universiti putra malaysia preparation and characterisation...

25
UNIVERSITI PUTRA MALAYSIA PREPARATION AND CHARACTERISATION OF POLYSTYRENE GRAFTED SAGO STARCH PUSHPAMALAR A/P JANARTHANAN FSAS 1999 36

Upload: doandat

Post on 27-Mar-2019

225 views

Category:

Documents


0 download

TRANSCRIPT

 

UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERISATION OF POLYSTYRENE GRAFTED SAGO STARCH

PUSHPAMALAR A/P JANARTHANAN

FSAS 1999 36

PREPARATION AND CHARACTERISATION OF POLYSTYRENE GRAFTED SAGO STARCH

By

PUSHPAMALAR AlP JANARTHANAN

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Science and Environment Studies,

Universiti Putra Malaysia

May 1 999

Z' &1)1 eA71 O?t

7<' f1«I�' V�, ��, � ad

� � � H«f � ad fflMIe H«f U6e eH�,

rid � H«f Id<wed �, �, �, 4i4teIt ad. �

� t4wt � ad�,

ACKNOWLEDGEMENTS

I wish to take this opportunity to express my heartfelt appreciation

and gratitude to the chairman of my supervisory committee, Associate

Professor Dr. Wan Md. Zin Wan Yunus, and committee members, Dr.

Mansor Hj. Ahmad and Dr. Mohamad Zaki Abdul Rahman for their

invaluable guidance, comments, encouragement and constant support

during the period of this study and for their constructive criticism of this

manuscript during its preparation.

Special thanks also go to the technical staff of the department

special ly Mr. Kamal , Mr. Wahab, Mr. Jegan, Mr. Borhan and Mr. Nazri for

supplying the chemicals and g lass wares on the time needed. I would like to

thank Mr. Ho and Miss Azilah from the Faculty of Veterinary for helping

their technical assistant with the SEM analYSis.

I am a lso grateful to the staff, graduate students and honours

students of the Department of Chemistry especially Md. Lutfor Rahman,

Abu-lIlaiwi Faraj, I sam, Aiza, Laili, Hussein, Chong, Majid and Sec Kin for

their help in one way or another.

I am also greatly indebted to UPM for providing the analysis facilities

and the Government for backing PASCA for me to complete the study

successful ly.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS. . . . . . . . . . ... . .. . . .. . . . ... . . . .. . . . .. . . . . . .. . .. . . . . .. .. . . i i i

LIST O F TABLES............ . ...... ......... ..... ........ . ...... ......... .......... . VII

LIST OF FIGURES .. . . . . .. . . .. . . ... . . . . . . . . . . . . . .. . . . .. . . . .. . . . . ... . . . . . .. . . . .. . . .. ix

LIST OF PLATES. . . . . . ... . . .... . . . .. . . . ...... . . . . . . .. . ... . . . . . . .. . . . .. . . . . . . . . . . . . . . xi

ABSTRACT. . . . . . . . . . . . . . . . . . . . . .. . . . ... . . . . .. . .. . . . . .. . . . . . . . .. . ... . . . . .. . . . . . . . . . . . . .. xii

ABSTRAK . . . .. . ... . . . .. .. .... . .. . . . . . ... . . .. . . . . . . . . . . . . . . . . . . ... . . ....... ... . .. . . . . . .. . xiv

CHAPTER

II

INTRODUCTION.. . .. . . .. . .. . . . .. . . . . . . . . . .. . . . ..... ..... . . .... 1 Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Sago Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Polymer. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Graft Copolymerisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Acidic and Enzymatic Degradation of Starch . . . . 6 Swel l ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Objectives of the Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

LITERATU RE REViEW . .. .... . . . . .. ... . . . .. .... . .. ... . . . ... . 9 Grafting Copolymerisation of Synthetic Monomers onto Natura l Polymers. . . . . . . . . . . . . . . . . . . . . . 9

Grafting Vinyl Monomers onto Wool Fibres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Grafting Vinyl Monomers onto S i lk Fibres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Grafting Vinyl Monomers onto Chitosan... . .. ...... . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 14 Graft ing Vinyl Monomers onto Gelatin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 Grafting Vinyl Monomers onto Chit in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 Grafting Vinyl Monomers onto Cotton Cel lu lose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Grafting Vinyl Monomers onto Modified Cotton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Grafting Vinyl Monomers onto Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv

PERPUSTAKAAN III MATERIALS AND METHODS . . . . . . . . . . . ���TI 'UT� MALAYSIA

Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................. .. ........... 36 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Grafting . . . .. . .. . ..... .. . . . . . . . . . . . . . . .. . . . . .. . . . . . . .. . . . . 37 Extraction of Homopolymer. . . . . . . . . . . . . . . . . . . . . 38 Calculation of Percentage of Grafting and Percentage of Grafting Efficiency. . . . . . . 38 Determination of Molecular Weight of the Grafted Side Chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Gelatinised Sago Starch and I ts Copolymers Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Swel ling Behavior of Sago Starch-g-Poly(styrene) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . 41 Characterisation of Polystyrene Grafted Sago Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

IV RESULTS AND DiSCUSSiON... .. . . . . . . . . . . ... ... ...... 45 Fourier Transform I nfrared Analysis . . . . .. . .. . . . . . . . . . . 45 Thermogravimetry Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Differential Scanning Calorimetry Analysis. . . . . . . . 47 Effects of Reaction Temperature. . . . . . . . . . . . . ... . . . . . . . 48 Effects of Concentration of Nitric Acid . . . . . . . . . . . . . . 49 Effects of Styrene Amount . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . 50 Effects of Ceric Ammonium Nitrate (CAN) Amount .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Effects of Reaction Period . . . �................................ 51 Extraction of Homopolymer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Mechanism of Grafting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Effect of the Presence and Absence of N2 Gas on Styrene Grafting Sago Starch. . . . . . . . . . . . . . . . . . . . . . . . . 53 Swel ling Behavior of Sago Starch-g-Poly(styrene) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Bio-degradability Study by Alpha Amylase. . . . . . . . . . 59 Molecular Weight Determination . . .. . . . .. . . . . . . . . . . . . . . . .. 61 Scanning Electron Microscope .. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V CONCLUSiONS...... . . .... .. ............ . . .. .. . .. .. .. . .. . . . . . . . . . 93

BIBLIOGRAPHy. . . .. . . ....... . . . . . .. . . . .. . ..... ...... .. . ... ..... .. . . .. ... ... . 96

APPENDIX

A Results of Preparation of Sago Starch-g-Poly( styrene) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 04

v

B

c

Temperature of Decomposition and Differential Weight Losses from TGA. .................. . Results for Swel ling Behavior in Various Solvents, Biodegradabi l ity Studies and Viscosity Measurements of Sago Starch -g-Poly(styrene) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 07

1 08

ViTA................................................................................... 114

vi

LIST OF TABLES

Table

1 Removal of Polystyrene from 8.65 g of Unextracted Sago Starch-g-Poly(styrene) at 25°C in Choloroform

Page

by Shaking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 52 2 Percentage of Grafting and %GE of Sago Starch-g­

Poly( styrene) Prepared in the Presence and Absence of N2Gas. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Parameters of Swel ling of 54% Polystyrene Grafted Sago Starch (%G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 59

A.1 Effects of Reaction Temperature on Styrene Grafting onto Sago Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Effects of Nitric Acid Concentration on Styrene Grafting onto Sago Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 103

A.3 Effects of Styrene Amount on Styrene Grafting onto Sago Starch. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . 104

A.4 Effects of CAN Amount on Styrene Grafting onto Sago Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 104

A.5 Effects of Reaction Period on Styrene Grafting onto Sago Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 105

B.1 Temperature of Decomposition and Different Weight Losses of Sago Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.2 Temperature of Decomposition and Different Weight Losses of Polystyrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.3 Temperature of Decomposition and Different Weight Losses of 53.92% Sago Starch-g-Poly(styrene) (%G) . . . . . . . . . . . 106

C .1 Percentage of Swelling and Swelling Period in Various Solvents for 53.92% of Polystyrene Grafted onto Sago Starch (%G) at 25°C . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.2 Percentages of Swelling and Square Root of Swelling Period in Various Solvents for 53.92% of Polystyrene Grafted onto Sago Starch at 25°C . . . . . . . .. .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 108

C.3 Percentage of Swel ling and Square Root of Swelling Period in Various Solvents for 53.92% of Polystyrene Grafted onto Sago Starch (%G) the Initial Stages of Swel ling at 25°C . . .. . . 109

C.4 In F and In t of Swelling in Various Solvents for 53.92% of Polystyrene Grafted onto Sago Starch (%G) at the Initial Stages of Swel ling at 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . 109

C .5 Absorbance and Amount of Glucose Produced from the Substrate for a Calibration Curve. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 110

vii

C.6 Amount of Glucose Produced by Using D ifferent Concentrations of Alpha Amylase to Biodegrade the 53. 92% of Polystyrene Grafted Starch (%G) for Various Incubation Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 0

C .7 Amount of G lucose Produced by D ifferent Concentrations of Alpha Amylase to Biodegrade the 53.92% of Polystyrene Grafted Sago Starch (%G) and Gelatin ised Sago Starch for Various I ncubation Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1

C .8 Reduced Viscosity and Concentration of Solution for 1 1 . 1 0% Grafted Polystyrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1

C.g Reduced Viscosity and Concentration of Solut ion for 2 1 . 65% Grafted Polystyrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2

C . 1 0 Reduced Viscosity and Concentration of Solut ion for 33.24% Grafted Polystyrene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2

C . 1 1 Reduced Viscosity and Concentration of Solution for 42.89% Grafted Polystyrene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3

C . 1 2 Reduced Viscosity and Concentration of Solut ion for 53. 92% Grafted Polystyrene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3

C . 1 3 Viscosity-Average Molecular Weight and Various Percentage of Grafted Polystyrene . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3

viii

LIST OF FIGURES

Figure Page

1 Chemical Structure of Starch . . .. . ... . .... . .. . . . . . . . . . . . . . . . .. ... . .. .... . . . . 3 2 FTIR Spectrum of Sago Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 64 3 FTIR Spectrum of Polystyrene . .... . . ..... .. . . . ..... . .. . . . .. .... . . . . .. ..... . 65 4 FTIR S pectrum of Grafted Polystyrene Chain . . . . . . . ... .. . . . . . . . . . . . 66 5 TGA Thermogram of Sago Starch .... . .. . . . . . . . . . . . . . . . . . . ........ . .. . . . . . . 67 6 TGA Thermogram of Polystyrene . . .. . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . .. . . . . . . . 67 7 TGA Thermogram of 54% Sago Starch-g-Poly(styrene)

(%G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8 DSC Curve of Sago Starch. . . . . . . .. . .. . .... ..... . . . . .... . . . . .. . . . .. . . . . . . ... 69 9 DSC Curve of Polystyrene . . ... . . . . . . . . . . .. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... 70 1 0 DSC Curve of 54% Sago Starch-g-Poly(styrene) (%G) . .. . . . . . . 7 1 1 1 Effects of Reaction Temperature on Percentage of Grafting

and Percentage of Grafting Efficiency.. ..... . . . . .. . . . . . . .. . . . . .. . . .. . . . 72 1 2 Effects of Concentration of Nitric Acid on Percentage of

Percentage and Percentage of Grafting Efficiency .... . .... ... . . . 73 1 3 Effects of Amount of Styrene on Percentage of Grafting

and Percentage of Grafting Efficiency. . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . 74 1 4 Effects of Amount of CAN on Percentage of Grafting

and Percentage of Grafting Efficiency . .. . . .............. . . . . .. . .... . . . .. 75 1 5 Effects of Reaction Period on Percentage of Grafting

and Percentage of Grafting Efficiency. . . .. . . . . . . .... . . . . . .......... . . . . . 76 1 6 Mechanism of Graft Copolymerisation... . . . . ... ...... . . ........ .. .. . 78 1 7 Percentage of Swel ling as a Function of Swel ling Period

for Sago Starch-g-Poly(styrene).......... . . ....... . . .. .... .... . .... . ... 79 1 8 Percentage of Swel ling as a Function of Square Root

of Swel ling Period for Sago Starch-g-Poly(styrene) at the Initial Stages of Swel ling .. ... ......... . ....... ..... . ....... . . ..... . . . . 80

1 9 In F as a Function of Int for Sago Starch-g-Poly( styrene) at the Initial Stages of Swelling at 2SoC.............................. 81

20 A Calibration Curve for Glucose....................................... 82 2 1 Amount of Glucose Produced i n Different Concentrations

of Alpha Amylase for 53.92% Polystyrene Grafted Starch (%G) and Gelatinised Sago Starch.... .... . . . . . ..... ........ .. .. .. . . . ... 83

22 Amount of Glucose Produced by Different Concentrations of Alpha Amylase for Various Incubation Periods.. .. .... . . . . . . . . 84

23 Reduced Viscosity Versus Concentration for 1 1.1 0% Grafted Polystyrene........... ...... .... . . . . . .... ..... . . . .. ..... .... . . ........ .. 85

24 Reduced Viscosity Versus Concentration for 2 1 . 65% Grafted Polystyrene............. . ........... . . . . . .... . ..... . . ..... .... .. .... .. . . 86

ix

25 Reduced Viscosity Versus Concentration for 33.24% Grafted Polystyrene.. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . ... . .. .. .. . .... . . . . . . 87

26 Reduced Viscosity Versus Concentration for 42.89% Grafted Polystyrene . . . . . . . . . . . .. . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .. . . . 88

27 Reduced Viscosity Versus Concentration for 53.92% Grafted Polystyrene.. . . . .. ...... .. . . . .. . . ..... . . . . . . . .. . . . . . . .. . . . . . . . . .. .. . . . . . . 89

28 Average Molecular Weight (Mv) Versus Percentage of Grafted Polystyrene. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . 90

x

LIST OF PLATES

Plate Page

1 SEM Photograph of Granular Sago Starch at 400x. . .. . . . . . . 91 2 SEM Photograph of Gelatin ised Sago Starch

at BOx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3 SEM Photograph of 53. 92% Sago Starch-g-Poly(styrene)

(%G) at 25x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xi

Abstract of thesis submitted to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREPARATION AND CHARACTERISATION OF POLYSTYRENE GRAFTED SAGO STARCH

By

PUSHPAMALAR AlP JANARTHANAN

May 1 999

Chairman: Associate Professor Wan Md. Zin Wan Yunus, Ph.D.

Faculty: Science and Environmental Studies

Styrene grafting onto sago starch was carried out by using eerie

ammonium nitrate (CAN) as a redox initiator. The parameters affecting the

grafting reaction were i nvestigated and the optimum conditions obtai ned are

as fol lows: temperature, 50°C ; n itric acid concentration, 0 .01 M; amount of

styrene, 0 .35 mol; amount of CAN, 1 6.8 x 1 0-4 mol and reaction period , 2h.

Percentages of grafting and grafting efficiency under the optimum condition

were 53.92% and 73.21 %, respectively. Reactions in the presence of

n itrogen gas resulted in higher percentages of grafting and grafting

efficiency.

FTIR spectra analysis of the grafted chain and polystyrene was

identical indicating that styrene was successful ly grafted onto sago starch.

TGA thermograms, DSC curves and SEM photographs of sago starch-g-

xii

poly( styrene) and the original polymers (sago starch and polystyrene) were

different which suggested that styrene was grafted onto sago starch. The

bio-degradabi l ity study using a-amylase showed that the rate of degradation

of gelatin ised sago starch was h igher than that of sago starch-g­

poly(styrene). The highest rate of degradation of sago starch-g­

poly(styrene) was obtained at 50 ppm of a-amylase concentration. Viscosity

measurements showed that the intrinsic viscosity and the average molecular

weight (Mv) increased with the increase in the percentage of grafted

polystyrene. The Mv of the various percentages of grafted polystyrene were

in the order of 1 04 . The results obtained from the swel l ing of sago starch-g­

poly(styrene) in polar and non polar solvents showed that the percentage of

swel l ing at equ i l ibrium and the swel l ing rate coefficient decreased in the

fol lowing order: DMSO > water > acetone > cyclohexanone � CHCh >

toluene � CCI4. Diffusions of the solvents onto the polymers were found to

be of a F ickian only for DMSO.

xiii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN KOPOLIMER KANJI SAGO­POLISTIRENA

Oleh

PUSHPAMALA R AlP JANARTHANAN

Mei 1 999

Pengerusi: Profesor Madya Wan Md. Zin Wan Yunus, Ph.D.

Fakulti: Pengajian Sains dan Alam Sekitar

Kajian bagi pengkopol imeran cangkuk sti rena ke atas kanji sagu

telah dibuat dengan menggunakan serium ammonium nitrat (SAN) sebagai

pemula tindak balas redoks. Parameter-parameter yang memberi kesan ke

atas pengkopo l imeran telah d ikaji dan keadaan optimum tindak balas yang

d iperoJeh i adaJah seperti berikut : suhu tindak balas, 50°C; kepekatan asid

nitrik, 0.01 M; amaun stirena, 0.35 mol; amaun SAN, 16.8 x 10-4 mol dan

masa t indak balas, 2 jam. Peratus-peratus pengkopol imeran cangkuk dan

kecekapan pengkopol imeran cangkuk di bawah keadaan optimum adalah

masing-masing 53.92% dan 73.21%. Tindak balas dengan kehadi ran gas

nitrogen menghasi lkan peratus-peratus pengkopol imeran cangkuk dan

kecekapan pengkopolimeran cangkuk adalah lebih tinggi.

Anal isis spektra daripada spektrofotometer inframerah untuk

pol isti rena yang dicangkuk adalah sarna dengan pol istirena piawai. In i

xiv

menunjukkan bahawa stirena berjaya dicangkukkan ke atas kanji sagu.

Termogram-termogram daripada termogravimetri, keluk-keluk daripada

kalorimetri pengimbasan pembezaan dan gambar-gambar daripada elektron

mikroskop untuk kopol imer kanji sagu-pol ist irena dan pol imer permulaan

(kanj i sagu) adalah berbeza. Ini juga mencadangkan bahawa stirena telah

dicangkukkan ke atas kanji sagu.

Kajian mengenai penguraian secara biologi dengan menggunakan a­

ami lase menunjukkan bahawa kadar penguraian untuk kanji sagu yang

telah digelatinkan adalah lebih tinggi daripada kopol imer kanji sagu­

pol ist irena. Kadar penguraian yang pal ing tinggi bagi kopol imer kanji sagu­

pol istirena diperolehi dengan menggunakan a-ami lase pad a kepekatan 50

ppm. Pengukuran kel ikatan larutan cai r menunjukkan kel ikatan intrinsik dan

purata j is im molekul (Mv) meningkat dengan meningkatnya peratus

pol istirena yang dicangkuk. Purata j is im molekul untuk pelbagai peratus

pol istirena yang d icangkuk adalah dalam urutan 104. Keputusan kajian

pengembungan kopol imer kanji sagu-pol istirena d i dalam plarut-pelarut

berkutub dan tak berkutub menunjukkan bahawa peratus pengembungan

pada keseimbangan dan pemalar kadar pengembungan menurun secara

berikut: DMSO > air> acetone> cyclohexanone ::::: CHCI3 > toulena ::::: CCI4.

Pembauran pelarut ke dalam kopol imer kanji sagu-pol ist irena adalah secara

Fickian hanya bagi DMSO.

xv

CHAPTER I

INTRODUCTION

Starch

Starch is one of the cheapest, bio-degradable and most readily

available of al l renewable natural polymers exists in plants. It is anhydrous

D-glucose consisting of mixture of amylose and amylopectin as shown in

Figure 1. Amylose is a linear polymer of molecu lar weight between one

thousand and one mil lion and made up of several hundred g lucose units

linked by 0: 1 -4 glycosidic linkages. Amylopectin is a branched polymer of

glucose units of 0: 1 -6 g lycosidic linkages at the branching points and 0: 1 -

4 glycosidic linkages in the linear region. The molecular weight of

amylopectin can run into several millions. Starch is not truly thermoplastic

like most synthetic polymers. However, it can be melted and flow at high

temperatures under pressure and shear. If the mechanical shear becomes

too high then starch wil l degrade to form products with low molecular

weight. Addition of water or other plasticisers enables starch to flow u nder

milder conditions and reduces degradation considerably (Wurzburg,

1989). Starch has both the crystal and amorphous structures (Gao et al.,

2

1994}. Because of their crystal l inity, most starch granules show a Maltese

crosses when observed under polarized light. Native starch granules have

a crystallinity range from 15 to 45%. The granule appears to be made up

of alternating semi-crysta l l ine and crysta l l ine shel ls which are between

120 and 420 nm thick. Sol id state 13H NMR analysis shows that the level

of hel ical order in the starch granules is significantly greater than the

extent of crystal l i ne order. Consequently, it appears that much of

amylopectin in semi-crystal l ine shel ls is i n the double hel ica l form,

although it is not crystal l ine (Gal lant et al., 1997).

The properties of starch can be significantly improved by blending it

with synthetic polymers. However, most of the synthetic polymers are

immiscible with starch at the molecular level which leads to the poor

performance of these blends. In order to overcome this drawback, graft

copolymerisation of vinyl monomers on the starch backbone is used to

modify starch (Vaidya et aI., 1995). A review of the l iterature i ndicates that

although the grafting of starch with synthetic monomers has been known

for 30 years, very few processes have led to ful l-scale commercialisation.

Sago Starch

Sago starch has been known to exist for 400 years and produced

from sago palm plants. There are two main species of sago palm:

AMYLOSE-linked lhrouglw - D- (I-t4) glucosidic bonds

----_.-\----

AMYLOPECTIN -+ ('J. - D- (1 --t 4) glucosidic bond

jH - 0 -

-+ I branch linked ('J. - 0 (I -+ 6) glucosidic bond.

IH �O-

Figure 1 : Chemical Structure of Starch

3

4

Metroxylon rumphii with the thorny main stem and Metroxylon sagu

Rottbboll with thornless main stem (Jeffrey, 1 986) . Sago starch studied by

the scanning electron microscope are deformed prolate el l ipsoidal shape

particles which are larger than those of maize and tapioca (Griffin, 1 977) .

In 1 941 , Thomas Schoch showed that sago starch consists of 27%

amylose and 73% amylopectin (Wurzburg, 1 989). Quality characteristics

of sago starch depend on interrelated factors such as raw material , mode

of transport, supply and quality of water, method and efficiency of the

extraction and purification processes (Jeffrey, 1 986) .

Polymer

Polymers are large molecules made up by the repetition of sma l l ,

simple chemical units. The essential requirement for a smal l molecule to

qualify as a monomer is the possession of two or more bonding sites. It is

produced through a process known as polymerisation in which the

monomer molecules react chemical ly to form a linear chain by covalent

bond. The polymerisation techniques are classified as addition and

condensation polymerisations. Linear chain polymers composed of

chemical ly identical monomers cal led homopolymers. The polymers

incorporating two or more chemical ly different types of monomers onto the

chain are cal/ed copolymers.

5

PERPUSTAKAAN The copolymer structure can be divide'lr�X¥ciHcT6��fMr�YSlA

block or graft copolymers. When two different monomers in a copolymer

are distributed at random throughout the chain, the polymer is called a

random copolymer. If the units of two monomers are distributed

alternatively throughout the chain, this polymer is called alternating

copolymer. Polymers containing long stretches of two or more monomers

linked together by chemical valences in one single chain is called block

copolymers. A graft copolymer is a branched block arrangement in which

the polymer structure consisting of one polymer with another polymer

branched to it (Billmeyer, 1 984 ; Hiemenz, 1 984) .

Graft Polymerisation

Graft copolymerisation is a well known method to modify the

chemical and physical properties of polymers. Graft copolymerisation

results from the formation of an active site at a point on a polymer

molecule back bone and exposure to a second monomer. Most of the graft

copolymers are formed by free radical polymerisation using chemical or

radiation methods. The radiation method is carried out by irradiating the

polymer using gamma or ultraviolet radiations. The chemical method is

through the formation of free radicals, cations and anions by a suitable

chemical reaction. Starch graft copolymers are becoming important

because of their potential application in industry. The wide range of

available vinyl and other monomers suggests that grafting is a powerful

6

method for producing modification in starch properties and enlarging the

range of utilization (Athawale and Rathi, 1997a).

Acidic and Enzymatic Degradation of Starch

Starch is a bio-degradable natural polymer. It degrades when the

enzyme or acid molecule attacks the starch back bone. Enzymatic and

acidic attacks of starch are similar since they both involve hydrolysis of

the bonds in the starch. In both processes the semi-crystallinity of the

granules are more easily and rapidly hydrolysed than the crystalline

layers. The size of the acid molecule is smaller than the enzyme which

allows the acidic the attack to occur on a finer scale than the enzymatic

attack. The acid degradation is affected by the acid concentration,

temperature and the presence of alcohols. Prolonged exposure to acid

molecules will allow the acid molecules to penetrate through even the

crystalline regions of the granule and act on the a-1, 6 bonds of the

amylopectin molecules in the starch (Cui and Oates, 1997).

During the enzymatic attack the less crystalline part of the starch

granules is easily digested than the hard crystalline part. Pits are formed

randomly all over the granule surface and combined to form canals which

will enlarge and merge (Gallant et at. , 1997). Alpha amylase from a new

source (Aspergillus fumigatus) has been shown to have a different pattern

7

of degradation . It forms pores at the surface of the g ranules even with the

resistant starches (Gallant et al ., 1 997) .

Swelling

Stud ies on the d iffus ion of po lar and non polar so lvents in swel lab le

po lymeric systems have received considerable attention because of the

important applications of b iomedical, pharmaceutical , enviro nmenta l and

ag ricu lture engineering . In a swel l ing process it is necessary to take into

account the force of friction . When the polymer is swel l ing in a so lution

from the d ry state , i t takes time for a network to swel l from the surface to

the core. The swel l ing processes consist of the interactio n with the so lvent

and the polymer, fo l lowed by the so lvent penetration inside the network

which induces a po lymer swel l ing (Budtova, 1 997) . The percentage of

swel l ing (%S) can be calculated from the fo l lowing relation:

%S = [ ( mt - ma )/ ma] x 1 00 ...... . . . . . . . . .. . . . . ( 1 )

where mt is the mass of swol len polymer at time t , and ma is the in it ial

mass of the swo l len polymer.

8

Objectives of the Study

The objectives of this study are as follows:

1. To prepare the grafting of styrene onto sago starch by using ceric

ammonium nitrate as the initiator and to study the effecting reaction

parameters to obtain an optimum condition which leads to maximum

grafting.

2. To characterise sago starch-g-poly(styrene) by Fourier Transform

Infrared Spectroscopy, Thermogravimetry, Differential Scanning

Calorimetry and Scanning Electron Microscopy.

3 . To investigate the bio-degradability of the polystyrene grafted sago

starch and gelatinised sago starch by using a-amylase as the enzyme.

4. To study the swelling behavior of polystyrene grafted sago starch in

various types of solvent to determine the swelling at equilibrium and the

nature of diffusion of the solvents on the grafted copolymer.

5. To carry out viscosity measurements for various percentages of

grafted polystyrene to determine the average molecular weight.

CHAPTER I I

LITERATURE REVIEW

Grafting Copolymerisation of Synthetic Monomers onto Natural Polymers

The modification of natural polymers is a promiSing method for the

preparation of new materials. This enables one to introduce special

properties and enlarge the field of the potential appl ications of those

biopolymers of abundance. Among the diverse modifications that are

possible to achieve, grafting of synthetic polymers is a convenient method

(Yazdani-Pedram and Retuert, 1 997) .

Grafting Vinyl Monomers onto Wool Fibres

Chemical modification of wool through graft copolymerisation of

vinyl monomers can be effective in improving some of the fibre properties.

Grafting of vinyl monomers was achieved by free radical initiation

mechanism. Free radical can be produced by both chemical and -physical

methods, including the use of redox systems, oxid izing agents, low and

h igh energy radiation. The monomer may interact with free radical sites

9