ultrafast spectroscopy

28
Ultrafast Spectroscopy Gabriela Schlau-Cohen Fleming Group

Upload: byrd

Post on 14-Jan-2016

58 views

Category:

Documents


0 download

DESCRIPTION

Ultrafast Spectroscopy. Gabriela Schlau-Cohen Fleming Group. Why femtoseconds?. timescale = distance/velocity ~~~~~~ distance ≈ 10 Å E ≈ h ν ≈ (6.626*10 -34 kg*m 2 /s)*(3*10 8 m/s /6*10 -7 m) ≈ 3*10 -19 kg*m 2 /s 2 E= ½mv 2 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ultrafast Spectroscopy

Ultrafast Spectroscopy

Gabriela Schlau-CohenFleming Group

Page 2: Ultrafast Spectroscopy

Why femtoseconds?

timescale = distance/velocity~~~~~~

distance ≈ 10 ÅE ≈ hν ≈ (6.626*10-34kg*m2/s)*(3*108m/s /6*10-7m) ≈ 3*10-19kg*m2/s2

E= ½mv2 v=√(2*E*/m) =√(2*E*/9*10-31kg) =√(2*3*10-19/(9*10-31 ) m2/s2)

v=8*105 m/s

~~~~~~timescale ≈ (10*10-10m)/(8*105m/s) ≈ 10-15

sec

Page 3: Ultrafast Spectroscopy

Ultrafast examples:

• Photosynthesis: energy transfer in <200 fs (Fleming group)

• Vision: isomerization of retinal in 200 fs (Mathies group)

• Dynamics: ring opening reaction in ~100s fs (Leone group)

• Transition states: Fe(CO)5 ligand exchange in <1 ps (Harris group)

• High intensity: properties of liquid carbon (Falcone group)

Page 4: Ultrafast Spectroscopy

How can we measure things this fast?

1960 1970 1980 1990 2000

10–6

10–9

10–12

10–15T

imes

cale

(se

cond

s)

Year

Electronics

Optics

Page 5: Ultrafast Spectroscopy

Laser Basics

Level empties

fast!

Four-level system

Laser Transition

Pump Transition

Fast decay

Fast decay

•Population inversion

•Pump energy source

•Lasing transition

Page 6: Ultrafast Spectroscopy

• Method of creating pulsed output

• Compressed output

• Broadband laser pulse

What we need for ultrashort pulse generation:

Page 7: Ultrafast Spectroscopy

Ultrafast Laser Overview

Laser oscillato

r

Amplifier medium

pump

Page 8: Ultrafast Spectroscopy

3 pieces of ultrafast laser system:

• Oscillator• Regenerative

Amplifier

• Tunable Parametric Amplifier

Page 9: Ultrafast Spectroscopy

Oscillator generates short pulses with mode-locking

Ti:Sapphirelaser crystal

Cavity with partially reflective mirror

Pump laser

Prisms

Page 10: Ultrafast Spectroscopy

Titanium: Sapphire

oxygenaluminum

Al2O3 lattice

• 4 state system

• Upper state lifetime of 3.2 μs for population inversion

• Broadband of states around lasing wavelength

• Kerr-Lens effect (non-linear index of refraction)

Page 11: Ultrafast Spectroscopy

Ti:Sapphire spectral

properties(nm)

FLU

OR

ES

CE

NC

E

(au)

Inte

nsity

(a

u)

Page 12: Ultrafast Spectroscopy

Mode-locking

Page 13: Ultrafast Spectroscopy

Mechanism of Mode-locking: Kerr Lens Effect

)(20 xInnn

Page 14: Ultrafast Spectroscopy

Compression

• Prism compression

• Gratings, chirped mirrors

t t

Page 15: Ultrafast Spectroscopy

Chirped Pulse Amplification

Pulse compressor

t

t

Solid state amplifiers

t

Dispersive delay linet

Short pulse

oscillator

• Stretch

• Amplify

• Recompress

Page 16: Ultrafast Spectroscopy

Regenerative Amplifier

• Pulsed seed• Ti: Sapph crystal

Faraday rotator

thin-film polarizerPockels cell

• Pulsed pump laser• Pockels cell

p-polarized light

s-polarized light

Page 17: Ultrafast Spectroscopy

OPA/NOPA

• Parametric amplification• Non-linear process• Energy, momentum conserved

1

32

Optical Parametric Amplification (OPA)

1 "signal"

"idler"

“seed"

“pump"

Page 18: Ultrafast Spectroscopy

Non-linear processes

Emitted-light frequency

(1) (2) 2 (3) 30 ... P E E E

(5) *0 1 2 3 4 5E E E E E P

sig

Page 19: Ultrafast Spectroscopy

Time Resolution for P(3)

“Excitation pulses”

Variably delayed “Probe pulse”

“Signal pulse”Medium under study

Sig

nal

pul

se e

nerg

y

Delay

Page 20: Ultrafast Spectroscopy

Two-Dimensional Electronic Spectroscopy can study:

• Electronic structure

• Energy transfer dynamics

• Coupling

• Coherence

• Correlation functions

Page 21: Ultrafast Spectroscopy

2D Spectroscopy

• Excitation at one wavelength influences emission at other wavelengths

• Diagonal peaks are linear absorption

• Cross peaks are coupling and

energy transfer

Excited StateAbsorption

Inhomogeneous Linewidth

HomogeneousLinewidth

CrossPeak

ωτ (“absorption”)

ωt

(“em

iss

ion

”)

Dimer Model (Theory)

Page 22: Ultrafast Spectroscopy

Electronic Coupling

1 2Dimer

E

g1

e1

g2

e2

1

2

J

E

J

Page 23: Ultrafast Spectroscopy

Principles of 2D Spectroscopy

τ T t

t e i tt e 3ωg e

g

e

ρ t ABSORPTIONFREQUENCY

EMISSIONFREQUENCY

1 3

SIGNAL

Recoveredfrom Experiment

3 ( , , )S T t

Time

eegt ti ||)(| 3

Page 24: Ultrafast Spectroscopy

1

2

3

4

delay 1delay 2

1 2

3 4

1&2

3&4

diffractiveoptic (DO)

sample

2 f

sphericalmirror

spectro-meter

1 2 3 sig4=LO

coh.time

pop.time

echotime

T t

OD3

2D Heterodyne Spectroscopy

Opt. Lett. 29 (8) 884 (2004)

Page 25: Ultrafast Spectroscopy

Experimental Set-up

Page 26: Ultrafast Spectroscopy

Fourier Transform

Page 27: Ultrafast Spectroscopy

Future directions of ultrafast

• Faster: further compression into the attosecond regime

• More Powerful: higher energy transitions with coherent light in the x-ray regime

Page 28: Ultrafast Spectroscopy

0j k

0j k

NegativelyCorrelated Spectral Motion

PositivelyCorrelated Spectral Motion

2D spectrum with cross-peaksA measurement at the amplitude level