student membership  in VCTM.   This year’s scholar-ship winners are India (Brooke) Haun, a student at Virginia Tech and Johnathon Upperman, a student at The College of William and Mary.    The  scholarship  awards will  be  officially  announced  at this year’s VCTM Annual Conference banquet, March 12, 2011  at  the  Ramada  Plaza  Richmond West  Conference Center.   Both  India  (Brooke)  Haun  and  Johnathon  Upperman are  studying  to  become middle  and  secondary  teachers of mathematics.   They bring  to  their  teaching aspirations many achievements in their  teacher education and math-ematics programs.  India (Brooke) Haun is currently study-ing in a five-year program at Virginia Tech.  She plans to complete her Master’s in Education Spring 2012.  She has already  begun  to work  in  high  school  classrooms where 

she has had great success working with teachers and their students.   Before attending Virginia Tech,  she graduated from Monticello High School where she  received  the Su-san Gilkey Award, an award that is given to a student ath-lete with the highest grade point average.  She was also a Wendy’s High School Heisman nominee.  Johnathon Up-perman  is  currently  completing  a  four-year Bachelor’s  of Science degree at the College of William and Mary.  After completing this degree, he will continue his studies at Wil-liam and Mary to pursue a Master’s in Education.  He has a  stellar  academic  record and plans  to draw on his  suc-cesses to help inspire others to learn and appreciate math-ematics.  He, too, will begin his teaching career soon after he completes his Master’s in Education.  Prior to attending William and Mary, Johnathon graduated from Indian River High School.   VCTM members congratulate both of these scholarship winners and wish them success in all of their teaching ex-periences to come.  We also welcome India Brooke Haun and Johnathon Upperman to our profession and trust that they  will  share  in  the  very  important  task  of  supporting mathematics and its teaching in Virginia.  As  a  current  VCTM  member,  or  one  who  is  currently thinking about being a member as your read this article, we invite you to make a contribution to the Scholarship Fund the next time you are scheduled to make your annual dues.  You may also send a check to the editor made out to the VCTM Scholarship Fund.  Your contribution will help VCTM to continue to support prospective teachers of mathemat-ics.

8   Virginia Mathematics Teacher

VIRGINIA COUNCIL OF TEACHERS OF MATHEMATICS

2011 SCHOLARSHIP PROGRAM

The Virginia Council of Teachers of Mathematics (VCTM) encourages those persons interested in becoming

teachers of mathematics by offering up to two (2) scholarships of $2,000 annually. VCTM’s objective in

establishing this program is to unite the efforts of its members who seek to improve the teaching of mathematics.

This year, the VCTM Board of Directors has again authorized that two scholarships may be awarded if qualified

applicants are judged deserving by the current members of the Scholarship Committee.

DESCRIPTION

Students applying for this year's scholarships must be full-time students attending a four-year Virginia College or

University, Virginia residents, currently enrolled in a degree-seeking program with a concentration in mathematics

or major in mathematics and plan to graduate in Fall 2012, Spring 2013 or Summer 2013, and plan to teach

mathematics in a Virginia school. All applicants planning to teach at elementary, middle school, high school, and

college levels are eligible. Completed application materials must be returned postmarked no later than January 1,

2012. Applicants must also submit an official transcript showing grades through the Fall 2011 term, postmarked no later than January 15, 2012.

The scholarship winner(s) will be announced at VCTM’s 33rd Annual Conference. All applicants will be notified in

writing of the Committee’s decision.

CRITERIA FOR SELECTION

Selection will be based on the applicant's potential for a successful career teaching mathematics, as indicated by

scholastic records, recommendations of two faculty members, and the applicant’s narrative statement. All applications will be reviewed and will be selected by VCTM’s Scholarship Committee, with approval of VCTM’s

Executive Board.

RECENT AWARDEES

India (Brooke) Haun, Virginia Tech and Johnathon Upperman, The College of William and Mary (2011)

Heather Sturgis, Christopher Newport University and Abby Thompson, Radford University (2010)

Jennifer Jones Trail, Averett University and Hannah Jo Joyce, Virginia Tech (2009)

Nicole Huret, Virginia Tech and Rebecca Victoria Perrigan, The College of William and Mary (2008) Kevin Bryan Jones, Radford University (2007)

Kathryn (Katie) Massey, Virginia Tech and Samantha Soukup, Longwood University (2006)

Alisa R. Mook, Virginia Tech and Allena Monique Poles, Virginia Union University (2005)

Robyn L. Brewster, Bluefield College and Jennifer McLaughlin, Virginia Tech (2004)

Amy Tribble, James Madison University and Christy Lowery, Averett University (2003)

Melissa E. Andersen, Mary Washington College (2002)

Kristy Banton, Virginia Commonwealth University (2001)

Katherine M. Sutphin, Mary Washington College (2000)

Dana N. Daniels, Longwood College and Tiana M. Taylor, Averett College (1999)

Jonathan Covel, James Madison University (1998)

Sarah E., Boyer, Mary Washington College and Katherine Elms, Virginia Tech (1997)

APPLICATION INFORMATION

All required forms can be downloaded from the website: www.vctm.org or you may request application and

recommendation forms from your Mathematics or Education Department Chair or by writing to:

Joy Whitenack, VCTM Scholarship Committee

Virginia Commonwealth University

1015 Floyd Avenue, Richmond, VA 23284-2014 804-828-5901 or [email protected]

 Virginia Mathematics Teacher  9

2012 VCTM Scholarship Application for Prospective Teachers of Mathematics PLEASE PRINT Name__________________________________________________ Birth date (optional)________________ Gender (optional): M F Virginia College Now Attending:____________________________________________________________________ Other Colleges Attended (Including Community Colleges Major(s): _____________________________________ Minor(s): ___________________________________ Expected Degree:_______________________________________ Concentration *______________________ This is a (Circle): FOUR YEAR PROGRAM or FIVE YEAR PROGRAM *If you are in a special program, please describe on separate paper and attach. Expected Date of Graduation: (Circle) FALL 2012 or SPRING 2013 or SUMMER 2013 Are you a Virginia resident? ______ YES ______NO Do you plan to teach mathematics in Virginia? _____YES _____NO Level of mathematics you plan to teach (Circle all that apply): ELEMENTARY MIDDLE HIGH SCHOOL COLLEGE Current Mailing Address: ____________________________________________________________________ Permanent Home Address: ____________________________________________________________________ Current Telephone: ____________________________Permanent (Home) Telephone: ___________________________ eMail address that you regularly check: __________________________________ High School from which you graduated: _______________________________________________________________ Location (city and state): _____________________________________________________________________ High school honors; mathematics and education-related activities: ________________________________________________________________________________________________ ________________________________________________________________________________________________ I certify that the above information is correct. Signature: ___________________________________________________________Date:

Please attach a one-page statement indicating why you wish to be a mathematics teacher. In your essay, please include

a description of a field experience, class experience, volunteer experience, or life experience that has influenced your decision

to become a teacher of mathematics. Prepare your statement on 8-1/2" by 11" paper, double-spaced, using type no smaller

than 12 characters per inch (10 point). Finally, sign your statement at the bottom of the statement page.

POSTMARK DEADLINE FOR THIS APPLICATION IS JANUARY 1, 2012.

Mail all application materials to:

Joy Whitenack, VCTM Scholarship Committee Virginia Commonwealth University 1015 Floyd Avenue, Richmond, VA 23284-2014 804-828-5901 or [email protected]

10   Virginia Mathematics Teacher

GENERAL INTEREST

Problem CornerRay Spaulding

 Virginia Mathematics Teacher  11

12   Virginia Mathematics Teacher

 Virginia Mathematics Teacher  13

14   Virginia Mathematics Teacher

 Virginia Mathematics Teacher  15

16   Virginia Mathematics Teacher

 Virginia Mathematics Teacher  17

18   Virginia Mathematics Teacher

GRADES K-5

Clearing up the Confusion over Calculator Use in Grades K-5Barbara J. Reys and Fran Arbaugh

  Since  the  publication  of  NCTM’s Principles and Stan-dards for School Mathematics  in April 2000, considerable discussion has  taken place about  “key messages” of  the document.  The  breadth  of  the  content  of Principles and Standards  may  hamper  attempts  to  identify  messages about particular topics. In addition, many of the fundamen-tal messages are not easily distilled into short phrases. In fact, when such messages are  too succinctly articulated, the  danger  of  oversimplification  and  misunderstanding arises. This misapprehension  can be  seen  in  a  question that often emerges in discussions about elementary school mathematics and Principles and Standards. That is, what does Principles and Standards say about calculator use in elementary school? 

Why the Interest in NCTM’s Position?   Teachers,  teacher  educators,  mathematicians,  school administrators,  and  parents  are  genuinely  interested  in NCTM’s “official” position on calculator use in the elemen-tary grades. Why is everyone so interested? What issues surround calculator use in elementary school? Before we delve  into  the messages of Principles and Standards  on this topic, and to support our understanding of those mes-sages, we present a short discussion of some of the issues that may  be  prompting  the  current  interest  in what Prin-ciples and Standards says about calculator use in elemen-tary school. 

Why the Interest, and What’s the Confusion?   NCTM has published several official position statements on calculators, the first in 1978 and the most recent in 1998 (see nctm.org/about/  position.htm). Public  interest  in  cal-culator  use  in  schools  has  grown  steadily  over  the  past twenty-five years,  largely because of  the  increased avail-ability of inexpensive calculators. Through the first seven-ty-five  years  of  the  twentieth  century,  elementary  school mathematics  emphasized  paper-and-pencil  computation techniques  out  of  necessity.  In  fact,  some  estimates  of the amount of instructional time devoted in the elementary grades  to  developing hand-calculation  proficiency  run as high as 90 percent (Reys 1994). This emphasis was impor-tant because hand calculation was the most efficient way to  compute  apart  from  cash  registers,  adding machines, and expensive computers. Today, a $4 calculator can do in  seconds  the  computations  that  in  the  past,  students needed years of instruction and practice to learn and that, once  learned,  required significant amounts of  time  to ac-complish.   The $4 calculator, a highly efficient and accurate com-putational tool, raises a whole set of questions that educa-tors  and  parents  are  struggling  to  answer.  For  example, what  is  the  importance of having students  learn methods for computing that their parents and grandparents learned? If we value proficiency with hand-computation techniques, do we know and accept the “cost” in terms of instructional 

time and students’ motivation and interest in mathematics? If students spend less time reaching high levels of perfor-mance  in  hand  calculation,  how will  the  resulting  “extra” time be used? Do we value instruction that develops stu-dents’ ability to think, reason, and solve problems? Can we meet both goals simultaneously—that is, develop proficien-cy with hand calculation and the abilities to think critically, reason, and solve problems?   Another question relates to the perceived consequences of  learning  to  compute  by  hand  or with  a  calculator.  For example, do students derive cognitive benefits from learn-ing conventional paper-and pencil algorithms for comput-ing? Does an overemphasis and reliance on conventional computation algorithms encourage students not to think or use their powers of reasoning? Does the use of calculators for computation promote students’ understanding of math-ematical situations and  reasoning about solutions? For a more thorough discussion of issues that surround calcula-tor use in the elementary grades, see Ralston, Reys, and Reys (1996) and Reys and Nohda (1994).   Certainly,  these questions will  persist  until we address them. In fact, we know that the following situations prevail:    •  Calculators are readily available at home to children of 

elementary school age, and their low cost has prompted increased access in school. 

•  Calculators are commonly used in the workplace to per-form simple and complex computations. 

•  Teachers are unsure how to use calculators to promote thinking and reasoning and whether calculators should be used as computational devices. 

•  Children’s own beliefs about mathematics lead some of them to view using calculators as “cheating,” or not re-ally doing mathematics. 

Clearing up the Confusion: Messages in Principles and Standards   Principles and Standards articulates a goal for elemen-tary school mathematics that  includes computational pro-ficiency but extends well  beyond  that  skill  to  the abilities to think and draw on a range of techniques and strategies to solve problems. Computation is important precisely be-cause  it  is  necessary  to  solve many mathematical  prob-lems. The particular method used, however, whether it in-volves mental math, paper and pencil,  or a  calculator,  is just  one part  of  the  computation process. Students must also  know  what  kind  of  computation  to  perform  and  be able to identify the appropriate numbers to use in compu-tations. Real mathematics  is  knowing a  variety of  strate-gies  for  solving  problems and having  the  ability  to  apply them appropriately.  If data  from the National Assessment of Educational Progress (Silver and Kenney 2000) are any 

 Virginia Mathematics Teacher  19

multiples of 5.” In this example, the counting capability of the calculator allows students to focus on patterns that re-sult from adding the same number repeatedly. This type of exploration lays the groundwork for studying multiples and divisibility, important ideas in the upper elementary school grades. A more thorough discussion of this example can be found  at  standards.nctm.org/document/eexamples/chap4 /4.5/index.htm.   Shuard  (1992)  writes  about  a  classroom  episode  in which  elementary  school  students  “discovered”  negative numbers as they were investigating subtraction with a cal-culator. One student entered 6 – 8 and was curious about the displayed result, which was –2. The teacher used the opportunity  to model negative numbers by extending  the number line to the left of 0. In another activity, the children started at 50 and successively subtracted the amount rolled on a number cube. One student, Jenny, continued until she had 3 left. On her next roll, she got 5. She said, “I can’t take it away. I would owe 2.” She tried 3 – 5 on a calculator and said, “It  is take-away 2.” She continued to explore similar problems, making a list of those that had an answer of –1. Her list included 1 – 2, 2 – 3, and 3 – 4. When asked what number  could  be  subtracted  from 100  to  give  –1,  Jenny said, “Easy! 101” (Shuard 1992, p. 40). 

Technology should not be used as a replacement for basic understandings and intuitions; rather, it can and should be used  to  foster  those understandings and intuitions. (NCTM 2000, p. 25) 

  In  the  upper  elementary  school  grades,  students  can use the calculator to explore the relationships among vari-ous  representations  of  rational  numbers.  “For  example, they should count by tenths (one-tenth, two-tenths, three-tenths, . .  .) verbally or use a calculator to link and relate whole numbers with decimal numbers. As students contin-ue to count orally from nine-tenths to ten-tenths to eleven-

tenths and see the display change from 0.9 to 1.0 to 1.1, they see that ten-tenths is the same as one and also how  it  relates  to 0.9 and 1.1” (NCTM 2000, p. 150). 

As students encounter problem situations  in  which  computa-tions are more cumbersome or tedious, they should be encour-aged to use calculators to aid in problem solving. (NCTM 2000, pp. 87–88) 

Guided  work  with  calculators can enable students to explore number  and  pattern,  focus  on problem-solving  processes, and  investigate  realistic  appli-cations. (NCTM 2000, p. 77) 

indication, elementary school mathematics programs have had some success in helping students perform calculations but have been largely unsuccessful in developing students’ problem-solving abilities.   The writers of Principles and Standards recognized the importance of articulating a clear and research-based mes-sage  about  the  role  of  calculators  in  elementary  school mathematics. Readers will find  these messages  through-out the document. For example,  in chapter 2, the section on  the Technology Principle  includes a discussion of cal-culators  as  tools  for  learning.  Readers  should  also  look at chapters 3, 4, and 5 under the Number and Operation Standard for discussions of the role of calculators in devel-oping computational fluency.   The rest of this article summarizes some of the important messages from Principles and Standards about calculators in the elementary school mathematics classroom. We draw heavily from the text of the document and illustrate some of the points with examples. 

Calculators are important tools for learning and doing mathematics 

Electronic  technologies—calculators  and  comput-ers—are  essential  tools  for  teaching,  learning,  and doing mathematics. (NCTM 2000, p. 24) 

  Understanding number, properties of operations, and re-lationships among numbers is central to elementary school mathematics. The  calculator  is  a  tool  for  exploring  num-ber concepts and for generating data that can be studied for  patterns. For  example,  students  can use a  calculator to skip-count by 5s (press 0, + 5, =, and so on) and color the corresponding spaces on a hundred board (see fig. 1). Students can  then  try  the same process with other num-bers and respond to teacher prompts, such as “What pat-terns emerge?” and  “Predict  additional  numbers  that  are 

20   Virginia Mathematics Teacher

  In addition to its use as a way to explore mathematics, the calculator is a highly efficient and accurate tool for com-puting in problem-solving contexts. With access to a calcu-lator, students can use real data and large data sets. The calculator’s efficient and accurate ability to compute frees students  to  think  and  make  decisions.  When  a  cashier uses a computer to tabulate our bill or a bank clerk uses an adding machine  to  total  receipts, we do not  think  that they are “cheating.” We need to help students understand that mathematics is more than computation—that using a calculator as a tool for solving problems is not cheating. For example, students can use a calculator as a computing tool to help them answer the question “How much time would you  need  to  count  to  a million  or  a  billion?”  In  upper  el-ementary school, students can study the effect of extreme values when computing a mean. In all grades, they can use real data to solve problems of interest to them, from tabu-lating the costs of food items in the cafeteria to gathering and summarizing data on the number of pencils in all the desks in the classroom or the number of buttons on all their clothes. Students can use calculators  to help  them accu-rately and efficiently solve problems to focus their attention on what  calculations  to perform, not  just  how  to perform those calculations. 

Calculator use is not an all-or nothing decision

Part of being able to compute fluently means making smart  choices  about  which  tools  to  use  and when. (NCTM 2000, p. 36) 

Through  their  experiences  and  with  the  teacher’s guidance,  students  should  recognize  when  using  a calculator is appropriate and when it is more efficient to compute mentally. (NCTM 2000, p. 77) 

Students  at  this  age  [grades  3–5]  should  begin  to develop good decision-making habits about when  it is useful and appropriate to use other computational methods, rather than reach for the calculator. (NCTM 2000, p. 145) 

Calculators should be available at appropriate times as  computational  tools,  particularly  when  many  or cumbersome  computations  are  needed  to  solve problems. However, when teachers are working with students  on  developing  computational  algorithms, the calculator should be set aside to allow this focus. (NCTM 2000, pp. 32–33) 

Throughout  the  document,  Principles and Standards stresses that technology and, hence, calculator use is not an  all-or-nothing  decision.  Supporting  students’  under-standing of mathematical concepts helps them make good decisions about appropriate  times  to use a  calculator. At times in their study of mathematics, students will find that other ways of computing are more appropriate than using calculators.  For  example,  engaging  students  in  mental-math activities supports their understanding of mathemati-

cal  relationships.  When  teachers  want  to  help  students develop strategies that they can use to compute mentally, those strategies alone should be the focus. When students are learning ways to record computational strategies, then recording should be the focus. Elementary school teachers will certainly want students to put away their calculators at times to focus on developing other techniques and strate-gies for computing. At other times, when students are en-gaged in solving problems, formulating and applying strate-gies, and reflecting on results, a calculator is an important enabling tool. Teachers and parents must help students un-derstand that “real” mathematics is about thinking, applying strategies, reasoning, and relating ideas. Computation is a necessary tool in the process, but it is only one part of the whole process that makes up mathematics. 

Good use of calculators requires teacher decision making and guidance

In  the  mathematics  classroom  envisioned  in  Prin-ciples and Standards,  every  student  has  access  to technology to facilitate his or her mathematics learn-ing under  the guidance of a skillful  teacher.  (NCTM 2000, p. 25) The effective use of  technology  in  the mathematics classroom depends on the teacher. (NCTM 2000, p. 25) 

Principles and Standards emphasizes the role of teachers in  helping  students  become  responsible  technology  us-ers.  Teachers  should model  and  explain  their  own ways of thinking about numbers and operations and encourage students to share their methods. The classroom envisioned by NCTM is one in which students and teachers use a vari-ety of tools, including counters, rulers, graph paper, scales, geometric shapes and solids, text books, instructional soft-ware, and calculators. Just as  teachers guide and model the use of other tools, so must they help students under-stand the power and limits of a $4 calculator. The calcula-tor cannot think, and it cannot make decisions about what numbers or operations need to be used. The quality of the output of a calculator is wholly dependent on the input.   Teachers  must  examine  the  instructional  goals  for  a given  unit  or  lesson  to  decide whether  and  how  various tools, including calculators, can help students learn. In gen-eral, teachers should model and encourage calculator use when—    •  the focus of instruction is problem solving; •  the availability of an efficient and accurate computation-

al tool is important; •  the lesson involves a search for, and an exploration of, 

patterns; •  anxiety  about  computation might  hinder  problem  solv-

ing; and •  student  motivation  and  confidence  can  be  enhanced 

through calculator use. 

 Virginia Mathematics Teacher  21

Summary   As adults, most of us would not hesitate to pick up a cal-culator when we balance our checkbooks or do our taxes. Engineers,  architects,  building  contractors,  accountants, store clerks, and scientists readily use computing tools ev-ery day. Withholding opportunities for students to learn to use computing tools effectively and efficiently puts them at a disadvantage in today’s technological society.   Principles and Standards  advocates  computational  flu-ency  as  an  expectation  for  all  students.  It  encourages thoughtful  use  of  calculators  in  elementary  school  class-rooms. As  a  society, we  have  always welcomed  techno-logical advances that make our lives easier and our work more efficient and productive. We use word processors to write letters and prepare legal documents. We use spread-sheets to keep track of personal finances. These tools, like the $4 calculator, help us do our work more efficiently and use our results to answer questions and influence decision making. Calculators serve as efficient and accurate com-putational tools for both students and adults. Principles and Standards  asserts,  “Today,  the  calculator  is  a  commonly used computational tool outside the classroom, and the en-vironment  inside the classroom should reflect  this reality” (NCTM 2000, p. 33). 

Bibliography Coburn,  Terrence  G.  “The  Role  of  Computation  in  the 

Changing Mathematics Curriculum.”  In New Directions for Elementary School Mathematics, edited by Paul R. Trafton and Albert P. Shulte, pp. 43–56. Reston, Va.: Na-tional Council of Teachers of Mathematics, 1989. 

Dick,  Thomas.  “The  Continuing  Calculator  Controversy.” Arithmetic Teacher 35 (April 1988): 37–41. 

Lindquist, Mary M. “It’s Time to Change.” In New Directions for Elementary School Mathematics, edited by Paul R. Trafton and Albert P. Shulte, pp. 1–13. Reston, Va.: Na-tional Council of Teachers of Mathematics, 1989. 

National Council of Teachers of Mathematics (NCTM). “NCTM Position Statements.” nctm.org/about/position .htm. 

———. Principles and Standards for School Mathematics. Reston, Va.: National Council of Teachers of Mathemat-ics, 2000. standards.nctm.org. 

Ralston, Anthony, Barbara J. Reys, and Robert E. Reys. “Calculators and the Changing Role of Computation  in Elementary School Mathematics.” Hiroshima Journal of Mathematics Education 4 (1996): 63–71. 

Reys, Robert. “Computation and the Need for Change.” In Computational Alternatives for the Twenty-First Century, edited by Robert E. Reys and Nobuhiko Nohda. Reston, Va.: National Council of Teachers of Mathematics, 1994. 

Reys, Robert E., and Nobuhiko Nohda, eds. Computational Alternatives for the Twenty-First Century. Reston, Va.: National Council of Teachers of Mathematics, 1994. 

Shuard, Hilary. “CAN: Calculator Use in the Primary Grades in  England  and  Wales.”  In  Calculators in Mathemat-ics Education,  1992 Yearbook  of  the National Council of Teachers of Mathematics (NCTM), edited by James T. Fey and Christian R. Hirsch, pp. 33–45. Reston, Va.: NCTM, 1992. 

Silver, Edward A., and Patricia Ann Kenney, eds. Results for the Seventh Mathematics Assessment of the Nation-al Assessment of Educational Progress.  Reston,  Va.: National Council of Teachers of Mathematics, 2000.   

Edited by JEANE JOYNER, [email protected], Depart-ment of Public Instruction, Raleigh, NC 27601, and BARBARA REYS, [email protected], University of Missouri, Columbia, MO 65211. This department is designed to give teachers informa-tion and ideas for using the NCTM’s Principles and Standards for School Mathematics  (2000). Readers are encouraged to share their experiences related to Principles and Standards with Teach-ing Children Mathematics. Please send manuscripts to “Princi-ples and Standards,” TCM, 1906 Association Drive, Reston, VA 20191-9988

Reprinted with permission from Teaching Children Mathematics, copyright October 2001, by  the National Council of Teachers of Mathematics. All rights reserved.

22   Virginia Mathematics Teacher

GRADES 2-6

Teaching Addition and Subtraction Facts: A ChinesePerspective

Wei Sun and Joanne Y. Zhang  In its Principles and Standards for School Mathematics, the NCTM suggests  that  fluency with  basic  addition  and subtraction  number  combinations  is  a  goal  in  teaching whole-number computation (NCTM 2000, p. 84). A mastery of  lower-order  skills  instills  confidence  in  students  and facilitates  higher-order thinking. The ability to automatically recall  facts  strengthens  mathematical  ability,  mental mathematics,  and  higher-order  mathematical  learning. Without this automation, students have difficulty performing advanced operations.   How teachers can help children master the basic 

 addition 

and subtraction facts is an important, long-standing issue in every country in the world. Educators in different countries have  developed  unique  approaches  to  teaching  basic addition and subtraction  facts. This article examines how Chinese mathematics educators deal with these facts. 

Differences in Language Structure  Researchers have found that children’s spoken language affects how they think and, thus, can affect learning of the basic  facts  (Miura  et  al.  1994).  For  instance,  compare the  counting  sequence  in  English  with  that  in  Chinese, as shown  in  table 1. Unlike  the English, Chinese clearly and  consistently  highlights  the  grouping-by-ten  nature  of our  numeration  system.  In Chinese,  fourteen is ten-four, eighteen is ten-eight, and thirty is three-ten. The structure of  the  language  easily  leads  Chinese  children  to  view two-digit  numbers  as  tens  and  ones  (Cao  1994).  They can  readily  think  of  12  both  as  one  group  of  ten  items plus  two  ungrouped  items  and  as  a  collection  of  twelve ungrouped items. English counting terms are less explicit and  consistent  in  revealing  the  base  ten  nature  of  our numeration system. For example, twelve is not ten-two and twenty is not two-ten.    Furthermore,  Yang  and  Cobb  (1995),  in  their  study  of children’s  conception  of  number,  found  that  American mothers  rarely  interpreted  numbers  in  the  teens  as composites of one 10 and some 1’s when they interacted with  their  children.  Instead,  they  usu ally  initiated  and guided learning activities in which children completed tasks involving numbers in the teens by counting by ones orally or  with  manipu latives.  This  practice  reinforces  the  view that 12, for example, represents only a collection of twelve items.  As  a  result,  Chinese  children  are  more  inclined than  children  in  the United States  to  use  tens  and  ones to  represent numbers and, subsequently,  to use 10 as a bridge when performing addition and subtraction. 

Differences in Teaching American  teachers  often  use  counting  in  a  one-to- one correspondence  to  introduce  addition  and  sub traction  of whole numbers. This strategy  is based on the “one more than”  relationship  between  consecu tive  whole  numbers; 

for example, 4 is one more than 3 and 9 is one more than 8. As a result, when two-digit addition and subtraction are introduced,  American  children  rely  heavily  on  counting-based and collection-based  concepts;  for  instance,  13  is treated as a collection of thirteen objects.   Chinese  teachers  use  a  three-step  method  to  teach addition  and  subtraction.  Children  first  develop  an understanding  of  number  concepts,  the  meanings  of addition  and  subtraction,  and  the  relationships  between addition  and  subtraction.  Next,  children  mas ter  addition and  subtraction  facts  in  three  substeps.  First,  they  learn sums and related subtraction facts  to 10,  then they  learn facts  between  11  and  20,  and  finally,  they  learn  facts between 20 and 100. In the third overall step, students are introduced to the addi tion and subtraction algorithms. Each step is the foun dation for the next step. Making sure that children suc cessfully complete one level before moving to the  next  is  important  to  the  teachers.  If  children  acquire a solid  foundation at each of  these three steps,  they can 

 Virginia Mathematics Teacher  23

easily extend the process to even larger numbers.   When  sums  up  to  10  are  first  introduced  in  Chi nese elementary schools, counting skills are empha sized to help children understand the relationships among these sums. When sums between 11 and 20 and related subtraction facts are  introduced,  rather  than  rely on counting, children are usually encour aged to create collections of tens and ones to repre sent the number;  this approach is consistent with the linguistic structure of the Chinese counting sequence. For  example,  to  teach 8 + 3, Chinese  children are often asked to take two objects from a collection of three and put them together with eight to make a 10; thus, they see that the whole becomes a collection of ten and one, or eleven. The  “make  ten”  thinking  strat egy  is  demonstrated  in  the following examples: 

a) 9 + 4 = ?  Think:  • 9 + ? = 10.      • 9 + 1 = 10.     •    4              / \            1 3      • Therefore,        9 + 1 = 10;      10 + 3 = 13. 

b) 8 + 7 = ?   Think:   • 8 + ? = 10.     • 8 + 2 = 10.     •    7          / \        2 5     • Therefore,      8 + 2 = 10;      10 + 5 = 15. 

The Chinese numerical language shown in table 1 plays an essential role in this strategy. Moreover, Chinese teachers believe that students should use 10 as a bridge because of its importance in the base-ten numeration system.   Chinese  teachers  strongly  emphasize  using  addition facts to do subtraction. By doing so, they not only encourage students to apply their previ ously learned knowledge in the new situation but also help students see how addition and subtraction are related. Consider the following examples: 

a) 13 – 5 = ?  Think:   • 5 + ? = 13.     • 5 + 8 = 13.     • Therefore,      13 – 5 = 8. 

b) 15 – 8 = ?  Think:   • 8 + ? = 15.     • 8 + 7 = 15.     • Therefore,      15 – 8 = 7. 

Differences in Thinking Strategies Thinking strategies are emphasized  in both America and China in teaching the basic facts (see, e.g., Baroody [1998]), but  the  way  in  which  these  facts  are  presented  is  quite different. Many American textbooks arrange the basic facts 

as families, such as sums of 12, sums of 13, and so forth. The  textbooks  introduce  a  variety  of  strategies,  such  as counting up, learning doubles, or recognizing double-plus-one and double- minus-one situations (see, e.g., Addison-Wesley  Mathematics  [Menlo  Park,  California],  Houghton Mifflin Math Central  [Dallas, Texas], Harcourt Brace Math Advantage [Orlando, Florida]). To some extent, basic facts are viewed as associations to be memorized through hands-on activities, then recalled on demand. Chinese textbooks arrange the basic  facts using fact  tables (Curriculum and Teaching  Materials  Research  Institute  1999),  and  the primary  strat egy  taught  is  “make  10.”  Chinese  teachers gen erally introduce the basic facts in units, such as the 6+ unit, the 7+ unit, and so on. These units are categorized by the known entity (addends) instead of the unknown entity (sums).  This  dif ference  between American  and  Chinese teaching can be seen in table 2. 

  The fact families from 2 to 18 contain 153 additional facts that American students need to study; the fact table, in con-trast,  contains  only  81  facts. When  students  understand the commu tative property of whole numbers, the number of addition facts that they need to know is reduced to only 45 (see  table 3). Although Chinese and American  textbooks arrange  addition  facts  differently,  they  both  use  relation-ships to mini mize the amount of information that must be memorized.  When Chinese children learn the basic facts, their task involves not only memorizing but also using logical thinking and reasoning based on relationships among the numbers. Encouraging  children  to  examine  a  visual  aid  similar  to table 3 and to look for patterns and relationships can help them devise  thinking strategies  that can aid  in mastering the basic facts (see, e.g., Baroody [1998]).   Chinese teachers also teach different strategies that are not introduced in the textbooks but that can help children see the patterns among the addi tion facts. Consider the fol-lowing examples, in which n is a whole number: 

•  For n  + 1,  the  sum  is  the next whole number,  that  is, the number after n  in the counting sequence (Baroody 1998).

•  For n + 2, the sum is the next odd or even whole number. •  The sum of n + 9 can be found by adding 10 to n, then 

subtracting 1. This strategy is a shortcut for the make-10 approach discussed previously. 

24   Virginia Mathematics Teacher

Because  they  rely  on  such  thinking  strategies,  Chi nese children rarely use manipulatives to figure out facts.   Two  other  strategies  for  subtraction  are  often  seen  in Chinese classrooms. One is to use 10 as the bridge number in a subtraction equation. Consider these examples: 

a) 14 – 9 = ?  Think:   • 10 = 9 + (1).     • 14 – 10 = 4.     • 4 + 1 = 5 (because you      subtract one more, you      need to add one back).     • Therefore,      14 – 9 = 5. 

b) 15 – 8 = ?  Think:   • 10 = 8 + (2).     • 15 – 10 = 5.     • 5 + 2 = 7 (because you      subtract two more, you       need to add two back).     • Therefore,      15 – 8 = 7. 

The other strategy also uses 10 as a bridge, but it requires students to recall simple addition facts. The following are examples: 

a) 13 – 4 = ?  Think:   • 13 = 10 + 3.     • 10 – 4 = 6.     • 6 + 3 = 9.      • Therefore,      13 – 4 = 9. 

b) 16 – 9 = ?  Think:   • 16 = 10 + 6.     • 10 – 9 = 1.     • 1 + 6 = 7.     • Therefore,      16 – 9 = 7. 

Summary When  using  thinking  strategies  to  perform  addition  and subtraction,  students  reinforce  their  under standing  about the  facts  that  they have  learned by using  those  facts  re-peatedly. By  the  time  they  fin ish  learning  single-digit  ad-dition  and  related  sub traction,  they  can  easily  recall  the addition and sub traction facts and are more than ready to learn the formal algorithms of addition and subtraction. Chi-

nese teachers  introduce these strategies as early as first grade (Curriculum and Teaching Materials Research Insti-tute 1999). Students may not be expected to master these strategies in a short time, but if the foundation is laid early, students can apply their knowledge of the basic facts and these  strategies  to  other mathematical  content  that  they will study later. 

References Baroody, Arthur J. Fostering Children’s Mathematical Pow-

ers: An Investigative Approach to K–8 Mathematics Instruction.   Mahwah, N.J.: Lawrence Erlbaum Associ-ates, 1998. 

Cao, Feiyu. “Development of Pre-School Children’s Opera-tional Ability.” In Reform of Elementary Mathematics Edu-cation, 197205. China: People’s Education Press, 1994. 

Curriculum  and  Teaching  Materials  Research  Institute. Nine-Year Compulsory Education Elementary Math-ematics Series. China: People’s Education Press, 1999. 

Miura,  Iren  T.,  Yukari  Okamoto,  Chungsoon  C.  Kim, Chih-Mei  Chang,  Marcia  Steere,  and  Michel  Fayol. “Comparisons  of  Children’s  Cognitive  Representation of Number: China, France, Japan, Korea, Sweden, and the United States.”  International Journal of Behavioral Development 17 (Sep tember 1994): 401–11. 

National  Council  of  Teachers  of  Mathematics  (NCTM). Princi ples and Standards for School Mathematics. Reston, Va.: NCTM, 2000. 

Yang, Ma Tzu-Lin, and Paul Cobb. “A Cross-Cultural Investi-gation into the Development of Place-Value Concepts of Children in Taiwan and the United States in Educational Studies.”  Educational Studies in Mathematics  28 (January 1995): 1–33. 

WEI SUN, [email protected], teaches at Towson University, Towson, MD 21252. He is interested in teacher education, gifted students, curriculum development, and comparative studies. JOANNE ZHANG, [email protected],net, teaches at Hollywood Elementary School, Hollywood, MD 20636. She has a special interest in effective instruction, including mathematics teaching strategies, cross-cultural studies, and learning disabilities. The authors would like to thank Professor Arthur BAROODY for his help in revising the manuscript.

Reprinted with permission from Teaching Children Mathematics, copyright September 2001, by the National Council of Teachers of Mathematics. All rights reserved.

 Virginia Mathematics Teacher  25

GRADES 3-6

Dividing Fractions: Reconciling Self-Generated Solutionswith Algorithmic Answers

Marcela D. Perlwitz  In this article, I discuss some key episodes that occurred in one of my mathematics classes on basic arithmetic no-tions. The core concepts of the course included place-value numeration, whole numbers and operations, fractions and opera tions, and foundations of number theory. My instruc-tional approach focused on students’ inquiry, empha sizing their own interpretations and their explanations and justifi-cations of  their answers. To support stu dents’  inquiry,  the instructional  tasks were open-ended and often presented within a problem-solving context. Students worked collab-oratively in small groups or pairs, then presented their so-lutions and answers to the whole group. As the teacher, I acted as a facilitator and guide for the students’ self-gener-ated solutions and their exchange of ideas and negotiation of mean ing. The episodes discussed here were selected from a sequence of lessons on the division of fractions. 

Students’ Beliefs and Expectations  My students brought to the classroom beliefs that were consistent with their past experi ences (Frank 1990) where learning mathematics had been characterized by the quick production of  “answers.” Consequently,  they  thought  that it  was my  role  as  the  teacher  to  pass  along  proce dures and that their job was to apply the neces sary algorithms or rules. They also believed that  there was only one way to solve a problem. Thus, what my students had learned re-garding expecta tions for accepted evidence of knowledge or  un derstanding  contradicted  my  emphasis  on  stu dent-generated  solutions.  Furthermore,  since  they  were  now required to think on their own, it became apparent that they placed  little or no  trust  in  their  own ability  to  solve prob-lems and at  first  resisted my  instructional approach. The students’  limited understanding of  fractions further aggra-vated their lack of confidence. 

Division with Fractions in the Context of LinearMeasurement   To  introduce my  students  to  problem  solving  involving the division of fractions, I posed the following task. My ex-pectation was that they would solve it using self-generated methods. 

In Ms.  Smith’s  sewing  class,  students  are making  pil-lowcases for the open house exhibit. Ms. Smith bought 10 yards of fabric for her class project. Each pillowcase requires 3/4 yard of fabric. How many pillowcases can be cut from the fabric? 

  Students  joined  their  partners  to  find  solutions  to  this problem. Soon  thereafter,  some  students  sug gested  that this was a division problem and that if they used the invert-and-multiply rule, they would get the right answer. Howev-er, in light of the expec tation that they should explain their answers,  the stu dents could not  just use  invert and mul-tiply without explaining and  justifying how  it works. Since none of the students knew the basis of the algorithm, they sought their own solution methods to find the an swer, then many used the algorithm to check the an swer. In doing so, they encountered a discrepancy between the standard-al-gorithm answer and the one they derived using their own methods.  In  their  at tempt  to  reconcile  the  answers,  sev-eral students had  to come  to  terms with  their  lack of un-derstanding of the result they obtained using the standard algo rithm. Here are some of the students’ solutions.  Christine:  First  I  laid  out  10  pieces  of  1-yard mater ial. Then I took out 3/4 from one piece leaving 1/4 of a piece of  fabric  from each yard piece  [see fig. 1]. Then  I added up all 1/4 pieces  to see how many groups of 3/4  I could 

26   Virginia Mathematics Teacher

make. The  final  answer  is  13  pillowcases with  1/4  piece leftover [pauses] or what I thought was 13 1/4. When I went to check it doing the invert-multi ply method of old days, the answer was 13 1/3  [seem ingly perplexed].  I  can’t  under-stand why.   Next I called on David. He drew a large rectangle with 10 equal sections to represent the 10 yards and further subdi-vided the first rectangle into 4 equal rectangles (see fig. 2).   David: I know we have 4 fourths in each yard; 10 x 4 = 40. In 10 yards, we have 40 fourths. Each pil lowcase needs 3/4. Thirteen times 3 is 39, so I can make 13 groups of 3 [fourths]. I have one 1/4 of a yard leftover. The answer is 13 1/4. But that’s not right.  If you do 10 x 4/3 you get 13 1/3. How come?   Both Christine  and David  doubted  their  self-gener ated solutions because  they  trusted  the algorithm. Their  focus on the right answer was overshadowing their activity, and they could not recognize that the numbers 13 and 1/4 re-ferred to units of a different nature. Hence, they merely jux-taposed both units with no consideration of the fact that 13 indicated the number of cuts of size 3/4 yard (or pillowcase lengths) in 10 yards and that the 1/4 indicated the 1/4-yard length of leftover material. This explana tion was further evi-dence that  the students did not know the meaning of  the numbers  in  the  answer  ob tained with  the  algorithm. The 13 1/3  in  the algo rithm means 13 1/3 pillowcases,  or  13 whole  lengths of size 3/4 yard and 1/3 of another (or 1/3 the  length  of  one  pillowcase).  Some  students  protested and said it was my responsibility as their teacher to explain the apparent disparity. Next, Betsy raised her hand to vol-unteer her solution.   Betsy: What I did was to draw 10 squares side by side. Then I divided them into four pieces each [see fig. 3] and did  the counting  like  this: 3/4  for one pil lowcase, another 3/4  for  another  pillowcase,  3/4  for  another  pillowcase, that’s  9/4.  [As  she  talked,  Betsy  recorded  her  numbers in  two columns while mark ing  the picture accordingly, as shown in fig. 3.] 

3/4 yd.  1 pillowcase 6/4 yd.   2 pillowcases 9/4 yd.   3 pillowcases 12/4 = 3 yd.   4 pillowcases 

When I saw that 12/4 make 4 pillowcases and I’d used up  3  yards,  I  figured  that  with  6  yards,  I  can make  8 pillowcases;  with  9  yards  I  can make  12  pillowcases. 

From the last yard, I can take 3/4 and make another pil-lowcase and have 1/4 yard of fabric left [and continued recording].

 6 yd.   8 pillowcases 9 yd.   12 pillowcases 9 3/4 yd.   13 pillowcases 1/4 yard leftover 

I  can make 13  pillowcases  and  there  is  1/4  of  a  yard leftover. The answer is 13 pillowcases and the problem is solved. 

  Betsy’s solution involved proportional thinking as reflect-ed  in her double counting of yardage and number of pil-lowcases, which she recorded in two side-by-side columns. Betsy exhibited a greater abil ity to unitize as she was able to take 3/4 as her counting unit for the length of fabric.   Several students voiced their discomfort with Betsy’s an-swer. Ann spoke almost in protest.   Ann: You got only 13? The answer is 13 1/3 be cause the formula is right!   Betsy: The question is “How many pillowcases of 3/4 of a yard can you make?” and you can make 13 pillowcases. You can’t make another pillowcase with just 1/4 of a yard of fabric. The answer is 13, the problem has been solved!   A couple of students nodded in agreement, while others insisted on the answer of 13 1/3. At this point, I reminded the class that there were three an swers to think about now: 13, 13 1/3, and 13 1/4. Several students in unison declared “the invert and multiply is the right one.”  Betsy: I know how to cut fabric. The problem has been solved. The question was “How many pillow cases can you make?” Why are we arguing about the piece leftover? You either have enough to make the pillowcase using 3/4 of a yard or you don’t. Only in school you have to give answers with mixed frac tions. It doesn’t always make sense in real life.   Silence  followed  Betsy’s  comments.  Then  Ann  volun-teered.   Ann: Betsy has a good point, but I still would like to know why one gets two different answers; 13 1/4 seems right; I have counted several  times and I get  the same thing, 13 1/4.   Betsy’s  and Ann’s  arguments  raise  two  important  and related pedagogical  issues. On the one hand, presenting problems  in context helps  the  learner seek solutions  that 

 Virginia Mathematics Teacher  27

make sense, given the condi tions of the task. Betsy’s solu-tion  illustrates  this ability, as her answer makes  the most sense  in  the given  context. On  the other  hand, we want students to move beyond context and be able to generalize and work with numbers efficiently. The latter con siderations make Ann’s point a legitimate one, too. Indeed, if we were to report the measurement of 10 yards of material using a measuring stick 3/4-yard long, the answer would be 13 1/3 measuring-stick  lengths.  This  occurs  because  the  piece 1/4-yard long would figure in the measurement as the frac-tion 1/3 of  the 3/4-yard-long measuring stick (see fig. 4). However,  as a  teacher,  I wanted  the  stu dents  to  resolve their cognitive impasse.   Teacher: OK. I would like you to think about a few things. First, what the problem is asking you. Second, think about what 13 and 1/4 stand for in your solution. Why don’t you do the measuring in our next meeting?   The next  class, before we began measuring, Christine opened the discussion and volunteered her thinking. She had  recorded her  solution  in  her  class  notebook and  re-ferred to it as she talked to the class.   Christine: It took me a while to understand that we were not using a yardstick as a measuring tool. We were looking at 3/4 of a yard to see how many pillowcases of that length would come out of 10 yards. When I looked at 1/4 that way, it would re ally be 1/3 of the length of a pillowcase. I figure that 1/4 is 1/3 in relation to 3/4.   Several students were puzzled by Christine’s ex planation; Paula’s reaction was representative of their thoughts.  Paula:  I can’t understand how 1/4 can be 1/3. What  is she saying?   Apparently,  Paula  could  not  follow  Christine’s  ex-planation. She still failed to recognize that the 1/4 and the 

1/3 were fractions of different units of refer ence. Paula and other students in the class did not realize that 1/4 yard is 1/3  of  3/4  yard.  They  could  not  coordinate  the  different units  involved  in  the  task. At  this point,  rather  than have Christine demonstrate it,  I asked students to get  involved in the process of measuring. To each small group I handed a 10-yard-long unmarked white paper tape and a 3/4-yard-long unmarked colored paper tape. The task was to mea-sure and keep track of the process so they could explain the result. After the small-group work, students reported to the whole class. To facilitate their demonstrations, I taped one of the 10-yard strips on the board, and students came to the board to show how they conducted their measure-ment. The following exchanges took place.   Paula: We  placed  the  3/4  piece  on  top  of  the  10 yard piece one time after another. We marked the point where each 3/4 piece ended and so forth. We counted 13 times and got a piece leftover.  Teacher: How would you report the result of your mea-suring?  Paula: Ann and  I were  talking about  it  and we are not sure. There is a 1/4 yard of fabric leftover but we still don’t know about the 1/3.   Betsy: We did  the same  thing, but we  folded  the short piece  [of  the measuring stick] where we ran out of  fabric and it’s 1/3 of the measuring stick [see fig. 5].   Kathy:  We marked  how many  times  the  leftover  went over  the  measuring  stick.  It  was  three  times,  so  that’s where the 1/3 comes from!   Other students also showed their understanding that 1/4 yard of fabric is 1/3 of a 3/4-yard piece (or 1/3 the length of the pillowcase), but some students still could not see that relationship.  However,  given  their  past  experiences  with 

28   Virginia Mathematics Teacher

learning fractions and the fact that this was the second les-son on division of fractions, the students’ progress in their under standing of the meaning of the division by a fraction was remarkable. Discussion   It  is worth noting  that  the students, at   first, did not  in-terpret  the  pillowcase  problem  as  being  division.  David was the first to suggest it, then this interpretation became widely accepted. Since  these events occurred  in  the  last quarter of  the semester, my students knew that  just find-ing a numerical answer was not acceptable. Still, some did not trust themselves to find their own solution methods and would have just used the standard al gorithm. As I moved around small groups, we rene gotiated the expectation that they had to find  their own solutions and that  if  they were to use  the algo rithm,  they had  to be able  to explain how it works. I reminded them how far they had come in their un derstanding of numbers and  their ability  to solve prob-lems, so why would they revert to using rules they did not understand?   That  said,  they  began  to  generate  their  own  solu tion methods and used the stan dard algorithm to check their an-swers. While checking, they

 found a discrepancy between

t their  answer  and  the  algorithm-based  answer,  and  their first reac tion was self-doubt. As previously shown, because of their lack of

 understanding of the result of the standard 

algorithm,  they could not  readily  resolve  the discrep ancy and called on me to do it. In stead, I made their conflict the

focus  of  the  mathematical  activity.  To  support  their  own resolution,  I  got  them  involved  in  actual  mea suring.  As they measured in groups, they began focusing on the re-lationship between the 1/4- yard leftover and the 1/3 in the algorithm-based an swer. They taught each other that since the measur ing stick was 3/4-yard long, then the 1/4 yard of fabric leftover was 1/3 of the 3/4-yard long measur ing stick. Exchanging  ideas and  supporting one an other’s  learning facilitated the student’s resolution of the disparity between their self-generated solution and  the algorithm-based an-swer. Some students needed further experience measur-ing  and  support  from  their  classmates  to  relate  the  frac-tion of  left over  fabric  to  the corresponding  fraction of  the mea suring-stick length. By the end of the instructional se-quence on fractions, the students had learned the meaning of the answer they obtained using the in vert-multiply rule. However,  not  everybody was able  to  explain  the  rule.  In the case of a whole number di vided by a fraction, students who adopted David’s solution method were able to explain how the stan dard algorithm works. However, relating their mea surements to the algorithm while dividing two frac tions proved much more difficult  for  the students.  In  fact,  very few students accomplished it. 

Conclusions   Although  the events  related here occurred  in a college class,  the  instruction and findings are pertinent  to middle school  instruction  since  the  topic  of  dividing  fractions  is taught  dur ing  the middle  school  grades.  In  addition,  the 

lim ited understanding of my college students  reflects  the complexity of the concepts of fraction. What these experi-ences  related  here  ultimately  teach us  is  that  unless we place more emphasis on stu dents’ understanding of num-bers  and  operations  (NCTM 2000), we may  be  severely limiting  our  students’  chances  to  learn mathematics with un derstanding. Furthermore, teaching for mastery of algo-rithms will  tend  to perpetuate  the  students’  lack of  confi-dence in their own ability to reason mathematically.   It became apparent  that my students’ experi ences had led them to believe that getting an swers was more impor-tant than the thinking in volved in the solution. At first, they greatly resisted my approach to instruction and did not want to find their own solutions. I insisted on the importance of making personal sense of mathe matics and showed them respect  for  their  think ing and  their struggle. This process of  renegotia tion of mutual expectations recurred  through-out  the semester and  informed my teaching  in two ways. First, it gave me the opportunity to learn about the nature of my students’  understanding. Second,  I  turned my stu-dents’ current under standing into learning opportunities by guiding them to resolve their own cognitive conflicts rather than intervene to correct their misconcep tions myself. The role of context proved invalu able in the students’ efforts to make  sense  of  the  numerical  answers.  The  instructional task  I  chose  to  introduce—the division  of  fractions—was em bedded  in  the  context  of  linear  measurement,  which corresponds to the quotitive or measure ment interpretation of  division  that  students  en counter  with  whole  numbers (Lamon 1994). The familiarity with this interpretation of di-vision and  the context of measuring  fabric supported  the students’ efforts to reconcile their self-generated solutions with the an swer obtained using the standard al gorithm. In addition, they gained an increased confidence in their abil-ity to understand how algorithmic re sults relate to their self-generated solutions. 

References Frank, Martha L. “What Myths about Mathematics Are Held 

and  Conveyed  by  Teachers?”  Arithmetic Teacher  37 (January 1990): 10–12. 

Lamon, Susan J. “Ratio and Proportion: Cognitive Founda-tions in Unitizing and Norming.” In The Development of Mul tiplicative Reasoning in the Learning of Mathematics, edited by Gershon Harel and Jere Confrey, pp. 89–120. Albany: N.Y.: State University of New York Press, 1994. 

National  Council  of  Teachers  of  Mathe matics  (NCTM). Principles and Stan dards for School Mathematics. Res-ton, Va.: NCTM, 2000. 

MARCELA PERLWITZ, [email protected], lives in Craw-fordsville Indiana. She is interested in algebraic thinking and the role of context in problem solving.

Reprinted with permission from Mathematics Teaching in the Mid-dle School, copyright February 2005, by the National Council of Teachers of Mathematics. All rights reserved.

 Virginia Mathematics Teacher  29

GRADES 3-6

Developing Ratio Concepts: An Asian PerspectiveJane-Jane Lo, Tad Watanabe, and Jinfa Cai

  The following vignette illustrates how a Taiwanese text-book series envisions introducing the concept of ratio.  Textbook. There are two blocks in front of you. One is 6 cm long an the other is 2 cm. How many times as long is the 6 cm block compared with the 2 cm block?  Some students use  the 2 cm block as a masuring unti to figure out  that 6 cm is 3 units of 2 cm. Other students reason with  the  two quantities directly and come up with the equation 6 ÷ 2 = 3.

Textbook. When comparing two quantities, one of them has to be used as the base quantity. There are two ways to relate the other quantity to the base quantity. The first way is to find out how much more the second quantity is  than  the base quantity. For example, how many cm longer is the 6 cm block than the 2 cm block?Solution. 4 cm.Textbook. The second way is to find out how many times as long is the second quantity as the base quantity. For example, 6 cm is 3 times longer than 2 cm. Another way to represent this relationship is to use the word bi. Write as 6 bi 2, and  6:2. The result of this comparison, 3, is called the “value of the ratio.”

  A recent analysis of Asian curricular materials has identi-fied several key ideas that are emphasized in the introduc-tory lessons of ratio (Lo, Cai, and Watanabe 2001). These key  ideas  include distinguishing a multiplicative  compari-son from an additive compari son; identifying a base quan-tity and measuring unit for comparison; distinguishing and relating  the ratio a:b,  the division a ÷ b, and  the value of ratio a/b; and learning the importance of units in forming a mean ingful ratio relationship. After the introduction of ratio, two  or  three more  lessons were  devoted  to  the  ideas  of equivalent ratios, simplified integer ratios, and applications of ratio concepts. Some of  these dis cussions are  familiar to mathematics teachers in North America, whereas others seem  to be unique  to  the Asian materials.  In  this article, we will  elaborate on  these key  ideas and give examples from textbook series in China, Taiwan, and Japan (Division of Mathematics 1996; National Printing Office 1999; Tokyo Shoseki 1998). Our goal is not to evaluate Asian materials but rather to provide an international perspective that may help  increase  teachers’ experi ence and awareness when they strive to help stu dents develop ratio concepts (Cai and Sun 2002). 

Introduction of Ratio ConceptsDefining ratio as being a multiplicative relationship Unlike typical U.S. textbooks that consider a:b and a/b as two  different  ways  to  represent  a  ratio, Asian  textbooks clearly distinguish between ratio a:b as a multiplicative re-lationship between two quantities and the value of ratio as the quotient a/b of the divi sion a ÷ b. In the previous exam-

ple, the multiplica tive relationship between the 6 cm block and the 2 cm block can be represented as 6:2. The result of 6 ÷ 2 , or 3, is called the value of the ratio 6:2, where 6 is called the front term of the ratio and 2 is called the back term of  the  ratio. Conceptually,  this  idea  is  equivalent  to saying “6 is 3 times as many as 2.” Note that the idea of using the second quantity as the base for comparison can be linked directly to measurement division (quotitive), even though the term “measurement division” is not directly used in Asian textbooks. For example, the teacher’s manual of a Japanese textbook talks about conceptualizing the value of the ratio of a:b as the relative value of a when considering b as a base quantity. 

Identifying the base quantity for comparison   Since the ratio is a way to compare two quantities using the division operation and since division  is noncommuta-tive, the order of the two terms for a particular ratio is impor-tant. In other words, a:b and b:a describe the multiplicative relationship between quantities a and b from two perspec-tives. The value of ratio a:b is not the same as the value of b:a, unless a equals b. The Chinese teacher’s manual indi-cated the reciprocal relationship between a:b and b:a but suggested that the reciprocal relationship not be explicitly mentioned  to  students  at  the  intro ductory  stage  to  avoid possible confusion.   To highlight  this  idea, a Taiwanese textbook posed two different  questions  comparing  the  num ber  of  cookies  for two brothers when the younger brother has 5 cookies and the other has 2 cookies. The first question was this: “The number of cookies  the younger brother has  is how many times  the older  brother’s  number?” The second question was this: “The number of cookies the older brother has is how many times the younger brother’s number?” The so-lution  to  the first problem was 5 ÷ 2 = 5/2 = 2 1/2 = 2.5. Students  can use 5:2  to  represent  this  ratio  relationship. The solution to the second prob lem was 2 ÷ 5 = 2/5 = 0.4. Students can use 2:5 to represent this ratio relationship. A pictorial repre sentation similar to figure 1 was used to fa-cilitate understanding. Note that both fraction and decimal notations can be used for the value of ratio.   We want to emphasize two cautions about forming a ra-tio relationship:     1. After the discussion of ratio definitions, the teacher’s manual in the Chinese textbook pointed out two difficulties that  students may encounter when  they  relate  ratio  con-cepts to their daily experi ences. First, not all related pairs of numbers form a ratio relationship. For example, in Chinese spoken  language,  the phrase “5 bi 3”  is used  to express the scores of two teams in a sport event. However, in this context,  the  focus of  the comparison was on the addi tive relationship  (“The  number  of  team A  has  so many more points than Team B”) rather than the multiplicative relation-ship  (“Team A’s points are so many  times  the number of 

30   Virginia Mathematics Teacher

discussion of a division principle: ak ÷ bk = a ÷ b when k ≠ 0, which students have learned before. Furthermore, Asian  textbooks  gave  detailed  illustrations  to  connect the  idea  of  equivalent  ratio  with  the  idea  of  changing units. For example, a Taiwanese textbook identified a ra-tio of 20:30 as being the relationship between the width (20 cm) and the length (30 cm) of a rectangle. Then the students were asked to use 5 cm as a unit to measure the width and the length of the same rectan gle. As a re-sult, the width became 4 units (of 5 cm) and the length became 6 units (of 5 cm), thus a ratio of 4:6 can be used to represent the same width versus length relationship. Last, the students were asked to use 10 cm as a unit to measure the width and the length of the same rectangle and obtain another ratio, 2:3. Thus, the relationship 20:30 = 4:6 = 2:3 was estab-lished and illustrated by diagrams similar to figure 2. 

Discussion of Simplified Integer Ratios   Exercises asking students to convert a given ratio into a simplified integer ratio are another feature of ratio dis-cussion in Asian textbooks. Simplified inte ger ratios a:b 

mean that both a and b are integers and that no common factor other than 1 is shared between a and b. Another way to determine if two ratios are equivalent is to convert both into simplified integer ra tios, that is, a1:b1 = a2:b2 if and only if both a1:b1 and a2:b2 are equivalent to the same simplified ratio a:b. All three textbooks include examples like the ones in figure 3 to help students apply this idea.   Several significant points can be made about this type of exercise. First,  it reinforces the idea that a ratio is a rela-tionship between two quantities and that those two quanti-ties can be represented in a variety of numerical forms—in-tegers, fractions, or decimals. Second, it provides another method  to  check  the  equivalence  of  two  ratios  that  rein-forces  the  ratio  concept  (i.e.,  two  ratios  are  equivalent  if after simplifying they both equal the same simplified integer ratio). Third, it provides opportunities for students to relate numbers  to  each  other  through  common  multiples  and factors. Lo and Watanabe (1997) have  found  this kind of conceptualization es sential to develop flexible proportional reasoning. 

Application of Ratio Concepts   After  the  basic  concepts  of  ratio  and  equivalent  ratio were established, all three Asian text book series included examples and exercises that ask students to apply the con-cepts of ratio in a variety of contexts. There were two basic types of questions:     1. The first type gave a ratio relationship between two quantities and the actual amount of one of those two quan-tities,  then asked students to use the ratio relationship to find the actual amount of the second quantity. The following is an example of this type of question from the Taiwanese textbook: 

The ratio between the number of boys and the number of girls in a summer camp is 4:3. There are 63 girls. How many boys are in the summer camp? 

Team B’s points”). Teach ers need to be aware of  the po-tential confusion that students may have about the use of language inside and outside of mathematics classrooms. A similar caution can be made about the English language, since  the phrase “a to b”  is used both  for  ratio and  for a sports context in the United States.     2. The  teacher’s manual  indicated  the  impor tance of paying close attention to units when com paring two quanti-ties. In particular, at the introduc tory level, the comparisons of two like quantities should be made with the same units to make them meaningful. For example, in a Chinese text-book, the following problem was posed: 

Li Ming  is  1 meter  tall,  and  his  dad  is  173  cm  tall.  Li Ming said that the ratio between his height and his dad’s height  is 1:173.  Is 1:173  the best way  to describe  the relationship  between  Li  Ming’s  height  and  his  dad’s height? 

Through discussion,  students are guided  to  form a more meaningful ratio relationship if they either convert 1 meter to 100 cm or convert 173 cm to 1.73 meter to form the ratio 100:173, or 1:1.73. This em phasis is important when con-sidering the idea of “value of ratio” as the relative size of the second quantity when the base quantity is considered to be 1. In addition, this measurement context shows the need to define equivalent ratios. 

Conceptualization of equivalent ratios Two ratios are defined as being equivalent if they rep resent the same multiplicative  relationship. One nat ural  implica-tion of  this  definition  is  that  the  values of  two equivalent ratios have to be equal,  that  is, a:b = c:d     a ÷ b = c ÷ d. In both Chinese and Japanese text books, the principle of equivalent ratios, “Multiplying or dividing the front term and the  back  term  by  the  same  nonzero  number  will  create equivalent  ratios,”  was  supported  through  examples  and 

c

 Virginia Mathematics Teacher  31

  This  question  may  be  classified  as  a  missing-value-proportion  problem  because  a  proportional  relationship (equivalent ratio) is involved. However, it is easier to solve than a typical proportion problem (“If a car uses 8 gallons of gasoline in traveling 160 miles, how many miles could the car travel on 30 gallons of gasoline?”) for the following two reasons: First, one major chal lenge of solving this sort of problem is to construct a ratio relationship between two dif-ferent measures: gal lons and miles. In the summer-camp problem, a ratio re lationship is stated explicitly in the ques-tion. Second, a  typical proportion problem  involves some “changes” in states—before and after. In these antecedent problems,  the ratio and  the quantities are  from the same situation.     2. The second type of question in the Asian text books gave the ratio relationship between two quan tities and the 

sum of the two quantities, then asked students to use the ratio relationship to find the ac tual amount of each of the two quantities. For exam ple, the following question was in-cluded in the Japanese textbook series: 

Two brothers shared 1800 Yen. The ratio be tween the older brother’s money and the younger brother’s money was 3:2. How much was the older brother’s share?

   To prepare students for more complex proportion prob-lems,  two methods  of  solution  for  each  type  of  problem were  suggested  in  the  student  version  of  the  textbooks. One  method  helped  students  connect  ratio  and  fraction concepts through multiplicative comparison, thus convert-ing a ratio problem into a problem involving multiplying by a fractional amount. The other method required the direct appli cation of the principle of equivalent ratios.   For  the  sharing-of-money  problem,  the  Japanese  text-book series ask the following sequence of ques tions to en-courage students to think about these two solution meth-ods: 

1. The older brother’s money was what fraction of the total amount of money? 

2. Write down a computation sentence that will de termine the older brother’s share. 

3. Solve the problem using the following equation:  3:5 = x:1800. 4. What was the younger brother’s share? 

The diagram in Figure 4 was used to help students con-ceptualize the first two questions.   From figure 4, one could reason that if the older broth-er’s money comprised three units and the younger broth-er’s money comprised two units, then the total amount of 1800 Yen was equivalent to 5 units. So the older brother’s money was  3/5  of  the  total  amount  of money. Thus,  the answer for question 2 was 1800 × 3/5, and students could figure out the older brother’s share of 1080 Yen from this computation.   Question 3 above suggested a second strategy that re-quired  directly  applying  equivalent  ratios.  Since  the  ratio between the amount of money that  the older brother had (x Yen) and  the amount of  total money (1800 Yen) could be expressed as the ratio 3:5, one could solve this problem using the principles of equivalent ratios: Because 1800 is 360 times 5, x must be 360 times 3, which results in the an-swer of 1080 Yen. The younger brother’s share could then be solved with either approach. Using both methods helps students see how  the  ideas of multiplicative comparison, fractions (or decimals), ratios, simplified ratio, and equiva-lent ratios are connected. 

Conclusion   The concepts of ratio and proportion are among the most important  topics  in school mathe matics, especially at  the middle  school  level.  How ever,  studies  have  repeatedly shown  that most mid dle  school  students have difficulties with  these  concepts  (NCTM  2000).  This  article  included 

32   Virginia Mathematics Teacher

ideas and examples used by Asian textbooks to teach the concepts of ratio that are fundamental to the develop ment of proportional reasoning. In Asian textbooks, the concepts were  carefully  introduced  through an emphasis on multi-plicative  comparison,  the  link  to measurement  (quotitive) division, the identification of base quantity, and the distinc-tion between ratio and nonratio pairs of quantities. The idea “value of ratio” was introduced to firmly establish the ratio’s identity as a relationship based on multiplicative compari-son rather than just another way to write a fraction. Rather than move directly  into  the concepts of proportion, Asian textbooks spent time developing the idea of equivalent ra-tios and simplified integer ratios and discussing how these ratio-related con cepts could be used to solve problems in everyday contexts. Typically, pictorial representations were used and multiple solution methods were discussed to help students relate ratio concepts  to other previ ously  learned concepts  such as measurement  (quoti tive)  division,  frac-tions, and divisors. Furthermore, exercises and examples were carefully chosen to link the ratio concepts to previous studies on fractions (including fractions greater than 1) and decimals. We believe that these approaches all aim to de-velop proportional reasoning, which is essential in solving proportion problems.   In general, Asian textbook series do not include units in mathematics sentences as part of the writ ten computation. We  can  probably  argue  the  advan tages  and  disadvan-tages of such a practice, but  it goes beyond the focus of this article. Nevertheless, the Asian materials we analyzed did treat units care fully and systematically. The examples of  compar ing  Li Ming’s  height with  his  father’s  height  as well as using  the units flexibly  to generate equivalent  ra-tios discussed earlier in this article illustrate this emphasis. Furthermore,  both  the  textbook  series  and  the  teacher’s manuals routinely remind stu dents to think about the mean-ings of the quantities and the units used to quantify these quantities in volved in computation. The goal is to prepare stu dents  for  more  complex  contextual  problems  when multiple computations are required to determine unknown quantities. The examination of curriculum and instructional practice in other nations provides a broader point of view on how topics can be treated. We hope that such an inter-national per spective can add to U.S. teachers’ background when they try to address the issues and challenges facing students’ learning of ratio and proportion. 

References Cai,  Jinfa,  and Wen Sun.  “Developing  Students’  Propor-

tional  Reasoning:  A  Chinese  Perspective.”  In  Making Sense of Fractions, Ratios, and Proportion, 2002 Year-book of the National Council of Teachers of Mathematics (NCTM), edited by Bonnie Litwiller and George Bright, 195–206. Reston, Va.: NCTM, 2002. 

Division  of  Mathematics.  National Unified Mathe matics Textbooks in Elementary School. Beijing: People’s Edu-cation Press, 1996. 

Lo,  Jane-Jane,  Jinfa  Cai,  and  Tad  Watanabe.  “A  Com-parative Study  of  the Selected Textbooks  from China, Japan, Taiwan and the United States on the Teaching of Ratio and Proportion.” Proceed ings of the Twenty-third Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Educa tion, vol. 1, 509–20. Snowbird, Utah, 2001. 

Lo, Jane-Jane, and Tad Watanabe. “Developing Ratio and Proportion Schemes: A Story  of  a Fifth Grader.” Jour-nal for Research in Mathematics Edu cation 28  (March 1997): 216–36. 

National  Council  of  Teachers  of  Mathematics  (NCTM). Principles and Standards for School Mathematics.Res-ton, Va.: NCTM, 2000. 

National Printing Office. Elementary School Mathe matics, 6th ed. Taipei, Taiwan: National Printing Office, 1999. 

Tokyo Shoseki. Shinhen Atarashii Sansuu  (New elemen-tary  school mathematics).  Tokyo, Tokyo Shoseki  Pub-lisher, 1998.  

JANE-JANE LO, [email protected], teaches at Western Michigan University, Kalamazoo, MI 49008-5248. Lo’s special interests include studying the developing of multiplicative con-cepts and preparing future teachers. TAD WATANABE, [email protected]. teaches at Penn State University, University Park, PA 16802. His interests include children’s ultiplicative concepts and mathematics education in Japan. JINFA CAI, [email protected], teaches at the University of Delaware, Newark, DE 19716. His interests include cognitive studies of mathematical problem solving and integration of assessment into the classroom.

_________The preparation of this article was supported, in part, by a grant from the National Academy of Education. Any opinions expressed herein are those of the authors and do not necessarily represent-ed the views of the National Academy of Eduation.

Reprinted with permission from Mathematics  Teaching  in  the Middle School, copyright March 2004, by the National Council of Teachers of Mathematics. All rights reserved.

 Virginia Mathematics Teacher  33

GRADES 7-10

Pick a NumberMargaret Kidd

  As  a  mathematics  educator,  middle  and  high  school teachers frequently ask me how to motivate students. One method I have found to be effective is to engage them with a topic that personally intrigues them. Since many students are  fascinated  by magic,  this  can  be  used  to  help  them learn  procedures  from which  they  normally  shy  away.  In my experiences of teaching in various districts in the coun-try, there are three topics that give students trouble when beginning  to study algebra:  fractions, operations on  inte-gers,  and  the  distributive  property.  This  article  combines the motivation of mathematical magic with the difficulty of applying the distributive  property and the rules for order of operations. The actively described challenges students to uncover the “magic” behind the mathematics and discover the  reason we have order of operations  rules. They also come to appreciate the power of using a variable, grouping symbols, and the use of the distributive property.

The Mathemagic Lesson As  the  “  mathemagician,”  begin  the  lesson  by  asking students to think of a number from one to ten. With much intrigue, inform them that after performing some mathemat-ics magic-and with their help-you will be able to tell each student his/her starting number. Next, ask them to perform a  series  of  calculations  that  end with  students  revealing only their final numbers. At that point you quickly tell them the numbers they first selected. The fact  that you can do this with little effort seems like magic to the students and usually gets their attention. If you do this a number of times, their attention is normally riveted. At this point, they are ea-ger to learn how the answer was discovered so quickly and are more amenable to learning the process in order to un-derstand the secret of being able to discern the answer so quickly.  Here are some examples to catch their imagination:

Example 1:1. Pick a number from 1 to 10.2. Multiply it by 3.3. Subtract 1.4. Multiply this by 2.5. Add 3.6. What did you get?

Example 2:1. Choose a number.2. Multiply the number by 3.3. Subtract 4.4. Multiply the result by 2.5. Add 5.6. Report your result.

Example 3: (a bit more complicated):1. Pick a number from 1 to 10.

2. Add 3.3. Multiply by 4.4. Subtract 8.5. Divide by 2.6. Add 3.7. What is your ending number?

  When  students  begin  clamoring  for  an  explanation  so that they can try this on their  parents and friends, it is time to explain the mathematics behind these. If you would like to figure these out yourself, please stop reading, since the solutions will now be given.

Example 1:1. Pick a number from 1 to 10.  x2. Multiply by 3      3x3. Subtract 1.      3x - 14. Multiply by 2.     2(3x - 1)5. Add 3.      2(3x - 1) + 36. What did you get?

  The simplified expression becomes 6x + 1. So when the student  states  his  ending  number,  you  simply  subtract  1 from it and divide that answer by 6.

Example 2:1. Choose a number    x2. Multiply the number by 3  3x3. Subtract 4.      3x - 44. Multiply the result by 2.  2(3x - 4)5. Add 5.      2(3x - 4) + 56. Report your result.

  The simplified expression becomes 6x - 3. When the stu-dent states her ending number, you add 3 to it and divide that answer by 6.

Example 3:1. Choose a number.    x2. Add 3.      x + 33. Multiply the result by 4.  4(x + 3)4. Subtract 8.      4(x + 3) - 85. Divide by 2.      (4(x + 3) - 8) / 26. Add 3.      (4(x + 3) - 8) / 2 + 37. What is your ending number?

  Although Example 3 contains more and more complex operations, it still simplifies to 2x + 5.

Conclusion These number puzzles can be as short as adding 1 and subtracting the original number to as complicated as one wants to make it. Start with the simplified expression you desire. Then, add the steps in reverse order until you have 

34   Virginia Mathematics Teacher

a series that is as long and as complicated as you wish. A few caveats are  in order, however. Have students pick a number small enough that you can solve the last equation easily. Avoid  numbers  and  operations  that  result  in  frac-tions or decimals. Other than that, both  you and your stu-dents can have as much fun with these as you want!  All of my students completed a homework assignment in which they were to create a number puzzle to impress their parent or other siblings.

MARGARET KIDD, CSU [email protected]

Reprinted with permission from The California Mathemat-ics Council ComMuniCator, September 2009.

CONGRATULATIONS

VCTM 2011

William C. Lowry Mathematics Educator of the Year

Awardees

Elementary Awardee

Anne Blevins

Pocahontas Elementary School in Powhatan, VA in Powhatan County

Math Specialist Awardee

Karen Mirkovich

Swans Creek Elementary School in Dumfries, VA in Prince William County

Middle School Awardee

Harry Holloway

Powhatan School in Boyce, VA

High School Awardee

Tammy Greer

Millbrook High School in Winchester, VA in Frederick County

College/University Awardee

Dr. Robert Q. Berry, III, Ph.D.

Associate Professor; Mathematics Education; Curry School of Education;

University of Virginia

CongratulationsVCTM 2011

 Virginia Mathematics Teacher  35

GRADES 7-12

Those Darn Exponents: Fifty Challenging True-FalseQuestions

Tim Tilton

Tim Tilton is with Winton Woods City Schools in Ohio. Reprinted with permission from Ohio Journal of School Mathematics, a publication of the Ohio Council of Teachers of Mathematics. Fall 2010.

36   Virginia Mathematics Teacher

GRADES 13-16

Abstractmath.org: A Web Site for Post-Calculus MathCharles Wells

  The Abstractmath web site at http://www.abstractmath.org/MM/MMIntro.htm is intended for math majors and oth-ers who are faced with learning “abstract” or “higher” math, the kind with epsilons and deltas, quotient spaces, proofs by contradiction: all those kinds of abstract things that can knock you sideways even if you got an A in calculus.  I  have  been  developing  Abstractmath for  a  couple  of years and now it is time to open it up to the wide world. Not that all  is  finished. There are gaps and stubs all  through it. But enough is completed that it is respectable, and be-sides,  I  need  help!  Some  students  and  math  educators have already discovered  the site and  told me  things  that helped  them and  things  that made no sense  to  them, as well as finding many embarrassing errors. The site needs much more help like that, and suggestions for more com-pelling examples and useful topics.  Abstractmath is personal and opinionated, but it is based on research by many people in mathematics education and cognitive psychology, and on my own  lexicographical  re-search. It concentrates on certain types of problems. One web site can’t do everything. Mathematical English: This  is  a  foreign  language  dis-guised  as  English.  Many  common  logical  words  (notori-ously “if...then”) don’t mean quite the same thing they do in English. Common words are used with technical mean-ings, leaving the student to be confounded by their every-day connotations. Proofs: A mathematical proof has both a logical structure and a narrative structure.  If you are reading a proof your major problem  is  to extract  the  logical  structure  from  the narrative you read. Consider: “Theorem: If n is an integer and n2 is even, then n is even. Proof: Suppose n is odd...” How can a proof that n is even start out by assuming it is 

odd? Abstractmath walks you through examples of proofs as a guide to how to understand them. Images and metaphors: Mathematicians use lots of com-pelling metaphors to talk and think about their topics and images  to  give  geometric  sense  to  them. These  images and  metaphors  are  also  dangerous  because  they  may suggest  things  that  are  incorrect.  (x2  -  9  vanishes  at  3.” Does  that mean  it  doesn’t  exist  at  3?) When mathemat-ics start to prove something about their topic they abandon these images and metaphors and go into a rigorous mode of thinking in which all mathematical objects are inert and unchanging. Does  anyone  ever  tell  the  students  this  (as opposed to doing it in front of them)? Abstractmath does, with examples. Mathematical objects: People new to abstract math have a great deal of trouble thinking of mathematical objects as objects rather than processes or bunches. A quotient space has elements that are sets (these sets are not substances - they are elements!). A function space has elements that are  functions  (not values of  functions). Abstractmath dis-cusses many examples of this phenomenon.  I hope you will  look into abstractmath.org, whether you are a student or a teacher, and let me know how it can be improved. You can also contribute articles or examples, or publish them on your own web site and ask me to link to them.

CHARLES WELLS is Emeritus Professor of Mathematics at Case Western Reserve University.

Reprinted with permission from FOCUS The Newsletter  of  the Mathematical Association of America, copyright March 2007. All rights reserved.

Virginia Council of Teachers of MathematicsP.O. Box 714Annandale, VA 22003-0714 Pat Gabriel, Exec. Secretary

Non-ProfitOrganizationU.S. Postage

PAIDBlacksburg, VAPermit No. 159

DATE AND NOTE POSTANNuAL VCTM CONFErENCE

roanokeMarch 9-10, 2012

rEGiONAL CONFErENCESAlgebra Readiness for Every Student

BaltimoreAugust 9-11

Atlantic City, NJOctober 19-21

St. Louis, MOOctober 26-28

Albuquerque, NMNovember 2-4

Calling Virginia Authors: Virginia residents whose articles appear in the VMT will be granted free member-ship in the VCTM for one year. To qualify, the manuscript must be at least two typewritten pages in length.