using high resistance grounding to mitigate arc flash hazards

60
Using High Resistance Grounding to Mitigate Arc Flash Hazards Presenter: Ajit Bapat, P.E.

Upload: michaeljmack

Post on 19-Feb-2017

927 views

Category:

Engineering


5 download

TRANSCRIPT

Page 1: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Using High Resistance Grounding to Mitigate Arc Flash Hazards

Presenter: Ajit Bapat, P.E.

Page 2: Using High Resistance Grounding to Mitigate Arc Flash Hazards

DETECT/PROTECT

I GARD’ HRG d d• I‐GARD’s HRG systems can detect a ground fault, signal an alarm, and locate the affected branch or feeder removing maintenance personnel from the dangers of higher fault currents. 

MITIGATE

• I‐GARD’s FALCON provides arc flash mitigation at the speed of light by using adjustable light sensitivity to reduce arc‐flash energy with fast detection and tripping, under 1ms.

ARC FLASH ANALYSIS

• I‐GARD’s ARC FLASH ANALYSIS will calculate your Risk using IEEE and NFPA equations and 

h d d d l hmethods and develop a comprehensive protection plan to achieve a safer environment 

for your people and plant.

Page 3: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Here's where you'll find answers to your questions about:

• The current emphasis on arc flashHazards created by arc flash and arc blastblast

• What you need to do to protect workers and comply withOSHA requirements

us.ferrazshawmut.com/arcflashq

• Regulations that impact plant operations, including NFPA 70 and NFPA 70E

• Arc flash hazard analysis

• The hazards of arcing faults

• Solutions and services Ferraz h ffShawmut offers

Page 4: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Using High Resistance Grounding to Mitigate Arc Flash Hazards

Presenter: Ajit Bapat, P.E.

Page 5: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Power System Grounding MethodsPower System Grounding Methods

UngroundedUngrounded

Solidly GroundedCorner Delta GroundedCorner Delta GroundedMid phase grounded

Resistance Grounded

Page 6: Using High Resistance Grounding to Mitigate Arc Flash Hazards

METAL ENCLOSURESSolidly Grounded System

TOLOAD

METAL ENCLOSURES

LOAD

BONDINGJUMPERJUMPER

Grounding and Bonding means a permanent and continuous conductive path to the earth with sufficient ampacity to carry any fault current liable t b i d it d f ffi i tl l i d t li it th ltto be imposed on it and of sufficiently low impedance to limit the voltage rise above ground and to facilitate the operation of the protective devices in the circuit.

Page 7: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Solidly Grounded Systems

Earth

Page 8: Using High Resistance Grounding to Mitigate Arc Flash Hazards

RiskRiskElectrical deficiencies are the leading ignition source and cause of fire and explosion.p

Empirical data indicates that approximately 80% of all electrical faults are ground faults.of all electrical faults are ground faults.

Page 9: Using High Resistance Grounding to Mitigate Arc Flash Hazards

ConsequenceConsequenceFrom 1992 to 1999 the customers from one major insurance company reported 228 losses that were tt ib t d t d f lt ith t t l t f US $180attributed to ground faults with a total cost of US $180

million.

Page 10: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Solidly Grounded SystemsSolidly Grounded Systems

• Sustained arcing faults can release intense heat and gmechanical energy causing severe damage and injury

ARCING FAULT DAMAGE(KILOWATT CYCLES)

Page 11: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Causes of Bolted and Arcing Faultsg

• What causes these types of faults?

– Bolted faults (low impedance and high current)Improper connections after maintenance       

Installation errorsInstallation errors

– Arcing faults (high impedance, lower current)Careless cover or device removalCareless cover or device removal

Foreign object (tool) dropped into equipment

Misalignment of moving contacts (parts failure)

Di t t i ti di l t i b kdDirt contamination or dielectric breakdown

Entry of foreign body (rodent, snake, squirrel)

Page 12: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Bolted and Arcing Fault Characteristics

Arcing fault incident energy produced isArcing fault incident energy produced isGreater at higher bolted fault current levelsReduced by dynamic impedance (air)And increased by the time duration of the arc

The most controllable factor in reducing the incident energy is timeincident energy is time

Current flow in an arcing fault is approximately half that of the bolted fault current (impedance of air)that of the bolted fault current (impedance of air)

Page 13: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Electrical Arc Factsec ca c ac s

• Arc is electric current passing through air

– Shock potential from contact with arc

• Temperature of arc plasma center is greater than 5000°F (some say much higher)much higher)

– Radiated heat burns

• Pressure wave generated from arc

h i– Impact to hearing, etc

– Gaseous copper is 44,000 times solid

– Molten metal expelled from equipment at high speed– Molten metal expelled from equipment at high speed

• Arc fault results from something wrong or out of place

Page 14: Using High Resistance Grounding to Mitigate Arc Flash Hazards

IEEE – Arcing FaultsIEEE  Arcing Faults• IEEE Std 242‐2001

Recommended Practice for the Protection and Coordination of Industrial andRecommended Practice for the Protection and Coordination of Industrial and Commercial Power Systems8.2.2One disadvantage of the solidly grounded 480 V system involves the high magnitude of destructive, arcing ground‐fault currents that can occur.g , g g

• IEEE Std 141‐1993Recommended Practice for Electric Power Distribution for Industrial Plants7.2.4Th lidl d d h h hi h b bili f l i iThe solidly grounded system has the highest probability of escalating into a phase‐to‐phase or three‐phase arcing fault, particularly for the 480 and 600 V systems. The danger of sustained arcing for phase‐to‐ground fault…is also high for the 480 and 600 V systems, and low or near zero for the 208 V system.

Page 15: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Solidly Grounded SystemsSolidly Grounded Systems

• Line to Ground Fault does not cause transient overvoltage but often causes voltage sag

• Permits line‐to‐neutral loads (lighting, heating cables)cables)

• Ground faults easy to locate, but cause unscheduled service interruptionservice interruption

• Danger from low‐level arcing ground faults• Since 1970s, ground fault protection mandatory for , g p ysolidly grounded 600V services rated 1000A and higher by the CEC and the NEC

Page 16: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Ungrounded Systems –hCapacitive Charging Current

A

BB

C

IC0IC0 IC0IC0IC0 IC0

Page 17: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Ungrounded Systems ‐ Voltage g y gRise on Ground Fault VA-G = 600 V

VB-G = 0 VVC-G = 600 VV = 347 V

VA-G = 459 VV 174 V

N

C A

C A

VA-G = 347 VVB-G = 347 VVC-G = 347 VVN-G = 0 V

VN-G = 347 V

C A

VB-G = 174 VVC-G = 459 VVN-G = 174 V

60°

B

N120°

C A

G

N

G

82°

B

No Ground Fault

Full Ground Fault on Phase BB

Partial (50%) Ground Fault on Phase B

• Neutral point voltage is zero only when no ground fault present

• Neutral voltage rises whenever a ground fault is present

• Neutral voltage ranges from 0 V at no fault to 347 V at full fault

Page 18: Using High Resistance Grounding to Mitigate Arc Flash Hazards

System Charging Current 3IC0System Charging Current 3IC0

AA

B

C

I 3II3 I3 IF = 3IC0IC03 IC03

Page 19: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Ungrounded SystemsUngrounded Systems

• Negligible fault current and no tripping on firstNegligible fault current and no tripping on first ground fault

• Difficult to locate ground faults• Difficult to locate ground faults

• 5‐6 times transient voltage escalation on i i i i d f lintermittent, sputtering arcing ground faults due to DC voltage buildup across the stray 

i dcapacitance to ground

Page 20: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Distribution System Design Criteria 

UngroundedUngrounded • Reliability           Prone to double faults and thus trip outs• Safety Transient voltages can occur 

C t ff ti L ti f lt i diffi lt• Cost effectiveness Locating  faults is difficult • Scheduled Maintenance          Double faults can cause

unscheduled shut downs• Prioritized load Coordination lost in case of                     

double faults

Page 21: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Resistance GroundingResistance Grounding

• Used in Process Industries, Water and Waste Water,Used in Process Industries, Water and Waste Water, Hospitals, Data processing Centers 

• Used on MV systems  to limit ground fault currenty g

• No arcing ground faults as with solid grounding

• No overvoltages as with ungrounded systemsNo overvoltages as with ungrounded systems

Page 22: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Resistance Grounding

• Resistor inserted between neutral and ground to limit ground fault current

A

limit ground fault current

• Resistor rated for line‐to‐neutral voltage

B

C

347V

BoltedGround Faultto equipmentframe

C

69 Ω

N

G5A

Equipment Bonding Conductor Resistor Let-Thru Current

Page 23: Using High Resistance Grounding to Mitigate Arc Flash Hazards

High Resistance GroundingHigh Resistance Grounding

Canadian Electrical Code and National ElectricCanadian Electrical Code and National Electric Code permit continuous operation when neutral grounding device is used to control theneutral grounding device is used to control the ground current to a low value where :

A visual or audible alarm or both clearly–A visual or audible alarm, or both, clearly identified to indicate the presence of a ground fault is providedground fault, is provided.

Page 24: Using High Resistance Grounding to Mitigate Arc Flash Hazards

High Resistance GroundingHigh Resistance Grounding

• Limit ground fault current to 10 A or lessg• Provides service continuity on first ground fault• Prevents arc flash incidents on first ground faultsg• Allows faults to be located without de‐energizing feeders (ground fault pulse locating)

• Used in continuous process industries, hospitals and data centres where unscheduled downtime is costly

Page 25: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Fault Current on HRG SystemA

B

C

RXC0 XC0 XC0

IR3IC0

IR

( ) ( )20

2 3 CRF III +=

( ) 3tf lti iAt32 IIII ( ) 00 3current,fault minimumAt 32 CRCF IIIIMIN

==

Page 26: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Distribution System Design Criteria

High Resistance GroundedReliabilit Po er contin it No trips on gro nd fa lt• Reliability Power continuity, No trips on ground fault

• Safe No Arc Blast or Flash Hazard on     Ground Fault

• Cost effective 3 Wire Systems are cheaper than 4 wireCost effective 3 Wire Systems are cheaper than 4 wire  • Scheduled Maintenance   Faulty equipment can continue to run, 

scheduled shut downs and lowerrepair costsp

• Prioritized load Overcurrent Coordination maintainedSelective second fault protection available

Page 27: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Low Resistance GroundingLow Resistance Grounding

• Used on medium voltage (MV) premises distribution g ( ) psystems

• System charging current too high for high resistance dgrounding

• Ground fault current limited to 25 – 400 A typicallyT i d f lt• Trip on ground fault

• Prevents arc flash incident on ground fault

Page 28: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Resistance Grounding MethodsResistance Grounding Methods

Zi Z G diZig-Zag GroundingTransformer rated for Line-to-Line Voltage

Page 29: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Zig‐Zag Grounding TransformerZig Zag Grounding Transformer

Page 30: Using High Resistance Grounding to Mitigate Arc Flash Hazards

High Resistance Grounding and IEEE

IEEE Std 242‐2001 (Buff Book8.2.4

High‐resistance grounding helps ensure a ground‐fault current of known magnitude, helpful for relaying purposes. This makes it possible to identify the faulted feeder with sensitive ground‐fault relays.

IEEE Std 141‐1993 (Red Book)7.2.2 

High‐resistance grounding provides the same advantages as ungrounded systems yet limits the steady state and severe transient over‐voltagessystems yet limits the steady state and severe transient over voltages associated with ungrounded systems. There is no arc flash hazard [for a ground fault on 480V and 600V systems], as there is with a solidly grounded system, since the fault current is limited to approximately 5A.

Page 31: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Resistance Grounding and IEEEResistance Grounding and IEEEIEEE Std. 142‐1991 Recommended Practice for Grounding of Industrial andC i l P S tCommercial Power System1.4.3The reasons for limiting the current by resistance grounding may be one ormore of the following:g1. to reduce burning and melting effects in faulted electric equipment, such as 

switchgear, transformers, cables and rotating machines.2. to reduce mechanical stresses in circuits and apparatus carrying fault currents3 to reduce electric‐shock hazards to personnel caused by stray ground fault3. to reduce electric shock hazards to personnel caused by stray ground fault 

currents in the ground return path4. to reduce arc blast or flash hazard to personnel who may have accidentally 

caused or who happen to be in close proximity to the fault current5 to reduce the momentary line‐voltage dip occasioned by the occurrence and5. to reduce the momentary line voltage dip occasioned by the occurrence and 

clearing of a ground fault

Page 32: Using High Resistance Grounding to Mitigate Arc Flash Hazards

ComparisonComparison

Ungrounded Solidly Grounded

Low Resistance Grounded

High Resistance Grounded

Productivity Impact

System Type

System System System System

Overvoltages Severe None Limited LimitedOvercurrent - Damage

t i t f f lt U k S Mi i l N

Equipment Damage at point of fault Unknown Severe Minimal None

Maintenance Costs High Reasonable Reasonable LowContinuous Operation with Ground Fault

Possible but not recommended Not possible Not possible Ideal

Relay Co ordination

a age

Relay Co-ordination (Appropriate Equipment Tripped, Ease of fault location) Difficult Difficult Good Excellent

Personnel Safety to Personnel Poor Good Reasonable Excellent

Downtime

Personnel y

Page 33: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Insurance PerspectiveInsurance Perspective“We tell our customers to first determine whether they have a resistance ground system or ground fault detection.

D t i th t f d tDetermine the type of ground system you have, and then, consider conversion from an ungrounded system to a resistance groundedsystem to a resistance grounded system.

Using a high-resistance groundUsing a high resistance ground system could knock 10% off the price of insurance”.

Page 34: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Alarming and RelayingAlarming and Relaying

• Resistance grounding is not enoughResistance grounding is not enough

• Must sense ground faults

k i• Take action

• Either alarm only, and locate the fault

• Or trip on fault

Page 35: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Ground Fault Sensing R id l CT M th dResidual CT Method

A

LOADB

IA

IB

C

N

IC

I

RELAY

IN

G

IG

• Typically 50 A to 1200 A pickup Used on solidly grounded LV & MV systems

GBONDING CONDUCTOR

GROUND FAULT CURRENT

• Used on solidly grounded LV & MV systems

Page 36: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Sensing Ground Faults Usingg ga Zero Sequence (Core Balance) CT

LOAD

A

BIA

C

IB

IC

RELAY

G

IG

Page 37: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Approaches For Ground DetectionApproaches For Ground Detection 

• Voltage Sensing GF RelayVoltage Sensing GF Relay• Current Sensing GF Relay• Swbd Multi‐Feeder GF Alarm Relay• Swbd Multi‐Feeder GF Alarm Relay• Swbd GF Relay with 2nd Fault ProtectionGF R l f MCC’• GF Relay for MCC’s

• Combination wall‐mounted NGR and GF Relay f R t fitfor Retrofits

Page 38: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Voltage Sensing GF Relay – DSP‐DSYS

• Non‐selective system level GF alarm

• Resistance grounded or ungrounded systemssystems

Page 39: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Voltage Sensing GF Relay – DSP‐DSYS

RESISTOR DIVIDERRESISTOR DIVIDERSENSING NETWORK

DDR2

VOLTAGE SENSINGRELAY DSP-DSYS

Page 40: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Zero Sequence Current Sensing and Arc Flash sensing Relay ‐ Sentri• Selective – responds to leakage current to ground,Selective  responds to leakage current to ground, identifies faulted feeder

• 3‐ Optical sensor Inputs to detect arc flash p p

5 A1 APICKUP

1 APICKUP

1 APICKUP

1 APICKUP

RRRR

5 ANGR

PICKUP PICKUP PICKUP PICKUP

Page 41: Using High Resistance Grounding to Mitigate Arc Flash Hazards

SENTRISENTRI

• Ground fault and arc flash built into 1 relay.• Solidly grounded or Resistance grounded systems.• 0.1 A to 1200 A trip settings.• Can connect to 3 self‐monitoring arc flash sensors.• Less than 1ms trip time on arc flash.• Solid state relays with mechanical relay backup.• Pre‐trip relay for indication prior to main relay tripping.• 1 A and 5 A CT inputs as well as ZSCS inputs for sensitive ground fault 

protection.• Monitor current with mGARD‐SYM display from up to 50 relays.• Modbus capability with mGARD‐SYM display.• ZSI  Zone Selective Instantaneous Protection

Page 42: Using High Resistance Grounding to Mitigate Arc Flash Hazards

GF Relay for Motor Control Centers – DGF‐CT

Page 43: Using High Resistance Grounding to Mitigate Arc Flash Hazards

DGF‐CT Fits In MCC BucketDGF CT Fits In MCC Bucket

Page 44: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Multi‐Feeder Ground Alarm Relay –DSP‐MKIII

Current Sensing

Voltage Sensing g

Relay Mudules

Relay

Page 45: Using High Resistance Grounding to Mitigate Arc Flash Hazards

First Fault Alarm ApplicationFirst Fault Alarm Application 

Page 46: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Second Fault Protection – DSP‐MKIII

Page 47: Using High Resistance Grounding to Mitigate Arc Flash Hazards

DSP OHMNI F tDSP OHMNI Features• Identifying faulty phase and faulty feeder. First  Fault Alarm y g y p y

and Selective Second Fault trip or  First fault trip 

• Modbus communications

• Enhanced relay security ‐ inrush detection prevents nuisance tripping on severe magnetizing inrush

• DIN rail mounted – takes much less space on switchgear –DIN rail mounted  takes much less space on switchgear now fits in 22”‐wide sections

• Pulsing system 

• Local Display ‐

Page 48: Using High Resistance Grounding to Mitigate Arc Flash Hazards

DSP OHMNI RelayDSP OHMNI RelayFirst Fault Alarm and Second Fault Trip 

OR First Fault Trip OHMNI-PM NGR LOADS

PULSE SIGNAL

ZSCS

BREAKERTRIP SIGNAL

G

MAIN BUS

1A1A

N

DDR225VA CPT120V

HORN

A B N GC

TRIP

CON

TACT

SENS

OR IN

PUT

RS 485 TO NETWORK

1A

ALARMCONTACTS

A B C N GPOWERAC/DC

DSPDSP DM

RS-485 TO NETWORK

DSP

20 CONDRIBBON

DSP-DSM DSP-DFM

DSP-DFMDSP-DPSDSP-DM DSP-

DFMDSP-DFM

Page 49: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Pulsing NGR – OHMNI‐PMPulsing NGR  OHMNI PM

Page 50: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Portable Current Sensor for Fault Tracing

Page 51: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Ground Fault Pulse LocatingGround Fault Pulse Locating

Page 52: Using High Resistance Grounding to Mitigate Arc Flash Hazards

A li ti C id tiApplication Considerations 1. Where to apply the Grounding Resistorpp y g• At the transformer or • At the main bus 2 When to apply first fault alarm only  3. When to add 2 nd fault trip function • Selective Instantaneous feeder tripping • Coordination with down stream Over current in 2nd f lfault trip 

4. When to use 1 st fault trip 

Page 53: Using High Resistance Grounding to Mitigate Arc Flash Hazards

DSP RelayDouble Ended Unit Sub Application

Page 54: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Parallel GeneratorsParallel GeneratorsTYPICAL PARALLEL GENERATOR HIGH RESISTANCE GROUNDING SCHEME

GENERATORS 600V

600V

G G G GZero Sequence Current Sensors(one per feeder; one per generator)

DDR2-6

DSA

15-20A, 3P100 kAIC

To BMS

S-P

M2

To BMS

5A, 600VZig-Zag Grounding2 - #16AWG, 24 Vdc

See Notes 1 and 2.DS

Optional DS-PM2 Pulsing Card

5A, 347V NeutralGrounding Resistor

OptionalPulsing Resistor

Zig-Zag GroundingTransformer

2 #16AWG, 24 Vdcfor pulsing control

Notes:1. NGR/Zig-Zag assembly w ith pulsing resistor, IPC Part Number: OHMNI-6PM-5-ZZ2. NGR/Zig-Zag assembly w ithout pulsing resistor, IPC Part Number: NTR600-5-ZZ

AWG#8 as perCEC 10-1108(3)

Page 55: Using High Resistance Grounding to Mitigate Arc Flash Hazards

HRG Retrofit of Parallel LV GeneratorsG G G G

15A, 3P100 kAIC

TOSCADA

52 52

52 5252

15A, 3P100 kAIC

TOSCADA

52 52

525252

52V

A

GROUND FAULT RELAY

V

A

GROUND FAULT RELAY

ALARM

SLEUTHSLEUTH

2A, 347V

2A, 600V 2A, 600V

PULSINGCONTACTOR

GROUND FAULT RELAY

ALARM

ALARMTO SCADA

ALARMTO SCADA

PULSINGCONTACTOR

NGR 2A, 347VPULSE TO 4A

NGR 2A, 347VPULSE TO 4A

STOPLIGHTWITH ZIG-ZAG,VOLTMETER,

STOPLIGHTWITH ZIG-ZAG,VOLTMETER

V

A

2A, 347V

GROUND FAULT RELAY

ALARM

V

A

ALARMTO SCADA

VOLTMETER,AMMETER

VOLTMETER,AMMETER

ALARMTO SCADA

52 5252

5252

52 5252

52 52

52

M2 M1

Page 56: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Combination NGR and GF RelayCombination NGR and GF Relay

• SLEUTHSLEUTH

• For retrofitapplicationsapplications

Page 57: Using High Resistance Grounding to Mitigate Arc Flash Hazards

OptionsOptions

• NGR MonitoringNGR Monitoring 

• Grounding Conductor Monitoring

i h li bili i i h d l h• High Reliability Resistors with dual paths 

Page 58: Using High Resistance Grounding to Mitigate Arc Flash Hazards

New Concepts in System Grounding

• Hybrid Grounding in Distribution : Solid Grounding changes to High Resistance Grounding up on sensing a ground fault. Example : FUSION 

• Hybrid Grounding of Generators : Usually generators are Low Resistance Grounded. To provide protection for the Stator winding of the generator Hybrid Grounding is used Lowwinding of the generator Hybrid Grounding is used . Low Resistance Grounding  changes to High resistance when an internal Generator Ground Fault is detected.

Page 59: Using High Resistance Grounding to Mitigate Arc Flash Hazards

New Concept in Grounding Hybrid Grounded SystemsHybrid Grounded Systems

Ground fault changes the impedance in the ground circuit….

Circuit breaker or Fuse

Page 60: Using High Resistance Grounding to Mitigate Arc Flash Hazards

Thank You For Attending!Thank You For Attending!

For a copy of the slides or for additional questions, e‐mail

[email protected]