use of ultra and nanofiltration ceramic membranes for desalination 2004 desalination

Upload: izzatiqbal

Post on 07-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Use of Ultra and Nanofiltration Ceramic Membranes for Desalination 2004 Desalination

    1/7

    E L S E V I E R

    Desa lination 168 2004 ) 207-213

    DES LIN TION

    www.elsevier.com/locate/desal

    U se o f ultra and nanofi ltration ceram ic m em bran es

    for desalination

    S . C o n d o m a A .

    L a r b o t b*, S a a d A l a m i Y o u n s s i b, M . P e r s i n a

    aIns ti tu t Europ~en des Membranes ( IEM), UMR 5635 CNR S EN SC M U M II , CNRS,

    1919 Route de Mende, 34293 Montpel l i er cedex 5 , France

    bLabratoire des Mat~riaux, Catalyse et Environnement F ST de Mohamm edia, B P 20650, Mohammedia, M aroc

    Tel . +33 (4) 67 61 33 88; F ax +33 (4) 67 61 33 85; email: larbot@[email protected]

    R e c e i v e d 1 3 F e b r u a r y 2 00 4 ; a c c e p t e d 2 0 F e b r u a r y 2 0 0 4

    b s t r a c t

    T h e f il tr a ti o n t e s t s o f e l e c t r o l y te s o l u t i o n s p e r f o r m e d w i t h d i f fe r e n t c e r a m i c m e m b r a n e s s h o w t h a t s a lt re j e c ti o n

    d e p e n d s o n p H , s a lt n a t u r e a n d c o n c e n t r a t i o n . A s i mp l e c o r r e l a ti o n b e t w e e n s t r e a mi n g p o t e n t i a l a n d r e j e c t io n r a t e s e x i t s

    a n d c o n f i r m s t h a t s tr e a m i n g p o t e n t i a l i s a r e l e v a n t p a r a m e t e r t o c h a r a c t e r i z e t h e s u r f a c e c h a r g e o f f i lt e r in g ma t e r i a l

    d u r i n g t h e f i l t ra t i o n p r o c e s s .

    Keywords M emb rane; Filtration; Electric interactions; Streaming potential

    1 . In trodu c t i on

    Fresh wa te r i s ve ry impo r t an t f o r a ll a spec ts o f

    l i f e . Was t ewa te r , b r ack i sh wa te r and s eawa te r

    t r ea tmen t i s a goo d so lu t i on a s a sou rce o f f r e sh

    wa te r . Amo ng a l l t he t e chn iques u sed fo r de sa li -

    na t ion , p r e ssu re -d r iven mem bran e p roces se s have

    an im por t an t pos it i on . I f r eve r se o smos i s i s

    known a s a c l a s s i ca l p roces s fo r de sa l i na t i on ,

    *Correspond ing au tho r .

    nanof i l t ra t ion NF ) and eve n u l t ra f il t ra tion UF) ,

    i f me mb rane po re d i am e te r s a re l owe r t han

    10 nm , can a l so be used . Th e in te res t in UF i s due

    to the impor tan t f lux obta ined . D esa l ina t ion per -

    f o rm a n c e s o f c e r a m i c m e m b r a n e s d e p e n d o n t h e

    concen t r a t i on o f i ons and on t he complex i ty o f

    the m ed ium to be f i lt e red , bu t a l so on t he t ype o f

    m e m b r a n e m a t e r i a l . C e r a m i c m e m b r a n e s c o m -

    mo n ly u sed a r e gene ra l l y mad e o f me ta l ox ide s ,

    wh ich have an ampho te r i c behav iou r ; t hen t he

    e l ec tr i c su r f ace cha rge depend s on t he pH o f t he

    Pres ented at the Eu roM ed 2004 con ference on Desalination Strategies in South Med iterrane an Countries: Cooperation

    between M edi terranean Countr ies o f Europe a nd the Southern Rim o f the Medi terranean. Sponsore d by the European

    Desalinat ion Socie ty and Of fice Na t ional de l Ea u Potable, Marrakech, Morocco, 30 Ma y- 2 June, 2004.

    0 0 1 1 - 9 1 6 4 / 0 4 / - S e e f ro n t ma t t e r © 2 0 0 4 E l s e v i e r B . V . A l l r ig h ts r e s e r v e d

    doi ;10 .1016/ j .desal .2004.06.189

  • 8/18/2019 Use of Ultra and Nanofiltration Ceramic Membranes for Desalination 2004 Desalination

    2/7

    208 S. Condom et al. / Desalination 168 2004) 207 -21 3

    f i lt ered solution [1-4]. Thus , a phen om eno n of

    repuls ion or a t trac t ion occurs be tween the ionic

    species present in the solut ion and the charged

    membrane. Besides the electrostat ic effects, the

    size of the f i l tered species is also an othe r para-

    meter which sho uld be c onsidered, par t icular ly i f

    the solut ion conta ins complexed cat ions wi th

    mineral or organic l igands.

    In thi s work w e d iscuss the ef fects f rom the

    results obtained for the f i l t rat ion of different

    sa line solut ions us ing several ceramic m emb ranes

    prepared by the sol gel route We also present the

    corre la t ion of the m em bran e se lect ivi ty in terms

    of re ject ion wi th the sur face charge deve loped on

    the material surface.

    2 Experimental

    2 1 Mem bran e description

    The membranes tes ted were , respect ively ,

    ma de o f y alumin a, CoAI204, and TiO2/ZnA1204

    (Table 1). The con di t ions for the preparat ion of

    the t h ree membranes have been p rev ious ly

    discussed [5-7]. The f i l ter ing layers were created

    using the sol gel route: the sols were dep osi ted by

    s l ip- cas t ing on the sur face of a tubular suppor t in

    c¢ alum ina (200 n m of pore diameter) .

    2 2 Filtration pilo t

    The f i l t ra t ion exper im ents were car r ied out o n

    a laboratory pi lot scale . The capaci ty o f the tank

    was 2 L , the work ing pressure was f ixed between

    0 and 10 bars by m eans of a ni t rogen gas bot tle ,

    and the veloci ty ra te of the f luid was around

    2.5 m .s -~. The f i l ter ing mo du le ha d a tub ular

    membrane 15 cm in length and 10 mm in outer

    diameter for a 7 mm inner diameter ; the act ive

    layer (surface area 26 cm2) was dep osi ted in the

    inner par t of the suppor t . S t reaming potent ia l

    measurements made pe r fo rm ed th rough the mem-

    brane by me ans o f two s i lver wi res covered wi th

    s i lver chlor ide used as reference e lect rodes . On e

    Table 1

    Main characterist ics o f the prepared mem branes

    y-alumina CoA1204 ZnAI204

    Pore diamete r nm 3.2 5 5.6

    Cut-off D 2400 2000 1500

    Wate r permea bility 1.2 5.7 3.5

    L.h-l.m-2.bar l

    was posi t ione d a t the axis o f the mem brane tube

    and the sec ond near the oppo si te s ide of the tube.

    The f i lt ered solut ions were prep ared w i th analy-

    sis grade sal ts at a concentrat ion between 10 -3

    and 10 -2 mol.L-1 or o ther pre cise concentrat ion.

    The concen t r at i on o f t he pe rmea te was ob t a ined

    by a tomic absorpt ion and ionic chromatography.

    The pH of the solut ion was adjus ted wi th concen-

    trate acid (HC1) or base (NaOH ) solut ions.

    3 Results and discussion

    3 1 Membrane characterization

    The di f ferent mem brane s tes ted we re charac-

    ter ized by scanning microscopy and ni t rogen

    adsorpt ion/desorpt ion; thei r cut -of f was evaluated

    from the rejec t ion rates obtaine d for the f i l t rat ion

    of soluble PEG polym ers of ca l ibra ted molecular

    weight . F ig . 1 shows the cross sect ion and the

    surface views of the CoAI204 mem brane, which

    is abou t 4 m thick.

    3 2 Size effect

    The resul t s obta ined for the y-a lum ina mem-

    brane show that the re ject ion ra tes depend

    st rongly on the nature of the f i l t ered sa l t

    (Table 2). U nder our exper imental condi t ions , the

    bes t re jec t ions w ere observed for the M A z sa lt ; on

    the cont rary, bad re ject ions were obta ined wi th

    M2A salts. These classical results are in agree-

    ment wi th the e lect ros ta t ic model based on the

    interact ion between the ions and the charged

  • 8/18/2019 Use of Ultra and Nanofiltration Ceramic Membranes for Desalination 2004 Desalination

    3/7

    S. Cond om et al . / Desa lination 168 2004) 207-2 13

    Table 2a

    Rejection of salts on a ,/-alum ina m em bran e (C = 10 -3 moL L-l)

    209

    Cations R,

    S042- CI- N O 3

    pH

    K ÷ 1 36 55 5.6

    Na+ 20 50 70 5.5

    Ca 2÷ 40 95 95 5.6

    Cu2+ 45 97 97 5.5

    Cd 2+ 40 97 97 5.6

    Ni 2÷ 40 97 96 5.6

    Table 2b

    Effect of complexation on the reject ion o f sal ts on a y-alum ina membrane (C = 10-3 mol.L-1)

    Metal sulfate R

    Ligand Without

    NT A EDTA o-phenantroline Polycarboxylate

    pH

    Cu 2÷ 45 - - 80 96

    Cd 2. 40 53 80 97

    Ni2÷ 40 80 85 95

    99

    95

    Fig. 1. SEM of spinel CoA12 4 mem brane: (a) cross section, (b) surface view.

    f i l t e r i n g m a t e r i a l [ 8 , 9 ] . A t n a t u r a l p H t h e y -

    a l u m i n a m e m b r a n e i s p o s i t i v e l y c h a r g e d , a n d

    t h e n d i v a l e n t c o i o n s M 2+ a r e r e p u l s e d m o r e t h a n

    a m o n o v a l e n t o n e ( M + ) . T h e s a l t s w h i c h a r e

    a s s o c i a t e d w i t h b o t h d i v a l e n t i o n s p r e s e n t a

    m o d e r a t e r e j e c t i o n .

    C o m m o n l i g a n d s c a n b e u s e d t o i m p r o v e t h e

    r e j e c t i o n o f t h e s a l t a f t e r c o m p l e x a t i o n o f t h e

  • 8/18/2019 Use of Ultra and Nanofiltration Ceramic Membranes for Desalination 2004 Desalination

    4/7

    210

    S. Condom et aL / Desalination 168 (2004) 207 -213

    1

    ....~ :.

    80 ~ Ni2 ~ x3

    NiX

    ~ 60 [ ~ W ligand: Phenantroline

    4 0

    20

    0 - ~ - - - ~ * ~ - ~ --'~-~- 1 * I

    0 2 4 6 8 10

    pH

    Fig. 2. pH effect on complexation of Ni~ with an o-

    phenetroline igand.

    nique leads sometim es to an uncorrected charge

    of the material in the f il tration con dition, prob-

    ably because the texture o f the powder and of the

    mem brane is quite different. This is w hy different

    authors have suggested using others methods

    [10,11 ] for the surface c harge measu rement such

    as the streaming potential, which is also in

    relation with the surface charge and seem s more

    representative of the real charge dev eloped on the

    mem brane surface in the f il tration condition. The

    streaming potential (SP) depends on the zeta

    potential according to the Sm oluch ow sky relation

    (1), but in fact the conductivity ~. must include

    the surface conduc tivity, wh ich can beco me im-

    portant for low pore size membranes.

    cation; nevertheless, the size o f the ligand should

    be enough and m ore important than the pore size

    of the membran e to prevent the ligand to cross the

    membrane. Table 2 show s the rejection increasing

    of MSO4 salts from 40 to more than 90 af ter

    complexing the cation with different l igands.

    Generally the rejection rate also depe nds o n the

    pH according to the stabili ty of the complex,

    which is more impor tant for the high pH value in

    Fig 2.

    3.3. Streaming poten tial an d salt rejection

    The surface charge of the material, which

    depends on the pH of the f il ter ing material, is an

    important parameter wh ich governs the eff iciency

    of a m embrane process , especia l ly for removing

    ionic species. Unfortunately, the d irect determi-

    nation of the surface charge is not easy an d only

    indirect methods exist . Among these, the zeta

    potential determination that is l inke d to the sur-

    face charge can be used to approach the surface

    charge o f the material. In the p ast the authors

    have determin ed the zeta potential f rom electro-

    phoretic measurements performed with f ine

    powder suspensions of the membrane mater ia l

    dispersed in an electrolyte solution. This tech-

    s e - g (

    ..~. (1)

    In order to correlate the experimental rejec-

    tions of ionic species with the m embran e surface

    charge, we present the results obtained for the

    rejectio n of classical n eutral salts (NaC1, Na2SO4)

    and also for sodium pho sphates at different pH by

    means of the three prepared membranes . The

    exper imental measuremen t o f the

    SP

    is relatively

    easily obtained by the relation SP = AE/AP

    which is the slope of the curve AE vs. applied

    pressure in the dynamic f il tration conditions.

    Fig. 3. shows that the SP va lues depen d on the pH

    of the f il tered solutions, and this behavior is

    expected because the SP given by the Smolu-

    chowsky relation depends on the zeta potential,

    wh ich also depends on surface charge of the

    mem brane. The v ariation of the surface charge of

    the membrane can be expla ined by the ampho-

    ter ic properties of the material used to prepare the

    membrane. In Fig. 4 we also report the electro-

    phoretic m obility o f the CoA1204 pow der m aterial

    in the presence of the same salts . The comparison

    of the SP and mobility variations are quite dif-

    ferent, whic h confirms the surface charge deter-

    mined f rom powder mobil i ty and SP measure-

    ments are not similar for the same material.

  • 8/18/2019 Use of Ultra and Nanofiltration Ceramic Membranes for Desalination 2004 Desalination

    5/7

    S. Condom et al. / Desalination 168 2004) 207- 213

    211

    3

    2

    0

    2

    a)

    * NaC1 • CaCI2

    • Na2SO4 • CaSO4

    5 7 9 ~1

    v

    pH

    6

    -2

    .4

    cNaC1 nC~J2 AI'4t2SO¢ eC ~0 4 •

    7 pH 9 ~

    b)

    Fig. 3. Evolution of the streaming potential measured

    through the membranes vs. pH for different electrolytes

    C = 10 3 moL L-l). a)

    COA1204

    membrane, b) TiO2 +

    Z n A 1 2 0 4 membrane.

    2

    .7 1

    -3

    -4

    -5

    []

    F i g . 4 . E l e c t r o p h o r e t i c m o b i l i t i e s o f C o A l 2 0 4 p a r t i c l e s v s .

    p H f o r d i f f e r e n t e l e c t r o l y t e s ( C = 1 0 -3 m o l . L - ~ ) .

    3 .4 . p H e f fec ts on sa l t re jec t ion

    The v ar ia t ion o f the re ject ion ra tes o f the di f-

    ferent sal ts is reported in Fig 5 where we also

    observed that i t depend s on the p H of the f i l tered

    solut ion; this is the co nse que nce o f the electr ical

    interact ions develop ed between the ions and the

    surface charges of the membrane. For the

    CoAI204 and TiOz/ZnAI204 membranes , the

    reject ion rates of the neutral sal ts associat ing a

    mon ovalen t anion and a ca t ion mon o or divalent )

    decrease when the pH values increase; never-

    theless , no great changes o f R was observed for

    CaC1a betwe en pH 4 and pH 8. On the cont rary,

    the reject ion rates o f Na2SO4 were very low in

    acid medium, but they increase for higher pH

    values . Those behaviours may be expla ined

    taking into account the evolut ion of the SP

    measured for the f i l tered sal ts . For the posi t ive

    values of the SP, the reject ion of the sal ts is

    relat ively high and i t decreases as the SP value

    decreases . W hen the pH of the solut ion reaches

    the pH va lue where t he cha rge o f t he membrane

    is zero

    S P

    = 0) , the re ject ion beco mes very low

    and then increases for the pH v alues where now

    the mem brane i s negat ively charged. In the case

    of the f i l t rat ion o f CaC1 z solut ions, we observ ed

    only the decrease o f the re jection, which i s a lso in

    agreement wi th the SP var ia t ions . This proves

    that the sur face charge of the mem brane remains

    120

    10o

    . .

    20

    0

    4 8 12

    p H

    Fig. 5. Evolution o f the rejection o f salts C = 10-3 M) vs.

    p H f o r t h e T i O ff Z n A 1 2 0 4 m e m b r a n e .

  • 8/18/2019 Use of Ultra and Nanofiltration Ceramic Membranes for Desalination 2004 Desalination

    6/7

    212

    S. Condom e t aL / Desal inat ion 168 2004) 207-213

    positive in the pH range studied. This pheno-

    menon is probably due to the strong specif ic

    adsorption of the Ca2+ ion at the surface of the

    membrane whatever the pH of the solut ion

    according to the surface equilibr ia complexation:

    • Acid pH:

    MOH~ + C a 2+ -* M O -, C a 2+ + 2H +

    • Basic pH:

    M O - + Ca 2+ -. MO -, Ca 2+

    Generally the correlation between the rejec-

    tion values and the SP determinations are more

    satisfying than w ith the mo bilit ies obtained from

    the electrophoretic measu rements perfo rmed w ith

    the pow der suspension Figs. 3 and 5).

    For the filtration of salts that are not neutral, it

    is necessary to consid er their acid-ba se proper-

    ties. This is the case of the pho sphate salts where

    the charge of the anion depends on the pH of the

    filtered solution. The results of the experiments

    performed w ith the COA1204 mem brane are

    reported in Fig. 6. The rejection of the sodium

    phosphate is very low at pH under 5, and the

    cor responding SP of the membrane is a lso weakly

    negative. The comparison with the SP obtained

    with the NaCI salt for the acid pH proves the

    adsorption of the phosphate ion on the surface,

    o ~

    60 sodiu

    p h o s p h ~ 1 >~

    n~ 40 -2 u~

    20 - 3

    0 ~ -4

    2 4 6 8 10 12

    pH

    Fi 8 . 6 . Evolut ion o f the SP and o f the re ject ion of sodium

    phosphate C = 10 -3 mol. L -I) vs. pH for the Co AI204

    membrane.

    wh ich then decreases its charge according to the

    complexation equilibr ium.

    MOH2 + + H2PO4 - M OH ;, H2PO4)

    Betw een pH 5 and 8, an increase of the rejec-

    t ion can be observed whereas the SP becomes

    more and more negative. These results are in

    agreement with the change of H2PO4 to HPO4 -

    anion bearing two negative charges and the

    development of strong interactions between the

    divalent anion phosphate and the neg ative surface

    charge of the mem brane.

    4 C o nc l us i o ns

    The eff iciency of a f i l tration process depends

    on the com plexity o f the f il tered solution. In the

    case of an ionic solution , the steric and electrical

    interactions are the two main parameters which

    must be considered. The steric effect depends on

    the stabili ty of the formed com plex betwee n the

    cation and the ligand. For sim ple electrolytes, the

    rejection depend s o n the electr ical interactions,

    which are controlled by the surface charge

    develop ed on the f ilter ing material. Generally, the

    streaming potential mea surement across the me m-

    brane seems to be a good param eter to predict the

    rejection rates of the salt instead of electro-

    phoretic pow der mobility, wh ich sometimes is not

    in agreem ent with salt rejection.

    References

    [1] T. Tsuru, Hirohiko Takezoc and Masashi Asaeda,

    Ion separation by p oro us silica zirconia nanofiltration

    membranes, AichE J., 44 1998) 765.

    [2] A.E. Yaroshch uk, Reject ion mechanism s of nano-

    filtration membranes, Mem br. Technol., 100 1998)

    9.

    [3] T. Tsuru, M. Urairi, S. Nak ao and S. Kimura,

    Reverse osm osis of single and mixed electrolytes

    with charged membranes, experiment and analysis ,

    J. Chem. Eng. Japan, 24 1991 ) 518.

  • 8/18/2019 Use of Ultra and Nanofiltration Ceramic Membranes for Desalination 2004 Desalination

    7/7

    S . C o n d o m e t a l . / D e s a l i n a t i o n 1 6 8 2 0 0 4 ) 2 0 7 - 2 1 3 213

    [4] T. Tsuru, T. Shutou, S.I . Na kao an d S. Kimura,

    Pept ide and am ino acid separat ions by n anof i l tra t ion

    membranes, Sep. Sci. Te chn ol . , 29 1994) 971.

    [5] A. La rbo t, S. Alami-Y ounssi, M. Per sin, J. Sarrazin

    and L. Cot , P reparat ion of a y-a lum ina nanof i l tra t ion

    membrane, J . Me mb r. Sci . , 97 1994 ) 167.

    [6] S. Cond om, S. Chemlal , W. Chu, M. Persin and

    A. L arbot , Correla t ion between select iv i ty and sur-

    face charge in co bal t spinel ul t rafi l t rat ion membrane,

    Sep . Pur Technol . , 25 2001) 545.

    [7] Y. Elmarraki, M. Persin, J. Sarrazin, M. Cre tin and

    A. Larbot , Fi l t rat ion of ele ctrolyte solutions w ith new

    TiO2-ZnAIEO4 ul t raf il t ra tion m embran e in re la tion

    with the electric surface propert ies , Sep. Pur

    Technol . , 25 2001) 493.

    [8] H. Grib, M. Persin, C. Gavach, D.L. Piron,

    J . Sandeaux and N. M ameri , Am ino acid re ten t ion

    with y alumina n anofi l t rat ion me mb rane, J . Mem br.

    Sci., 172 200 1) 9.

    [9] J . Palrneri , P. Blanc, A. Larbo t and P. David, Theo ry

    of pressure d riven t ransport o f neutral solutes and

    ions in porous ceram ic nanofi l t rat ion membranes, J .

    Membr. Sci . , 160 1999) 141.

    [10] M. Nystro m, A Pihlajamaki and N. Ehsani , Charac-

    ter izat ion of u l t raf i l t ra t ion membrane by s imul -

    taneous streaming potent ial and flu x measurements,

    J . Mem br. Sci ., 87 1994 ) 245.

    [11] A . Sz ym czy k, P. Fievet , M. Mullet , J .C. Reggiani

    and J . Paget ti , Com parison o f two electrokinet ic

    methods -- electroosmosis and streaming potent ial

    to determine the zeta potent ia l of p lane ceramic

    mem branes, J. Me mbr. Sci., 143 199 8) 189.