very long baseline interferometry - nict...arecibo telescope : d = 305m λ/d = 28 arcsec (λ=4cm)...

46
VLBI Very Long Baseline Interferometry Yasuhiro Koyama Space-Time Standards Group, NICT

Upload: others

Post on 01-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • VLBIVery Long Baseline Interferometry

    Yasuhiro KoyamaSpace-Time Standards Group, NICT

  • Kashima Space Research Center

    34-m antenna

  • VLBI Network of NICT

  • What is VLBI?Very Long Baseline Interferometry

    Measure time delay

    Receivingradio signalsat 2 stations

  • VLBI stands for,

    • Very Long Baseline Interferometry= Technique

    • Very Long Baseline Interferometer= Instrument

    VLBIRadioTelescopeConnected

    Array

    GeodesyAstronomyAstrometry

  • Hubble Space Telescope(2.4m)

    ~0.05 arcsec6cm Telescope~1.93 arcsec

    Naked Eyes~1arcmin

    Principle of ResolutionResolution = Ability to see fine features.

    ∝ λ/D

    http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Moon.jpg

  • Radio Telescopes

    Arecibo Telescope : D = 305mλ/D = 28 arcsec (λ=4cm)

    Very Large Array : D = 21kmλ/D = 0.07 arcsec (λ=7mm)

    Interferometry

    http://www.aoc.nrao.edu/intro/vlapix/vlaoverall.html

  • Precise determination of time delay between two separated antennas was made possible by atomic clocks and high volume data recorders.

    Time Delay

    Baseline

    Correlator

    H-maserH-maser

    RecorderRecorder

    Baseline

    Time Delay

    Signals from a Quasar

    PreciselySynchronized

    Time Delay

    A/DA/D

    Invention of Atomic Clocks Enabled VLBI

  • Interferometry

    Laser

    Interferometric Pattern = Fringe

    Thin slits

  • Geometry of Radio Interferometry

    θ

    Station X Station Y

    Additional Path Length (D cosθ = − D· is)

    cgsiD ⋅−=τ

    Geometrical Delay

    D

    si

    D si c: Baseline Vector : Unit Vector to the Source : Speed of Light

    = (D cosθ) / c

  • 相関処理

    相関係数X局

    Y局

    (似ている度合い)

    少しずつずらす

    Determination of Geometrical Time Delay

    Cross Correlation Function

    Station X (Reference)

    Station Y

    AdjustingShifts

    Correlation Factor

  • Simplified Model of Interferometry

    X局での受信信号

    Y局での受信信号

    雑音信号

    雑音信号電波星からの信号 遅延回路

    τ

    x(t)

    y(t)

    s(t)

    s'(t)

    n (t)x

    n (t)y

    s(t)

    Spectrum Domain

    )()()()()()(

    fNfSfYfNfSfX

    y

    x

    +′=+=

    =s(t-τg)

    gfiefSfS τπ2)()( −=′

    g

    Signal from the radio source

    Delay

    Received signalat station X

    Received signalat station Y

    NoiseNoise

  • Expressions with equivalent temperature

    )()()(

    )()()(

    fnTfsTfY

    fnTfsTfX

    ynyay

    xnxax

    +′=

    +=

    nynx

    ayax

    TT

    TT

    ,

    , Equivalent Temperature of Received Signal

    Equivalent Temperature of Noise at Stations

    where,

  • Cross Correlation FunctionIn the case of no frequency conversion, cross correlation spectrum is

    )()()()(

    )()()()(

    )()()(

    **

    **

    *

    fnfnTTfsfnTT

    fnfsTTfsfsTT

    fYfXfC

    yxnynxxaynx

    ynyaxayax

    xy

    +′+

    +′=

    =

    Three terms from the second term decrease with integration time.

    g

    g

    fiayax

    fiayaxxy

    eTT

    efsTTfCτπ

    τπ

    2

    22)()(

    =

    =

  • ∫∞

    ∞−= dfefCc fixyxy

    τπτ 2)()(

    By Inverse Fourier Transform, the cross correlation function becomes

    If we limit integration of frequency to certain band (f0~f0+B),

    )()(sin

    )})(2cos{(2

    )(2cos2

    }2sin2sin

    2cos2{cos2)(

    0

    0

    0

    0

    0

    g

    g

    gayax

    Bf

    f gayax

    g

    Bf

    f gayaxxy

    BB

    BfTTB

    dffTT

    dfff

    ffTTc

    ττπττπ

    ττππ

    ττπ

    τπτπ

    τπτπτ

    +

    +⋅

    ++=

    +=

    ⋅−

    ⋅=

    +

    +

  • -τg

    By assuming f0 = 0,

    B1cosπB(τ+τg)

    sinπB(τ+τg)πB(τ+τg)

  • Radio Source : 0059+581Flux Density : 3.4 JyIntegration Time : 90 sec. SNR : 20.2BW : 2MHzStation 1 : Kashima(34m)Station 2 : Westford (18m)

    SNR= 2B t Ts1Ts2

    Ta1Ta2π

    2

    Wider bandwidth(B) leads to

    Sharp Peak ⇒ Precise Delay

    Large SNR ⇒ High Sensitivity(ability to detect faint objects)

  • Improvement of delay precision by using multiple frequency channels

    Frequency

    Phase

    derivative = delay

  • Example of frequency assignments(better to assign channels near edges)

    S-Band(MHz)2154.992164.992234.992294.992384.992414.99

    X-Band(MHz)7714.997724.997754.997814.998034.998234.998414.998524.998564.998584.99 Spacing = 10 30 60 120 200 180 110 40 20 MHz

    Spacing = 10 70 60 90 30 MHz

  • Fine Correlation Function after Bandwidth Synthesis (X-band)

  • Fine Resolution Correlation Function

  • Evaluation of various errorsSignal to Noise Ratio BTSNR 20ρ=

    SNR1

    =φσFringe Phase Error

    SNRBs ⋅=

    πστ

    3Error of Coarse Delay

    Error of Bandwidth Synthesis Delay SNRf

    m ⋅=

    πσστ 2

    1

    ∑=

    −=N

    nnf ffNN 1

    2)(1σEquivalent Bandwidth

    SNRfT ⋅=

    πστ

    3&Error of Delay Rate

  • Reference point of Geodetic VLBI= Az Axis & El Axis Intersection

    Station X Station YD

    rx ry

    τ1

    θ1

    Source 1

    Source 2

    Source 1cτ1 = D cos θ1 +rx−rycτ2 = D cos θ2 +rx−ry

    Source 2

    τ2

    θ2

    c (τ1−τ2 )D =cos θ1 − cos θ2

  • Least Square Estimate (Parameter Estimations)

    τ1τ2τ3

    τi

    Observables

    τ1τ2τ3

    τi

    Calculations

    Theoretical Model

    Δτ1Δτ2Δτ3

    Δτi

    min Σ (Δτi)2i

    p1, p2, p3,・・・,pi , ・・・

    Estimated Parameters (Coordinates of position, clock offset, atmospheric delay, ...)

  • Time Transfer by VLBI and GPS

    VLBI

    GPS

  • Space-VLBI

  • HALCA(Muses-B)Quasar 0637-752

    NGC4261

    High Angular Resolution VLBI Astronomy with Satellite VLBI Telescope HALCA

  • VLBI for Geophysics

    鹿島

    ハワイ

    アラスカ

    5700km5700km

    5400km5400km

    4700km4700km

    鹿島-ハワイの基線長変化

    -400

    -200

    0

    200

    400

    1984 1986 1988 1990 1992 1994

    基線

    長(m

    m)

    アラスカ-ハワイの基線長変化

    -400

    -200

    0

    200

    400

    1984 1986 1988 1990 1992 1994

    基線

    長(m

    m)

    鹿島-アラスカの基線長変化

    -400

    -200

    0

    200

    400

    1984 1986 1988 1990 1992 1994

    基線

    長(m

    m)

    -63.5 ± 0.5 mm/year

    -46.1 ± 0.3 mm/year

    1.3 ± 0.5 mm/year

    Kauai

    Fairbanks

    Kashima

    Kashima-Kauai Baseline Length

    Fairbanks-Kauai Baseline Length

    Kashima-Fairbanks Baseline Length

  • VLBI at Opening Ceremony of International Year of Astronomy

    (January 15, 2009)

  • 30

    China-Japan Collaboration for VLBI• The first China-Japan VLBI experiment was

    performed with Shanghai-Kashima Baseline in Sep. 1985

    • Kashima is one of the most precisely determined positions in Japan : used as the reference point to establish Japan Geodetic Datum 2000 (JGD2000)

    • Seshan (Shanghai) is the most precisely determined position in China

    • Chinese Academy of Sciences and NICT are both active members of IVS*

    余山(Seshan, Shanghai)

    烏魯木斉 (Urumqi)

    鹿島(Kashima)

    * IVS=International VLBI Service for Geodesy and Astrometry

  • 31

    Eurasian Plate

    Pacific Plate

    North American Plate

    Philippine Sea Plate

    上海鹿島1876km

  • Measuring Earth with VLBI

  • Parameter Type VLBI GPS/GLON.

    DORIS/PRARE

    SLR LLR Alti-metry

    Quasar Coord. (ICRF) XNutation X (X) X

    Polar Motion

    XUT1XLength of Day (LOD)

    X X X XCoord.+Veloc.(ITRF) X X X X X (X)

    Geocenter X X X XGravity Field X X X (X) X

    Orbits X X X X XLEO Orbits X X X XIonosphere X X X X

    Troposphere X X X XTime/Freq.; Clocks X X (X)

    (X)

    Gravity Field

    XX X X X

    Capabilities of Space Geodetic Techniques

    ICRF

    EOP

    ITRF

  • IERS International Earth Rotation Service (1987~2000)

    International Earth Rotation and Reference Systems Service (2001~)

    • One of the services established under the IAG (International Association of Geodesy). There are other services including IVS and IGS.

    • Missions of IERS are to determine and maintain – the International Celestial Reference System (ICRS) and its realization,

    the International Celestial Reference Frame (ICRF),– the International Terrestrial Reference System (ITRS) and its

    realization, the International Terrestrial Reference Frame (ITRF),– Earth orientation parameters required to study earth orientation

    variations and to transform between the ICRF and the ITRF,– geophysical data to interpret time/space variations in the ICRF, ITRF

    or earth orientation parameters, and model such variations,– standards, constants and models (i.e., conventions) encouraging

    international adherence.

  • IERS Conventions • Published by IERS to define conventions

    (standard models and values, procedures for calculations, etc.)

    – MERIT Standards : 1983MERIT=Monitoring Earth Rotation and

    Intercomparison of Techniques– IERS Standards : 1989, 1992– IERS Conventions : 1996, 2003

    • Conforms to recommendations and decisions of international organizations like IAU and IAG(IUGG).

  • Reference System and Reference FrameReference System : DefinitionReference Frame : Realization

    ICRS International Celestial Reference System

    ITRS International Terrestrial Reference System

    ICRF92

    ICRF [WGRF]

    ITRF97

    ITRF2000WGS84

    Japan GeodeticSystem 2000

    EOP/ERP

  • Reference Frames and Earth Orientation Parameters

    ICRF International Celestial Reference Frame

    ITRF International Terrestrial Reference Frame

    EOPEarth Orientation Parameters

    VLBI, GPS, SLR

    VLBI, (GPS), (SLR)

    VLBI

  • UT1-UTC and LOD (Length Of Day)

    UT1-TAI and UTC-TAILOD

    LOD : can be determined by GPS, SLR, and VLBIUT1-UTC : can be determined by VLBI

  • Time ScalesInternational Atomic Time (TAI)Determined by an ensemble of cesium oscillators (>300)SI standard second 9,192,631,770 oscillations of the cesium atomOrigin defined TT + 32.184 s at 0h 1 January 1977Astronomical time (UT1)Measured by angle between zenith meridian at 0° Lon. and “mean” sunDrifts slowly with periodic variations from TAIUT0 = value before polar wobble correctionUT2 = value after seasonal variation correctionUniversal Coordinated Time (UTC)Runs at the same rate as TAIOrigin is 0h 1 January 1972, 10 s behind TAIOccasional insertions of a leapsecond to keep -0.9sec

  • UT1-UTC estimation from VLBI and GPS

    Markus Rothacher, GeoForschungsZentrum Potsdam, IVS General Meeting 2006 (Jan. 2006)

  • Polar Motion / Wobble

    Chandler Wobble : Periodic variation with the period of 435 daysAnnular Wobble : Periodic variation with the period of 1 year

    0.1” = 3.09m

  • Long-time stability of scale determination

    VLBI SLR

    DORIS

    Adjusted scale factors to construct ITRF2005(International Terrestrial Reference Frame).

    s (mm) s (mm)

    Markus Rothacher, GeoForschungsZentrum Potsdam, IVS General Meeting 2006 (Jan. 2006)

  • Definition and Realization

    Definition RealizationTime TT (Terrestrial Time) TT (BIPMxx)

    TAITerrestrial Coordinates ITRS ITRFCelestial Coordinates ICRS ICRF

  • ITRF(International Terrestrial Reference Frame)

    • ITRS : Definition (System)– Geocentric : center of mass of whole earth, including oceans and atmosphere.– Unit of length is SI metre based on TCG time coordinate. – Orientation initially given by BIH orientation at 1984.0.– Time evolution of orientation : no-net-rotation condition with tectonic motions

    • ITRF : Realization (Frame)– Latest realization : ITRF2005– Combined from VLBI, SLR, GPS and other space geodetic measurements

  • ITRF2000Coordinates of Fiducial Sites in Japan(epoch = 1997.0)

    KASHIMA -3997892.269 3276581.278 3724118.233 0.002 0.002 0.003

    KASHIMA -3997649.227 3276690.754 3724278.825 0.003 0.002 0.003

    KASHIMA -3997505.669 3276878.399 3724240.707 0.005 0.005 0.005

    MIZUSAWA -3862411.906 3105015.030 4001944.890 0.031 0.027 0.031

    MIZUSAWA -3857236.108 3108803.212 4003883.084 0.016 0.014 0.016

    KOGANEI -3941937.446 3368150.894 3702235.314 0.009 0.010 0.009

    MIYAZAKI -3582767.649 4052033.587 3369020.207 0.415 0.385 0.355

    NOBEYAMA -3871168.560 3428274.280 3723697.866 0.244 0.216 0.222

    USUDA -3855355.412 3427427.607 3740971.291 0.049 0.043 0.051

    TSUKUBA -3957172.928 3310237.958 3737708.948 0.003 0.003 0.003

    TSUKUBA -3957408.752 3310229.367 3737494.789 0.004 0.004 0.005

    SHINTOTSUKA -3642141.822 2861496.647 4370361.932 0.648 0.550 0.692

    SHINTOTSUKA -3642142.114 2861496.632 4370361.722 0.259 0.219 0.276

    CHICHIJIMA -4489356.454 3482989.810 2887931.314 0.267 0.236 0.217

    CHICHIJIMA -4490618.496 3483908.137 2884899.122 0.081 0.074 0.066

    MINAMI TORI -5227446.489 2551379.698 2607604.995 0.036 0.022 0.022

    SAGARA -3913437.574 3501122.887 3608593.441 0.708 0.490 0.641

    MIURA -3976129.983 3377927.923 3656753.862 0.011 0.018 0.012

    TATEYAMA -4000983.406 3375276.019 3632213.230 0.009 0.014 0.009

    AIRA -3530219.389 4118797.596 3344015.918 0.137 0.134 0.119

    SYOWA 1766194.139 1460410.951 -5932273.371 0.011 0.011 0.022

    Site ID X (m) Y (m) Z (m) σx (m) σy (m) σz (m)

  • ITRF2000Velocities of Fiducial Sites in Japan

    Site ID X (m/yr) Y (m/yr) Z (m/yr) σx (m/yr) σy (m/yr) σz (m/yr)

    KASHIMA -0.0003 0.0052 -0.0118 0.0004 0.0003 0.0005

    KASHIMA -0.0003 0.0052 -0.0118 0.0004 0.0003 0.0005

    KASHIMA -0.0003 0.0052 -0.0118 0.0004 0.0003 0.0005

    MIZUSAWA 0.0010 0.0038 -0.0027 0.0053 0.0046 0.0054

    MIZUSAWA 0.0010 0.0038 -0.0027 0.0053 0.0046 0.0054

    KOGANEI -0.0001 0.0061 -0.0111 0.0015 0.0026 0.0019

    MIYAZAKI 0.0217 -0.0475 -0.0484 0.0452 0.0414 0.0378

    NOBEYAMA -0.0470 0.0515 0.0305 0.0382 0.0339 0.0351

    USUDA -0.0043 0.0048 -0.0051 0.0005 0.0005 0.0006

    TSUKUBA -0.0012 0.0073 -0.0087 0.0005 0.0005 0.0006

    TSUKUBA -0.0012 0.0073 -0.0087 0.0005 0.0005 0.0006

    SHINTOTSUKA 0.0082 0.0134 0.0314 0.1007 0.0855 0.1076

    SHINTOTSUKA 0.0082 0.0134 0.0314 0.1007 0.0855 0.1076

    CHICHIJIMA 0.0306 0.0390 0.0126 0.0332 0.0296 0.0269

    CHICHIJIMA 0.0306 0.0390 0.0126 0.0332 0.0296 0.0269

    MINAMI TORI 0.0412 0.0612 0.0228 0.0077 0.0050 0.0051

    SAGARA 0.0497 0.0228 -0.0348 0.1786 0.1232 0.1611

    MIURA 0.0175 -0.0095 -0.0039 0.0026 0.0051 0.0033

    TATEYAMA 0.0106 -0.0182 -0.0056 0.0020 0.0041 0.0023

    AIRA -0.0011 -0.0161 -0.0417 0.0545 0.0536 0.0475

    SYOWA 0.0038 -0.0015 -0.0015 0.0008 0.0008 0.0018

    VLBI�Very Long Baseline InterferometryKashima Space Research CenterVLBI Network of NICTWhat is VLBI?�Very Long Baseline InterferometryVLBI stands for, スライド番号 6スライド番号 7スライド番号 8スライド番号 9Geometry of Radio Interferometryスライド番号 11Simplified Model of InterferometryExpressions with equivalent temperatureCross Correlation Functionスライド番号 15スライド番号 16スライド番号 17Improvement of delay precision by using multiple frequency channelsExample of frequency assignments�(better to assign channels near edges)Fine Correlation Function after Bandwidth Synthesis (X-band)Fine Resolution Correlation FunctionEvaluation of various errorsReference point of Geodetic VLBI�= Az Axis & El Axis IntersectionLeast Square Estimate (Parameter Estimations)スライド番号 25スライド番号 26スライド番号 27スライド番号 28スライド番号 29China-Japan Collaboration for VLBIスライド番号 31Measuring Earth with VLBIスライド番号 33IERS � International Earth Rotation Service (1987~2000)�International Earth Rotation and Reference Systems Service (2001~)IERS Conventions Reference System and Reference FrameReference Frames and Earth Orientation ParametersUT1-UTC and LOD (Length Of Day)Time Scalesスライド番号 40Polar Motion / WobbleLong-time stability of scale determinationDefinition and RealizationITRF �(International Terrestrial Reference Frame)ITRF2000�Coordinates of Fiducial Sites in Japan(epoch = 1997.0)ITRF2000�Velocities of Fiducial Sites in Japan