turnitin originality report_as

42
laser by Ankit Sharma From Ankit Sharma (MTech Thesis) Processed on 09Jun2015 11:32 IST ID: 549215775 Word Count: 12764 Similarity Index 16% Internet Sources: 5% Publications: 14% Student Papers: 0% Similarity by Source 1 2 3 4 5 6 7 8 Turnitin Originality Report sources: 3% match (publications) Bansal, Ankit, Andrew Feldick, and Michael Modest. "Simulation of Hypersonic Flow and Radiation over a Mars Reentry Vehicle Using OpenFOAM", 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012. 2% match (publications) M MODEST. "Radiative Properties of Molecular Gases", Radiative Heat Transfer, 2003 1% match (publications) Joarder, R., G.C. Gebel, and T. Mosbach. "Twodimensional numerical simulation of a decaying laser spark in air with radiation loss", International Journal of Heat and Mass Transfer, 2013. 1% match (publications) Goebel, Florian, and Christian Mundt. "Implementation of the P1 Radiation Model in the CFD solver NSMB and Investigation of Radiative Heat Transfer in the SSME Main Combustion Chamber", 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2011. 1% match (Internet from 07May2014) http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710021465.pdf 1% match (publications) Sohn, Ilyoup, Ankit Bansal, Michael Modest, and Deborah Levin. "Advanced Radiation Calculations of Hypersonic Reentry Flows Using Efficient Databasing Schemes", 40th Thermophysics Conference, 2008. < 1% match (Internet from 05Mar2015) http://en.wikipedia.org/wiki/Spectral_line < 1% match (publications) Kandala, Ramnath, and Graham V. Candler. "Numerical Studies of LaserInduced Energy Deposition for Supersonic Flow Control", AIAA Journal, 2004. < 1% match (publications)

Upload: ankit-bansal

Post on 15-Sep-2015

274 views

Category:

Documents


2 download

DESCRIPTION

oiginality

TRANSCRIPT

  • laserbyAnkitSharmaFromAnkitSharma(MTechThesis)

    Processedon09Jun201511:32ISTID:549215775WordCount:12764

    SimilarityIndex

    16%InternetSources: 5%Publications: 14%StudentPapers: 0%

    SimilaritybySource

    1

    2

    3

    4

    5

    6

    7

    8

    TurnitinOriginalityReport

    sources:

    3%match(publications)Bansal,Ankit,AndrewFeldick,andMichaelModest."SimulationofHypersonicFlowandRadiationoveraMarsReentryVehicleUsingOpenFOAM",50thAIAAAerospaceSciences

    MeetingincludingtheNewHorizonsForumandAerospaceExposition,2012.

    2%match(publications)MMODEST."RadiativePropertiesofMolecularGases",RadiativeHeatTransfer,2003

    1%match(publications)Joarder,R.,G.C.Gebel,andT.Mosbach."Twodimensionalnumericalsimulationofadecayinglasersparkinairwithradiationloss",InternationalJournalofHeatandMass

    Transfer,2013.

    1%match(publications)Goebel,Florian,andChristianMundt."ImplementationoftheP1RadiationModelintheCFDsolverNSMBandInvestigationofRadiativeHeatTransferintheSSMEMainCombustion

    Chamber",17thAIAAInternationalSpacePlanesandHypersonicSystemsandTechnologiesConference,2011.

    1%match(Internetfrom07May2014)http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710021465.pdf

    1%match(publications)Sohn,Ilyoup,AnkitBansal,MichaelModest,andDeborahLevin."AdvancedRadiationCalculationsofHypersonicReentryFlowsUsingEfficientDatabasingSchemes",40th

    ThermophysicsConference,2008.

  • 910

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    Shuen,J.S.."Inviscidfluxsplittingalgorithmsforrealgaseswithnonequilibriumchemistry",JournalofComputationalPhysics,199010

  • 21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

  • 32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    J.J.Camacho."LaserinducedbreakdownspectroscopyoftrisilaneusinginfraredCO[sub2]laserpulses",JournalofAppliedPhysics,2007

  • 44

    45

    46

    47

    48

    49

    50

    51

    52

    53

    54

    55

  • 56

    57

    58

    59

    60

    61

    62

    63

    64

    65

  • 66
  • whenlaserpulseisfocused.Also,theprobabilitythatafreeelectronwillbepresentnaturallyinthefocalregionisnegligible.So,thesecond3processdependsonthefirstprocess[8].1.2.1MultiphotonionizationPhotoelectriceffect[9]isdefinedastheprocessofemissionofelectronsfromasurfacewhenlight(electromagneticradiation)fallsonit.ItwasdiscoveredbyHeinrichHertzin1887butitHertzfailedtoexplainitonthebasisofclassicalelectromagnetics.Itwasin1905whenEinsteinexplaineditin1905onthebasisofquantumtheory.[10]Whenlightstrikesthesurfaceofthemetalwithafrequencywhichislesserthanaspecifiedamount,therewouldbenoelectronemittedfromthesurfaceofthemetaltocauseemission.Classicalwavemodelfailedtoexplainthis.Einsteinpublishedhisworkontheoryofphotoelectriceffect[11]in19thcenturyexplainingitintermsofthequantummodeloflightwhichstatesthat

    13Electromagneticradiationisastreamofparticles(photons)thattravelasawave.Supposethereisa

    lightwavewithfrequencyhavingnumberofphotons.

    13Eachphotoncarriesadefinedamountofenergy.E

    ?hv(1.1)Where

    36hisPlancksconstanth=6.63x1034Jsandthetotalenergy

    ofthewavelightisETotal=nh.E.g.

    13Violetlight400nm,eachphotoncarriesE?hv?hc/fE?(6.

    63x10?34Js)(3x108m/s)(400x10?9m)E=51019JHigherintensityoflightmeansthatthenumberofthephotonsislargeri.e.

    13moreparticles4arebeingtransmittedinatimeperiod.Now,whenthephotonscarryingenergy

    hvstrikesthesurfaceofamaterial,the

    58energyofthephotonisabsorbedbythe

    electron.ThisphotoncanfreeelectronsfromthesurfaceonlyifthephotonenergyisgreaterthanorequaltotheminimumthresholdfrequencyVo.WhichisdifferentfordifferentmaterialsElectronsabsorbthepartofthephotonenergyknownasWorkfunctionWtogetreleasedandtheremainderenergyofthe

  • photongoestothekinetic

    21energyoftheelectronemittedwhichisequaltotheenergyofthephotonminustheworkfunctionofthe

    metal.Ek(max)?hf?W(1.2)WhereEk=MaximumkineticenergyofejectedelectronForthresholdfrequency(f0),putE=00=hfWf0=W/h5Figure0.1MPIandcascadeionizationIn1929,MariaGoppertMayer[12]predictedtheoreticallythatlargenumbersofphotonscanbeabsorbedbyanatomwhichmakeselectrontotransittostateswhicharenotreachablebytheabsorptionofasinglephoton.Atomabsorbingmultiplephotonssimultaneouslymightbeionizedbyphotonshavingfrequencieslessthanthethresholdfrequency.Thiseffectwasinvestigatedfirstwithconstructionofthefirstlaserin1960.Duetothesmallenergyofthelaserphotons,theusualphotoelectriceffectisnotpossible(i.e.oneatomabsorbingonephotonandreleasingoneelectron).[13]Asenergyabsorbedwhenasinglephotonofrubylaserradiationcollidesisapproximately1eVbutthe

    8ionizationpotentialofmanygasesisgreaterthan1020eV.So,asinglephoton

    isnotsufficienttocauseionizationHence,multiplephotoncollisionsareneededtoreleaseanatomicelectron.6Whenwefocus

    8apulsedlaserbeamonasmallfocalvolume,thenthe

    moleculespresentinthegasabsorbsthepartofenergyresultingintoairbreakdownandplasmaformationtakesplace.Thiswholeprocessoccursinfollowingsteps:multiplephotoswhichareincidentonanatominitiatethereleaseoflargenumberofelectronsareduetomultiphotonionization(MPI).[14]

    8M+mhvM++eWheremhvrepresentsthetotalenergyofmphotonseachhavingenergyhv.

    Ifnphotonsareabsorbed,transitionsthatrequireenergylessthanorequaltonhvareenergeticallyallowed.DuetothisMPIreaction,

    8electronnumberdensityincreaseslinearlywithtime.1.3CascadeIonization

    DuetotheMPIprocessasdescribedabove,freeelectronsareavailableinthefocalvolume.Thesefreeelectronsthenabsorbmoreandmorephotonsandgetsexcited.Assoonastheionizationreachesacertainlevel,attemperaturesoftheorderofseveralthousanddegrees,thelightgetsabsorbeddueto

    37freefreetransitionsoftheelectronsinthefieldoftheions.

  • ThisprocessisknownasInverseBremsstrahlungprocess[15].Whenthesesfreeelectronshaveabsorbedenergywhichishigher

    28thantheionizationenergyofthegas,thentheystartimpactionizationofatoms/gasthroughthisreactionM+eM++2e

    Ascanbeseenthatthisreactionresultsinreleaseoftwomoreelectronswhichcanstarttheprocessagainandtheprocessrepeatsagain.Thechainofthesereactionscausesa

    59cascadereleaseofelectronsandhencetheconcentrationofthe

    electronsincreasesexponentiallywith7time.Subsequentlyduetocascadeionizationprocess,plasmaisformed.1.4ExpansionofPlasmaItisobservedexperimentallytheplasmaformationtakesplaceoppositetothedirectionoftheincidentlighti.e.Plasmaexpandsoppositetothedirectionofthelightflux.Thisbackwardexpansionofplasmaisexplainedbythreedifferentandindependentmechanisms[16,17]RadiationsupportedshockwaveJustafterthebreakdownhasoccurred,intenseheatingofthegastakesplaceduetotheabsorptionofenergyinthegasatthefocusofthelaserbeamandhightemperatureandpressureregionisobtainedatthefocus.Duetothesepressureandtemperaturegradients,

    23ashockwaveisproducedwhichtravelsinalldirections

    (againstthelaserbeamalso)whichheatsthegasfurther.Gasintheshockwavethatistravellingagainstthelaserbeamgetsheatedtoahightemperatureandgetsionizedandhenceabsorbsmoreandmorelaserlight.Henceasshockwavemovestowardsthesource,zoneofabsorptionalsogetstransportedwithitagainstthebeam.Thisisknownashydrodynamicmechanism,firstproposedbyRamsdenAndSavic[18],andismuchsimilartowhatoccursindetonatingwavesinreactinggasesandiscalled"radiationsupportedshockwavemechanism.ProgressivebreakdownmechanismWithtime,powerofthelaserbeamincreases.Whenthetimeintegratedeffectofthelaserbeamissufficientfortheelectronstoacquiretheenergyneededforionizationoftheatoms,8regioninwhichthresholdconditionsareattainedalsostartsincreasingandpropagateswithtimetowardsthesourcei.e.ionizedvolumeincreasesandbreakdownregionstartspropagatingtowardsthelensandisknownasProgressivebreakdownmechanismandwasproposedfirstbyRaizer.[16]Afanasetal(1969)[17]studiedtheoreticallytheinteractionofpowerfulultrashortlaserpulseswithagasusingpicoseconddurationpulses.Theyfoundthatduetothecascadeionizationmechanism,theconcentrationofelectronsingasesatnormalpressureislesserascomparedwiththeconcentrationofneutralatomsbyseveralordersofmagnitude.Duetothislowelectrondensitytheplasmaproducedisalmosttransparenttotheincidentradiation,andhencetheonlypossiblemechanismwhichremainsforsparkexpansionisthebreakdownwave.RadiationtransportwaveThefocalregionwhichgetsionizedandbreakdownthenstartsemittingthermalradiation.This

    8thermalradiationfromthestronglyheatedregionsisthenabsorbedbythegasinfrontofthe

  • absorbinglayerswhichalsogetsheatedandstartsabsorbingthelaserradiationwhich

    25leadstotheheatingofthisregionbytheenergyofthelaserbeamandasaresulttheregionofhightemperatureand

    increasedionizationmovesalongtheluminouschannel.ThisiscalledRadiationtransportmechanism[16]ThemeanfreepathofPhotonswithenergyhv=KT,attemperaturesoftheorderof105Kormore,radiatedbytheheatedgasisapproximatelyL=10cmwhichismuchlargerthanL=1/Kandeverycharacteristicdimensionoftheheatedregion[19].Hencetheheatedgasistransparenttoitsownradiationandstartsemittingfromitsownvolumewhichisabsorbedby9theadjacentcoolerlayerswheretheionizationiseithersmallornotyetstarted.Duetotheabsorbedradiation,thisregionsalsostartsionizingandwhentheionizationhasbecomesufficient,thenthenewionizationregionalsobeginstoabsorbthelaserlight.TheintensityofthefocusedlaserradiationishighascomparedwiththatofthermalradiationwhichisbeingemittedfromthehotterregionstowardsthecoolerlayersDuetowhichthenewlayerwhichhasjustabsorbedthelaserlightbecomesrapidlyheatedandstartsexpanding.1.5DecayandRecombination[19]Whenlaserpulsehasbeenstoppedthenattheendastronglyheatedvolumeisobtainedwhichhasateardropshape

    8alongtheaxisofthelaserbeam.Thelengthof

    thisteardropshapeisonlyfewmillimetersasitisequaltothedistancetravelledbytheabsorptionwavei.e.v.t.Thetransversedimensionsoftheconverginglightisalsoequaltothedimensionsofthefocusinglaserlightandisapproximatelyequaltofewmillimeters.Thiswholeprocesscanbecomparedtotheprocessofstrongexplosioninagas.Assoonastheenergyisreleased,

    23ashockwaveisproducedwhichtravelsinalldirections

    anditsintensitydecreaseswithtime.Initiallyitsshapeisteardropandastimepassesitthesurfaceoftheshockwavebecomesspherical.Breakdownofairandconsequentsparkformationoccurswhentheheatfluxatthefocalpointexceedsthebreakdownthresholdlimitofthegas.Atthispoint,atomsinthefocalregiongetsionizedandexcitedtohigherenergylevels.Assoonasthebreakdownhasbeenachieved,thegaswhichwasearliertransparenttothelaserradiationbecomesopaqueandhencethisgasnowstartsabsorbingthelaserradiationandplasmaisobtained.Theplasmasoobtainedalsoabsorbsmoreenergyandalsostartsreflectingthesame.Thereflectedradiationiseventuallyabsorbedinthenearbyadjacentmolecules.Inthebeginning,10thecascadeionizationwasoccurringthefocalregioni.e.atthepointwherethelaserintensitywasmaximum.Afterafewnanosecondswhenthisfocalregionhasbecomefullyionized,thencascadeionizationshiftstotheadjacentregionandverysoonitalsogetsfullyionizedandemitradiationtothecoolerregions.Thisprocesskeepsonrepeatingwhichcausestheabsorptionregionstoshifttowardsleftandfinallytheplasmaevolvesintoteardropshape[20].Figure1.0.2SchematicdescriptionofPlasmaFormation1.6ApplicationsofLaserIgnitionLaserbeamcanbeusedasapotentialsourceforignition[2,3,21].IthasvariousadvantagesoverconventionalmethodofignitionasunderAslasercanbefocusedpreciselyoverafixedpoint,sotheignitionlocationcanbe

  • controlledeasily.

    52IgnitiontimingIgnitionenergy11DepositionrateHeatlosscanbe

    controlledFlamestabilizationTheblastwavewhichisproducedfromthelaserinducedbreakdowncanbeusedtoprovidepropulsivepowertosmallvehicles.Reductionofdragonthebluntbodiesisalsooneoftheimportantapplicationsofthe

    65energydepositedbythelaser.In

    figure,energyhasbeendeposited

    42inasupersonicflowpastahemisphere.Duetothedepositionofenergytheflowafterthe

    bluntbodyshockgetsdisturbedcausingthevariationinpressuredistributionthroughtime.Thisvariationinpressurecausesthedragcoefficienttochange.[22].[22]1.7LiteratureReview12Afterthedepositionofthelaserenergy,varioustypesofchangesareobservedinthefocalvolumeaschemicalreactions,fluiddynamicphenomenonandradiationemission.Focalregionshasabsorbedhugeamountofinternalenergyascomparedtothesurroundingregionduetowhichthetemperatureofthatregionincreasesandcorrespondinglypressureincreasesanddensitydecreases.Duetothis,pressuregradientsarecreatedbetweenthebreakdownregionandambientwhichleadstotheoccurrenceoffluiddynamicphenomenonsuchasformationofblastwavewhichthentravelsinalldirections.ChemicalchangesoccurringinthefocalregioninvolvesionizationofthegasespresentinairasN2,O2intovariousspecies(N,O,NO)andtheirrecombinationdependinguponthetemperatureandpressure.Studyingofthelaserbreakdownprocessandtheconsequentfluiddynamicandchemicalchangesinthewholeprocesshasbeenverywellstudiedbyanumberofresearchersandtheiruseshasalsobeenexplored.ShankarGoshandKrishnanMahesh[20]havenumericallysimulatedthe

    16fluiddynamiceffectsoflaserenergydepositioninair.

    Theyclassified

    26theflowfieldintothreephasesnamely:shockformation,shockpropagationandsubsequentcollapseoftheplasmacore.

    Vorticitygenerationintheflowfieldhasalsobeenstudied.

    16Threedifferentmodelswereusedbasedondifferentlevelofcomplexity.Inallthesemodels,

  • radiationlosseswereassumedtobenegligible.Phuoc[2]hasexplainedthe

    45laserinducedsparkignitionfundamentalsincludingthelaserinducedgasbreakdownprocessand

    thesparkevolutionandignitionmechanism.Hehasalsohighlightedpotentialbenefitsandapplications.13Bradleyetal.[21]havepresentedthe

    49fundamentalsofhighenergysparkignitionwithlasers.

    33Experimentalstudyoflaserinducedsparkignitionofflammablegaseousmixturesisreported.

    61Probabilitiesofbreakdownwerefoundforair

    overrangesofpressureandtemperatures.

    29RamnathKandalaandGrahamV.Candler[8]hasdonenumericalstudiesoflaserinducedenergydepositionforsupersonicflowcontrol.

    48Fluiddynamiceffectsoftheenergydepositionprocess

    havebeenpredicted.Theyhavesuccessfullycapturedthemain

    24physicalprocessesasinversebremsstrahlungabsorption,evolutionoftheplasmashapeandstructure,airbreakdownchemistryandthesubsequentfluiddynamics.

    IvanG.Dors[23,24]etalhavestudied

    16computationalfluiddynamicmodeloflaserinducedbreakdowninair.

    Theyhavecomputedtemperatureandpressureprofilesfor

  • 1710nsopticalbreakdownlaserpulses.

    Fluiddynamicphenomenon

    17followinglaserinducedbreakdownarerecordedwithhighspeedshadowgraphstechniques.The

    characteristics

    17lasersparkdecayflowpatternswere

    found

    17causedbylaserinducedopticalbreakdown.

    Joarderetal[25]havedone

    3twodimensionalnumericalsimulationofadecayinglasersparkinairwithradiationloss.

    3Distributionofthetotalabsorbedenergyintoitsconstituentpartsblastwaveenergy,radiationenergyandleftoverenergy

    hasbeencalculated.Theyhavemadeanattempttoincludetheradiationlossesofadecayinglaserspark.Spectralradiativepropertieswerefoundusingmultigroupmethod[26]soastoeasetheprocessofsolvingRTE.141.8ObjectiveofthecurrentthesisOwingtothehightemperatureofthegasesinthebreakdownregion,radiationlossesmaycontributeasignificantpart.Butinalltheabovereferences,radiationlosseshavebeenneglectedorhasnotbeenstudiedeffectivelytilldate.Jordaretalhastriedtoevaluatetheradiationlossesbuttheyhavealsofoundradiationlossestobenegligible[25].Theyhaveusemeanabsorptioncoefficientsmethodforthecalculationsoftheabsorptioncoefficients.Sinceradiationishighlyspectral,soinordertodotheradiationcalculationscorrectlyitisnecessarytocalculatetheradiativepropertiesofgasesateachandeverywavelengthpointforalargerange.Predictingtheradiativepropertiesoftheseradiativelyparticipatinggasesisadifficulttaskrequiringhighcomputationalpower.Thisisthemainthemeofthethesistofindoutthoseradiationlossesmoreaccuratelyinabetterwaywithdetailedlinebylinespectralmodelling.1.9LayoutofthethesisChapter1:IntroductionThischaptercoversthebasicsofairbreakdownduetolaserenergydepositionandprovidesabriefideaabouttheirapplications.Chapter2:FlowModellingModelingtheplasmaandcarryoutfurthersimulationstofindoutthevariousfluiddynamicandradiativeeffectsisdonebyusingopensourceCFDpackageknownasOpenFOAM.Thischapterdescribesallthegoverningequations,meshinformation,initialandboundary

  • conditionsofthedomain.hypersonicfoamsolverdevelopedforstudyingthefluiddynamiceffectshasbeendescribed.Chemicalkineticsgoverningtheprocesshasbeenincluded.AbriefintroductionabouttheCFDsolveOpenFOAMhasbeendone15Chapter3:RadiationModellingInthischapter,radiationmodellinghasbeendescribed.Radiationinparticipatingmediahasbeenexplained.Spectrallinesandtheirbroadeningduetovariouseffectshasbeenhighlighted.Varioustypesofatomicradiationhasbeendescribed.RadiativeandspectralpropertiesmodelshavebeendiscussedCalculationofthespectralradiativepropertieshavebeenshownusingLBLmethodandthensolvingtheRTEusingP1approximation

    43method.Chapter4:ResultsandDiscussionsChapter5:Conclusions

    andFutureWorkChapter6:References16EquationChapter(Next)Section12CHAPTERFLOWMODELLINGModelingtheplasmaandcarryoutfurthersimulationstofindoutthevariousfluiddynamicandradiativeeffectsisdonebyusingopensourceCFDpackageknownasOpenFOAM.Thischapterdescribesallthegoverningequations,meshinformation,initialandboundaryconditionsofthedomain.hypersonicfoamsolverdevelopedforstudyingthefluiddynamiceffectshasbeendescribed.Chemicalkineticsgoverningtheprocesshasbeenincluded.AbriefintroductionabouttheCFDsolverOpenFOAMhasbeenhighlighted.172.1OpenFOAMCFDSoftware

    57OpensourceFieldOperationandManipulationcommonlyknownasOpenFOAM[27,28]is

    anopensourceCFDsoftwarepackagewhichisusedfordevelopingnewnumericalsolversandvariouspre/postprocessingutilitiesforsolvingvariousproblemsofcontinuummechanicsasComputationalFluidDynamicsproblems(CFD).Itisavailableforfree

    50undertheGNUGeneralPublicLicense.Itcanbe

    usedtosolvecompressible/incompressibleNavierStokesequationforvarioustypesofmeshesstructuredorunstructured.Ithasalreadyinbuiltsolvers,variousapplications,numerousutilitiesandtoolstosolvevarioustypesoffluidflowproblem.IthasbeenwritteninC++.AtypicalsolverinOpenFOAMincludessetofequationswhichhasvariousmathematicaloperators(suchas,,etc.).ManytypesofsolversarealreadyavailableinOpenFOAMandhavebeenusedandtestedbyvarioususersforsolvingvarioustypesofCFDproblems.Inaddition,newsolverscanalsobeadded.Forthisnewcustomobjectssuchasboundaryconditionscanbecreatedwhicharemergedwiththeexistingsolverstosolveparticularproblems.ThisisoneofthemajoradvantageofOpenFOAMthatnewfeaturesandfunctionscanbeaddedoroldfeaturescanbemodifiedwithrelativeease.Varioustypesofpreandpostprocessingutilitiesareusedtomakegeometry,meshitproperly,setupthecase,runthesimulationandtheninterprettheresults.HypersonicFoamForsolvingthefluidflow,anewsolverhypersonicFoamhasbeendevelopedforthiscase.Itbasicallyincludesfeatureoftwoexistingsolverswhichhavebeencombinedalongwithnew18features

  • 1todevelopanewsolvercapableofmodellinghightemperatureflows.

    OneofthetwosolversalreadypresentinOpenFOAMwhichhasbeenusedtoconstructthenewsolverisrhoCentralFoam.Itis

    1adensitybasedcompressibleNavierStokesflowsolverbasedoncentralschemeofKurganovetal.

    [29]Butthissolverlacksfew

    1featuressuchaschemistrymodelling,transportofspecies,andmodels

    tofindvariousthermodynamicpropertiesathightemperature.reactingFoam[30]isthesecondsolverwhosefewfeatureshavebeenaddedinthenewhypersonicFoamsolver.ThisreactingFoamsolverisbasically

    1apressurebasedsolverforsolvingchemicallyreactingcombustionproblems.

    ItincludesvariousfeatureswhichwerenotavailableinrhoCentralFoamsuchashightemperature

    1chemicalkineticsandthermodynamicpropertiesbasedonChemkinformatdata.Also,thethermodynamicdata

    19whichisalready

    1availableinOpenFOAMisvalidonlyupto6,000K

    forfindingoutthermosphysicalproperties(thosematerialpropertiesthatvarywithtemperaturewithoutalteringthematerialidentity)asthermalconductivity,diffusivity,heatcapacity,viscosity,rho,enthalpy,entropy,cp,cv,internalenergy.Asthetemperatureinourcaseexceeds6,000K,soitisnotsuitableformodellinggaspropertiesathightemperatures.Toovercomethis,thethermodynamic

    1datafromGordanandMcBride[31]wasaddedwhichprovidespolynomialfitsfor

    1alargenumberofspeciesandalsovaliduptoalargetemperaturerange20,

  • 000K.Likewisesomechangeswerealsodone

    1intheOpenFOAMsolversoastoreadthenewdata.

    cpisevaluatedbyafunctionwithcoefficientsfromnasathermodynamictables,fromwhichh,sareevaluated.Byincludingabovechangesandcombiningthefeaturesofthetwoexistingsolvers,thisnewhypersonicFoamsolveriscreated.[28]2.2GoverningEquationsGoverningequationsarethemathematicalexpressionwhichgovernordefinethephysicalprinciplesof

    23conservationofmass,momentumandenergywhicharedescribedas

    followsContinuityequation[32]Itrepresentstheconservationofglobalmassinthesystem.Indifferentialform,itcanbeexpressedas???t??.?U???0(2.1)WherethedensityandUistheaveragevelocity.Speciecontinuityequation:20The

    1massconservationequationforspeciessisgivenas

    [33,34]???tYS??.?U?YS???.??DS?YS??wS?0(2.2)Wherethefourtermsrespectively

    1aretherateofchangeofmassofspeciesperunitvolume,themassfluxconvectedacrosscellfaces,themassdiffusionduetogradientsinconcentration,andthemassproductionrateduetochemicalreactions.Ysrepresentsthe

    massfractionandDsrepresentstheeffectivediffusioncoefficient.MomentumEquationThemomentumequation

    46canbewritteninvectorformas:[32,34]????tU???.??U??U?????p??.T

    ?0(2.3)Wherethe

    27firsttermrepresentstherateofchangeofmomentumperunitvolume,thesecondtermrepresentsthefluxof

    1momentumacrosscellfaces,thirdtermrepresentthepressureforcesactingoncellwalls,and

  • thelasttermrepresents

    1viscousforcesactingoncellfaces.TheshearstresstensorTiswrittenasT?????U???U?T?23?.U

    ????(2.4)EnergyequationThetotalenergyconservationequationisasunder[32]21????tE???.??U??H?????.?T.U??k?2T??.????hSDS?Ys????.qrad?0(2.5)

    1Wherethetermsintheequationintheorderoftheirappearancerepresentrespectivelythe

    1rateofchangeoftotalenergyperunitvolume,thefluxoftotalenthalpyacrosscellfaces,theworkdonebyshearforces,theconductionofenergyduetotemperaturegradients,thediffusionofenthalpyduetoconcentrationgradients,andtherateofenergylossduetoradiation.Thetotalenthalpyofthegasiswrittenas

    ?H??E?????e?0.5

    1?U2?p(2.6)Whereeistheinternalenergyofthegas.Pressureandtemperaturearenotsolvedexplicitlyasvariables,andareevaluatedfromthesolutionvariablesasfollows.p?

    ??(2.7)Whereisthe

    1compressibilityofthefluidgivenby=(2.8)AndthetemperatureiscalculatediterativelyfromthetotalenergyasT?Cv?T

    ??E?T??0.5U2?1(2.9)The

    31unsteadycompressibleNavierStokesequationsareamixedsetofhyperbolicparabolicequationsintimeandthe

    steadystateNavierStokesequationhavemixed(parabolicelliptic)natureandhencearemoredifficulttosolveascomparetounsteadyequation.So,22steadystate

  • 1equationsarealsosolvedasunsteadyevenifdesiredsolution

    issteady.Inthesecases,unsteadyequationsaresolved

    1fromaninitialdatapointuntilasteadystatesolutionisreached.

    Shockisalsosimultaneouslycaptured

    1asthesolutionevolvesintime.Inhighspeedflows,discontinuitiesasshocksandcontactssurfacescan

    affectthenumericalsolutionbycausingoscillations.Drugetetal.havedoneacomparisonofvariousschemesforsolutionofconservationlaws.[35]Amongallthoseschemes,upwindschemesaremorecommonlyusedduetothefactthattheyhaveaccurateshockcapturingcapability.HowevertheyaredifficulttoimplementastheyrequireRiemannsolvers.Anotherschemeis

    1centralupwindschemeofKurganovetal[36]which

    hasupwindnatureandiscomparativelysimplerandcanbeappliedeasilytogeneralconservationlaws.ThesecentralandcentralupwindschemeshavetheadvantagethattheyhavenonoscillatorycharacteristicandavoidcomplexityinvolvedwithRiemannsolvers.[37]OpenFOAMsolverworksbysolvingthevariousequationsas

    1continuity,momentumandenergyequationina

    sequentialmanneroneaftertheother.Afterthisexplicitschemeisthenappliedi.e.

    1usingdatafromtheprevioustimestepfortheneighboringpoints

    1tointegrateintimeforaparticularcell.

    Theexplicitschemesaresolvedforverysmallstepsduetothestabilityconditions.Howeverimplicitschemesarerelativelystableformuchlargertimestepsbuttheyarenotusedduetotheirhighcomplexitylevel.Finally,iftimeaccuratesolutionsaredesiredthen

    1higherorderschemesas4thorderRungeKuttamethod

  • [38]isusedwhereEulerexplicitschemecanbeusediftimeaccuratesolutionsarenotrequired.23TransportPropertiesEffectoftemperatureonthe

    47viscosityofthegasiscalculatedbySutherland'sLaw

    [39]??1A?s?TTs(2.10)TWheretheconstantsAsandTs

    1arehardcodedinthesolver.As=1.67212

    x106kg/(msK0.5)andTs=170.672K.2.3ChemicalKineticsAslaserenergyisdeposited,temperatureofthefocalregionstartsrisingandreachestoaveryhighvalueofalmost17800K.Atsuchahightemperature,dissociationofairintovariousspeciesstartsoccurring.Finiteratechemistrymodelhasbeenusedwhichincludes

    3fivespecies(O2,N2,O,N,andNO)andelevenelementaryreactionstepsforthedissociationandrecombinationofair

    .However

    9completemodelwithionizationreactionsinvolves11speciesand26elementaryreaction

    step.Butherethe

    9effectofionizationisneglectedonlyforthesakeofsimplicity.[

    40]

    22ForasetofNRelementaryreactionsinvolvingNspeciestherateequationscanbewrittenintheformNN?vi'jnj

    ?

    66?vi''jnj(2.11)j?1

    j?1Wherei=

  • 31,2,NRisthenumberofreactions,v'ij

    9andvijarethestoichiometriccoefficientsforspeciesjappearingasareactantintheithforwardandbackwardreactionsrespectively24andnj=Cj/Wjisthemolarconcentrationforspeciesj.

    3ThereactionrateconstantsaregivenbytheArrheniusexpression

    ?Eiki?AiTmieRuT(2.12)

    41WhereEirepresentstheactivationenergyofreactioniandAi,miareconstants.

    Total

    9changeofmolarconcentrationofspeciesjis

    3obtainedbysummingupthechangesinmassconcentrationofspeciesjduetoallreactionsi.e.

    Sj?Wj?NR???v?ij?vi?j???kfi?nlv?ilNN?????l?1?kbi?nlv''il(2.13)i?1?l?1??Wherekfi,

    3kbiaretheforwardandbackwardreactionrateconstantsrespectively.

    25Table1:Listofreactionsconsideredforthesimulationsare[40]Reaction3.6x1018T1.0exp(5.95x104/T)ForwardRateCoefficient,KF(cm3/molesec)(3c.0mx31/m01o5Tle0s.5ec)BackwardRateCoefficient,KBThirdBody,O2+M2O+M1.9x1017T0.5exp(1.33x105/T)1.1x1020T0.5NM,NON2+M2N+M3.9x1020T1.5exp(7.55x104/T)1.0x1020T1.5O,NO,O2NO+MN+O+M3.2x1019T1exp(1.97x104/T)1.3x1010T1.0exp(3.58x103/O2,N2O+NON+O27.0x1013exp(3.8x104/T)T)1.56x1013O+N2N+NO4.08x1022T1.5exp(1.13x105/T)2.27x1021T1.5N+N2N+N+N9.0x1019T1.0exp(5.95x104/T)7.5x1016T0.5O2+O2O+O3.24x1019T1.0exp(5.95x104/T)2.7x1016T0.5O2+O22O+O27.2x1018T1.0exp(5.95x104/T)6.0x1015T0.5O2+N22O+N24.7x1017T0.5exp(1.13x105/T)2.72x1016T0.5N2+N22N+N27.8x1020T1.5exp(7.55x104/T)2.0x1020T1.5NO+

    51MN+O+O,N,NMO

  • Asexplainedpreviouslyduetothemovementoftheabsorptionregion,theplasmafinallyevolvesintoteardropshape.Thedomainchosenforthenumericalsimulationisofsize2620x20mm2whichisthendiscretizedinto500x500controlvolumes.Thedimensionsofthefocalvolumeareasshowninfig.Ithasbeenassumedthat93mJoftheenergyhasbeenfocusedandabsorbedbythe3mm3ofthefocalvolume[25].Thisspecificvalueofenergyhasbeentakenfromthepastexperimentsthathasbeencarriedouttostudythefluiddynamiceffectsoccurringduetolaserenergydeposition.Table1:ValuesofvariousvariablesatInitialandequilibriumconditions(att=0.02s)VariableInitialConditions(entiredomain)EquilibriumConditions(atplasmaregion)T300K17800KP101325Pa5071070PaN20.7550.325064O20.23220.000989AR0.01280.0128N00.423377O00.223719NO00.01405327Figure2.0.1MeshforaxisymmetricsimulationFigure2.0.2BlastWaveformationThisblastwaveformationwasobservedusinghypersonicfoam.ThecodewastakinglargetimetoconvergeandsincemuchworkhasalreadybeendonetostudythefluiddynamiceffectssothefluiddynamicresultsweretakenfromearlierpublisheddatabyJordaretal[25].Fromflowmodellingresultswegetmassfractions(Y)ofvariousspecies.Thismass28fractionisthenusedtofindoutnumberdensitywhichisthenfurtherusedtofindforradiationmodellingasexplainedinnextchapter.Ni?(NA)(Yi)(?)(2.14)WiWhereNi=Numberdensityofthespeciei(m3)NA=Avogadroconstant=6.022141291023(mol1)Yi=Massfractionofspeciei(ObtainedfromflowmodellingresultsfromOpenFOAM)Wi=Molecularweight(kg.mol1)=density(kg.m3)29EquationChapter3Section13CHAPTERRadiationModellingInthischapter,radiationmodellinghasbeendescribedusingtheresultsfrompreviouschapter.Radiationinparticipatingmediahasbeenexplained.Spectrallinesandtheirbroadeningduetovariouseffectshasbeenhighlighted.Varioustypesofatomicradiationhasbeendescribed.RadiativeandspectralpropertiesmodelshavebeendiscussedCalculationofthespectralradiativepropertieshavebeenshownusingLBLmethodandthensolvingtheRTEusingP1approximationmethod.303.1IntroductionWhenradiativeenergyisemitted,ittravelsinalldirections.Duetothis,

    34mostoftheradiativeenergyemittedintheshocklayergetsescapedfromtheregionandhencetheshocklayerto

    getcooled.Thiscoolingeffectcanaffecttheflowfieldparametersandhencecorrespondingheatloads.IfthiscoolingeffectisalsoconsideredsimultaneouslywhilesolvingforflowconditionsthenitisknownasRadiationFlowfieldcouplingifthiseffectisnotconsideredthenitisknownasuncoupledapproach.Incoupledapproach,RTEequationissolvedalongwithflowequations.Hence,coupledapproachiscomparativelydifficultandcomputationallyexpensiveascomparedtouncoupledapproach.Inuncoupledapproach,radiationeffectsarenotconsideredandadiabaticconditionsareassumedintheflowfield.Butactually,radiationistakingplace.So,neglectingtheradiationseffectsmayresultinoverestimationoftheheatloads.Buteventodaymostoftheresearchersuseuncoupledapproachduetoitssimplicity.Nowadays,thefullycoupledmethodhasbeenreplacedbylooselycoupledapproach.Inthismethod,RTEandflowequationsarenotsolvedateveryiterations.Flowequationsaresolvedateachiterationandradiativepropertiesareupdatedafterfewflowiterations.Betweenanytwoflowiterations,radiationfieldisassumedtobeconstant.[41]3.2RadiativeTransferthroughparticipatingmedia:Radiativetransferbetweensurfacesthatareseparatedbyparticipatingmediaisdifficulttoevaluateascomparedtothosesurfaceshavingvacuumormediumwhichisradiativelynonparticipatingmedium.Butinmostoftheengineeringapplicationsasburningofanyfuel,

  • 5nuclearexplosions,hypersonicshocklayers,rocketpropulsion,andplasmageneratorsfornuclearfusion,andablatingsystems,etc.theinteractionof

    thermalradiationwiththe31mediumcannotbeneglectedandmustbeconsidered.RadiativeTransferEquation(RTE)isusedtodescribethe

    12Radiativeintensityfieldwithintheenclosureasafunctionoflocation(fixedbylocationvectorr),direction(fixedbyunitdirectionvectors)andspectralvariable(wavenumber)[

    42].DerivingRTEforabsorbing,emittingandscatteringmediaisnotaneasytaskasitinvolvesseveralcomplications.Sinceabsorption,emissionandscatteringareoccurringateverypointwithinthemediumsowemustknowthevariousphysicalpropertiesastemperatureetc.ofthemediumatallpointsinthesystem.Also,radiationprocessishighlyspectralandthesespectraleffectsbecomemoreeminentingasesascomparedtosolidsurfaces.So,adetailedspectrallymodelingisneeded.Thetotal

    55radiativeheatfluxcrossingasurfaceelementisobtainedbyintegratingthe

    radiativeenergywhichisincidentonthesurfacefromalldirectionsoveralargerangeofwavelength.Themathematicsdescribingsuchasituationisinherentlycomplex.Also,largenumberofatomicandmolecularradiatingspeciesandnonBoltzmanndistributionsofpopulationsofvariousenergymodesmakeitverydifficulttorepresentthegaspropertiescorrectly.Duetoextremetemperatures,thediatomicairspeciesget

    18highlydissociatedandemissionfromtheresultingtwoatomicspeciesNandO

    isthemajorsourceofradiation.Emissionorabsorptionofphotonandhencecorrespondingchangeintheenergyoftheparticleismainlyduetothreetypesoftransitions

    10boundbound,boundfreeandfreefreetransitions.

    3.3

    10RadiativeTransferEquationTheradiativeheattransferinamediawhichis

    participatingi.e.in

  • 12anabsorbing,emitting,and/orscatteringmediumisaffectedbya

    numberofphenomena.Intensityoftheradiation32travellingthroughaparticipatingmediummaygetattenuatedbyabsorptionandscattering.Figure:attenuationofradiativeintensityConsideringtheabsorption,theamountofradiationabsorbed

    11canbewrittenas?dI??abs??k?I?ds

    (3.1)Whereisthelinearabsorptioncoefficientofthemedium,Iistheintensityofincidentradiationanddsisthedistancetravelledinspace.Intensityoftheradiationcandecreasebyscatteringalsoanditisgivenby?dI??sca???s?I?ds(3.2)Similarly,radiationintensitycangetaugmentedbyemission.Forthermodynamicequilibriumtheemissioniswrittenas33?dI??emis?k?Ib?ds(3.3)WhereIbisthePlanckfunction.Neglectingscatteringandcombiningequations(3.1)and(3.3)wegetthecompleteradiativetransferequationforaparticipatingmedium.Theradiativetransferequation[43]describesradiationintensityfieldinspaceasafunctionoflocation,directionoftransferandspectralvariabledI??k??Ib??I??(3.4)dsTheaboveRTEhasbeenderivedneglectingtheeffectofscattering.Thisassumptionmaynotbevalidformanyflowconditions.Butscatteringphenomenonisnotwellunderstood,soinmostofthecasesitisneglected.3.4RadiationfromAtomicSpeciesTheabsorptionandemissionofthethermalradiationmainlyoccursduetotransitionsbetweenenergylevelsofthegaswhicharecommonly:boundbound,

    19boundfreeandfreefree.BoundBoundRadiation:Itoccurswhenaphotonis

    absorbedoremittedbyagasmoleculesuchthatresultingchangeofenergylevelofthemoleculeisassociatedwithelectronic,orvibrationalorrotationalstates[44].Incaseofmonoatomicgases,thetransitionsinvolveonlyelectronicstatesandincaseofmoleculesallthreestatesmaybeinvolved.

    5Energytransitionfromhigherboundstatetolowerboundstate

    occursbyemissionof

    40photonhavingenergyequaltothedifferenceoftheenergyofthetwolevelsandcorrespondinglya

    fixedtransitionisoccurswiththetransitionof34electronfromaparticularenergyleveltootherandhencecausingtheradiationemittedintheformofaspectralline[45].Similarly,whenparticleabsorbsenergythenitcangotoanyofthediscretehigherenergylevelduetoquantumnatureoftheprocess.Thisprocessinwhichanatomormoleculeemitsorabsorbsphotonand

  • 5noionizationorrecombinationofionsandelectronsoccursisknownasboundboundabsorptionandemission.

    Quantizedboundenergystatesbetweenwhichelectronictransitionsoccurs

    5canberotational,vibrational,orelectronicinmoleculesandforatoms

    onlyonestatei.e.electronic.Tochangetheorbitofelectron,relativelylargeamountofenergyisneededwhichresultsinabsorptionemissionlinesbeingemittedatlargefrequencies(orsmall

    2wavelengths)betweentheultravioletandthenearinfrared(between102mand1.5m)[42].Electronicenergylevelchanges

    occuratshortwavelengthsinthevisibleregionand

    5atportionsoftheultravioletandinfrarednearthevisibleregion.

    Vibrationaltransitionsneedsomewhatlesserenergyincomparisontotheelectronorbittransitionsandhencespectrallinesemittedduetovibrationalenergylevelchangesarefoundintheinfraredregion

    10(between1.5mand10m)Rotationaltransitions

    donotrequiremuchenergyandhencerotationalspectrallinescanbeseeninthefarinfraredregion(beyond10m).Vibrationalenergylevelchangesaremostlyaccompaniedwithrotationaltransitionsanditgivesrisetovibrationrotationbandsintheinfrared.Asexplainedearlierthattheenergychangesinboundboundtransitionsoccurbetweenspecificenergylevels,sothespectralvariationofabsorptionandemissioncoefficientscanbeseen

    5intheformofaseriesofspectrallines[

    45].Probabilityofallelectronictransitionsare35different.Somearemoreprobablethanothersand,therefore,thoselineshavinghighelectronictransitionprobabilityarestrongerthanothers.Anexcitedatominahigherenergystatemayspontaneouslyemitphotonofappropriatewavelengthandmovestoalowerenergystate.

    6Thespontaneousspectralemissioncoefficientisdefinedas

    [46,47]??????gUnU???AULhc??T,Te,ne??4?11(3.5)Fig:SymbolicDiagramshowingenergy

  • statesandtransitionsforatom

    38(a)Boundboundtransition(b)BoundFreetransition(c)Freefreetransition

    36WheregUisthedegeneracy,

    62istheEinsteincoefficientforspontaneousemission,

    =(,,)

    39isthegasstatevector,and(,,)isthelineshapefunction.

    Spontaneousemissionoccursbyitself.Noexternalphotonsarerequiredforit.However,thisisnotincaseofstimulatedemissionandabsorption.Forstimulatedemissionandabsorptiontooccur

    6presenceofphotonsinthevicinityofemittingorabsorbingspecies

    isrequired.Combining

    19stimulatedemissionandabsorptioncoefficients,theeffectivevolumetricabsorptioncoefficientisgivenas

    ???????gUnL???BLU?gUnU???BUL???T,Te,ne?h?(3.6)WhereBisthe

    6Einsteincoefficientforstimulatedemissionandabsorption.

    Usingthelawofdetailedbalance=,the

    6absorptioncoefficientexpressioncanbereducedto

    ???????nL????nU????gUBUL??T,Te,ne??h(3.7)Simplifyingequations(3.5)and(3.7),theabsorptionandemissioncoefficientsfromasingleatomiclinecanbewrittenas[41]???????cnU????T,Te,ne?(3.8)????????c?nL????nU?????T,Te,ne?(3.9)Whereandareconstantsindependentofgasconditions.TheEinsteincoefficientsAULandBLUarerelatedtooneanotherthroughthefollowingrelation37BUL?8?hcAUL?5(3.10)Thus,theemissioncoefficientcanalsoberewrittenas???????????2hc2nU?5nL?nU??????nbe????(3.11)Where()isthenonequilibriumPlanckfunctionforanisolatedatomiclinegivenasbne?????2hc2nU?5nL?nU(3.12)Underthermodynamicequilibrium,thepopulationratioisgovernedbytheBoltzmannDistributionas[46]nL?

  • exp(C2)(3.13)nU?WhichleadstothefollowingwellknownrelationforthePlanckfunctionIb?????2hc2?5??eC?2(3.14)?1????WhereC2isthesecondradiationconstant.Mostofthe

    15atomiclinesareopticallyverythick.Thesethicklineshavestrongselfabsorptioncharacteristics.Almostmorethan90%oftheemissionfromtheselinesgetsabsorbedbythelineitselfoverdistancesasshortas0.1mm.

    Itmaybeupto99%forfewlines.[41]Thus,insteadofthelinecenters,widthofatomiclinesismore

    18importantfromaheattransferpointofview.

    Sample

    6emissionandabsorptionspectrumforatomicspecieO38andN

    atrespectivenumberdensityobtainedattime0.58softhenumericalsimulationareshowninfiguresasbelow.Weknowthatvariouselectronicenergylevelsarepresentinanatom,andwhenelectronsjumpfromoneleveltoother,itisaccompaniedbyemissionorabsorptionofphotons.Theprobabilityofthesetransitionsdependsontheelectroniclevelsbetweenwhichthistransitionistakingplace.Forstrongtransitionstooccurtherearesomesetofselectionruleswhichshouldbesatisfied.Forexample,dipoletransitionscantakeplaceonlybetweenthoseenergylevelswhoseangularmomentumparameterdiffersbyone.Hence,forenergylevelswithsameangularmomentumdipoletransitioncannottakeplacei.e.theyareforbidden[48]andhencegapinthespectrumisobservedinthatrange.39Figure:SampleEmissionSpectrumforatomicspecieNatT=8100K,numberdensity=3.75x1019cm3Figure:SampleAbsorptionSpectrumforatomicspecieNatT=17800K,numberdensity=3.75x1019cm340Figure:SampleEmissionSpectrumforatomicspecieOatT=8100K,numberdensity=1.75e19cm3Figure:SampleAbsorptionSpectrumforatomicspecieOatT=8100K,numberdensity=1.75e19cm341SpectralLineBroadening:Inanatomvariouselectronsarespinningatdifferentdistancesaroundthenucleus.Mainly,theenergyoftheseelectronsdecidetheinternalenergyoftheatom.Internalenergyoftheatomalsodependsontheatomsspinningaroundeachotherinamolecule,andonthoseatomswhichare

    2vibratingagainsteachother[49].AccordingtoQuantummechanics

    itisknown

    20thattheenergylevelsforatomicormolecularelectronorbitaswellastheenergylevelsformolecularrotationandvibrationarequantized

    whichmeansthatthechangein

  • 2electronorbitsandrotationalandvibrationalfrequenciescanoccurbycertaindiscreteamounts

    only.Also

    63byPlanckslawweknowthattheenergyofa

    2photonorelectromagneticwaveisdirectlyproportionaltofrequency,soquantizationmeansthat,boundboundtransitions

    canoccuronlyifthephotonshaveaspecificfrequencysothattheycangetabsorbedorreleased.Inthisprocessdiscretespectrallinesareemittedbythephotons

    2forabsorptionandemission[42].AccordingtoHeisenberg'suncertaintyprinciple,

    itisknownthatthe

    2energylevelofanatomormoleculecannotbedefinedpreciselyand

    thereisalwayssomeamountofuncertainty,sothisphenomenon(alongwithsomeothers)resultsinaslightspectralbroadeningoftheselinesandtheyappeartohavesomewidth.Duetosomeeffectstheseslinesgetsbroadenedandhencehaveafinitespanorwidtharoundthetransitionwavenumber.Linewidthisthatparameterwhichrepresentshowfartheeffectofaparticularlineisfelti.e.itrepresentshowfarfromthecenter,thestrengthofalineispresentandafterthis,itscontributiondecreasestoacomparativelylowinsignificantvalue.Thisvariationoftheabsorptioncoefficientwith42wavenumberwithinabroadenedlineisLineshape.ShapeofatypicalspectrallineisasshowninFig.Thelineintensityistheintegralunderthecurve[43],?Sij????,ijd?(3.15)0Theisverysmall

    5exceptforclosetoij.Theregionsawayfromijwhereisverysmallarethewingsoftheline.Othercharacteristicofthe

    lineshapeislinehalfwidthwhichisonehalfofthelinewidthathalfofthemaximumlineheight.Fig:Atypicalbroadenedspectrallinea.NaturalBroadening:Ineveryexcitedmolecule,energylevelsdecayspontaneouslybyemittingaphotontoalowerstate,evenifthemoleculeiscompletelyundisturbed.Theuncertaintyprinciplegives43therelationshipbetweentheuncertaintyofitsenergyandthelifetimeofanexcitedstate.Ashortlifetimeofanexcitedstateimplieslargeenergyuncertaintyandahencebroademission.AccordingtoHeisenberg'suncertaintyprincipleanytransitionofelectronfromoneleveltoother

  • cannotoccurwithexactlythesameamountofenergy,thusresultinginlittlevariationintheenergyofemittedphotonswhichcausesbroadeningofthespectrallines[49].

    2However,theaveragetimebetweenmolecularcollisionsismuchlesserthantheaveragetimeforspontaneousdecay.Therefore,naturallinebroadeningeffectsarenotsoimportant

    andcanbeneglected.b.CollisionalbroadeningorImpactpressurebroadening:Theemittingparticlescollidewitheachotherandinthisprocesstheydisturbstheemissionprocessofotherparticlesbydecreasing

    7thecharacteristictimefortheprocess,andhencecausingtheuncertaintyintheenergyemitted.

    Thetimeperiodofthesecollisionsisquitesmaller

    7thanthelifetimeoftheemissionprocess.Thiseffectvarywiththechangesinthedensityandtemperatureofthegasandalsowiththe

    2frequencyofcollisionsbetweengasmoleculescausingthe

    linetogetbroadened.The

    2shapeofsuchlinescanbedeterminedfromtheelectrontheoryofLorentzorfromquantummechanics

    [49]k???????b0c?2?bc2,S????k?d?,S(3.16)

    2WhereSisthelineintegratedabsorptioncoefficientorlinestrength,bcisthesocalledlinehalfwidthinunitsofwavenumber(halfthelinewidthathalfthemaximumabsorptioncoefficient),and0isthewavenumberatthelinecenter.Theshapeofacollisionbroadened44lineisidenticaltothatofnaturallinebroadening,andthecombinedeffectisgenerallytermedLorentzbroadeningwithalinehalfwidth

    bL.Withincreaseinpressure,theeffectofcollisionbroadeningalsoincreasesduetoincreaseincollisionrate.As

  • 2molecularcollisionsareproportionaltothenumberdensityofmolecules

    andtotheaveragemolecularspeed(vavT),so

    2halfwidthcanbecalculatedfromkinetictheory[43]asbc?2D2p

    ?c0mkT(3.17)

    2WhereDistheeffectivediameterofthemolecule,misitsmass,pistotalgaspressure,Tisabsolutetemperature,andthesubscript"0"denotesareferencestate.Collisonbroadeningisthe

    mainbroadeningmechanismforinfraredconditions.ThespectraldistributionofaLorentzlineandDopplerlineisshowninfigure.Itcanbeobservedfromthefigurethatatthelinecenter,LorentzprofileislowerthantheDopplerprofileandatpointsfarfromthecenter,Lorentzprofileismorepredominant.So,collisionbroadeningeffectsareimportantfarfromthecenterwhiletheDopplerbroadeningisdominatingatpointsnearthelinecenter[45].45Figure:

    2SpectralLineshapeforLorentz(collision)andDopplerbroadening[

    43]c.DopplerbroadeningInanabsorbingoremittinggas,theatomsormoleculesarenotstationary.Dependingupontheirthermalenergythey

    7haveadistributionofvelocities.Eachphotonemittedmayeitherbe"red"or"blue"shiftedbytheDopplerEffect.Thisshiftdependsonthevelocityoftheatomrelativetotheobserver.

    Velocitydistributiondependsonthetemperature.Withincreasein

    7temperatureofthegas,thevelocitydistributiongetswider.So,asthetemperatureof

    thegasincreases,thespectrallinebecomesbroadened.ThisbroadeningeffectcanbeshownbyaGaussianprofile.

    2Dopplerlinehalfwidthisgivenby

  • [43]46bD??02kTmln2(3.18)c0

    2Wheremisthemassoftheradiatingmolecule.

    Collisionandnaturallinebroadeningdoesnotdependonthespectralpositionwhilethe

    2Dopplerlinewidthisdependentonitsspectralposition

    and

    2ismuchmoreconcentratedneartheline

    centre.Forlinebylinespectralmodelling,thespectroscopicdatarequiredforthecalculationofemissionandabsorptioncoefficientswillbetakenfromNIST[50].Thisdataconsistsof914boundboundlinesforNand682forOforwavelengthsbelow20,000.TheNISTdatabasecontainsinformationforlinepositions(),Einsteincoefficients,energyofupperandlowertransitionstates(EU,EL),andthedegeneracyoftheenergystates(,).Weknowanyquantummechanicalsystemorparticlewhichisboundorconfinedspatiallycanhaveonlyfixeddiscretevaluesofenergyincomparisonwiththeclassicalparticleswhichcanhaveanyenergy.Inanatom,electricalfieldofnucleusboundstheenergylevelsofelectrons.Henceatomshavevariousdistinctenergylevelswhichareknownaselectronicstates.Iftheelectronsinanatomareatthelowestpossibleenergylevelthentheyaresaidtobeinthegroundstateandiftheyhaveenergyhigherthanthegroundstatethentheyaresaidtobeexcited.Asatomsmove

    15fromoneelectronicstatetoother,theyemitorabsorbaphotonofspecificwavelength.

    Fortransitionofelectronfromalowerenergystatetohigher,theyabsorbaphotonandtransitionfromhighertolowerenergystateisdone

    35byemittingaphotonhavingenergyequaltothedifferenceintheenergy

    levelofthosetworespectivestates.Thesetransitionsarepredictedbyquantummechanics.Inthebeginningofthischapter,variousexpressionsforemissionandabsorptioncoefficientswerepresentedintermsofspectroscopic47constants??cand??c.AtransitionfromoneenergyleveltootheratanywavelengthisgovernedbyanupperandalowerelectronicenergyleveldenotedbyEUandEL,respectively.Therearemorethan200suchenergylevels.Johnsonetal.havecombinedalltheseenergylevelsintogroupedenergylevels,UandL.Itwasdonesoastosimplifytheexcitationmodelforthecalculationofpopulationsoftheseenergylevels.Thereare35suchgroupedenergylevelsforNandOintheJohnstonsmodel.[47]DetailsoflinesofNandOareprovidediBoundFreeContinuumRadiationWhentheabsorptionofaphotonproducesanelectronandiontheprocessiscalledboundfreeabsorption.Initiallytheelectronisinaboundstateandafterionizationitisfreetotake48onanyvalueof

  • thekineticenergy,sotheboundfreeabsorptionisacontinuousfunctionofthefrequency.Thereverseisfreeboundemissioninwhichanionandfreeelectroncombineandaphotonofenergyisreleased.Duetothis,theenergyoftheresultingatomdrops.Italsoproducesacontinuousspectrumastheparticleswhicharecombiningcanhaveanyinitialkineticenergy.Now,theboundfreetransitionsoccuronlywhenthegasisionized,sothisprocessistakenintoconsiderationforhightemperatureapplicationsonly.Intheboundfree

    6case,thewavelengthoftransitioniscalculatedbythekineticenergyofthefreeelectron.[41]??11?E

    E??Ei?Ee?(3.19)WhereEistheenergyofanimaginarystate,whichliesaboveandclosetoionizedstateandEi

    6istheenergyoftheithboundlevel.SincetheelectronenergyiscontinuouslydistributedaccordingtoaMaxwelldistribution,theradiation

    isessentiallycontinuous,unlikelinesintheboundboundcase.FreeFreeContinuumRadiationItoccurs

    5whenaphotonisabsorbedoremittedby

    afreeelectron.Theemissionproducedbyelectronatomcollisionsisofimportanceinplasmasoperatingathighpressure,wheretheelectrondensityquitehighinspiteplasmabeingonlypartiallyionized.Ifthephotonisemitted,itisalsocalledbremsstrahlungemission(whichinGermanmeansbrakeradiation)asthe

    2releaseofaphotondecreasesthekineticenergyoftheelectronandhencedeceleratingit.Ifthephotonisabsorbeditisknownasinversebremsstrahlung

    asthecapture

    2ofaphotonincreasesthekineticenergy

    andhenceacceleratingit.Herealso,theinitialandfinalfree49energiesoftheelectroncanhaveanyvalues,soacontinuousabsorptionoremissionspectrumisobtained.Freefreeradiationisgenerallyweak,andtheonlysignificantcontributioncomesfromthelargewavelengthregionofthespectrum.

    2Boundfreeandfreefreetransitionsgenerallyrequirehigh

    energyandhencetheymostly

  • 2occuratveryhightemperaturesi.e.whenionizationsand

    dissociationisofnoticeablevalue.Theradiationemittedwiththesetypesoftransitionsaremostlyfoundatshortwavelengthsorlargefrequencies(ultraviolettovisible).Therefore,thesetransitionsareverylessimportantascomparedtoboundboundandboundfreetransitions.WehaveconsideredboundboundtransitionsonlyFigure:Spectrallinesduetovarioustypesoftransitions[43]3.5RadiativePropertyModels:Theprocessofevaluatingtheradiativepropertiesofhightemperatureplasmaisdifficultdue50to

    18thepresenceoflargenumberofradiativespecies.Furthertheeffectsof

    thermodynamicnonequilibriummaketheaboveprocessmorecomplicated.OneoftheearliestandwidelyusedradiationcodeisRAD/EQUILwhichwasdevelopedbyNicolet[51].Inthiscode,calculationofallpropertiesisdonebyassumingthermodynamicequilibrium.Fornonequilibriumcases,NEQAIRwasdeveloped.ItusesatomiclinedatacompiledbyWieseetal.[52]tocalculatelinestrengthofeachatomicline.Butitwascomputationallyexpensivebeingalinebylinecode.VariousnewmodelshavebeenintroducedwhicharecomputationallylessexpensivethanNEQAIRsuchasLORAN(LargelyOptimizedRadiativeNonequilibrium),[53]etc.Inourcase,Localthermodynamicequilibrium(LTE)andchemicalequilibriumconditions[24,54]havebeenassumedontheterminationofthelaserpulse,sowewillbefindingequilibriumelectronicstatepopulationsofvariousenergystatesofatomsbyBoltzmanndistribution.3.6SpectralModelsforRadiativePropertiesInearliertimes,radiationsimulationswerecarriedoutbyassumingtransparentandgraygasassumptions[55].Accordingtothis,itwasassumedthatthe

    54radiativepropertiesofthemediumarenotdependentonthe

    wavelength.i.e.graygasassumptionandalsoalltheenergywhichisemittedisnotabsorbedandleavesthesystemwithoutanyattenuationorlossinitsintensity.HoweandViegas[56]werethefirsttostudytheeffectofradiationabsorptionandmodelledtheabsorptioncoefficientasgray.Hoshikawaetal.[57]foundthatthegraygasapproximationissameasneglectingtheabsorptionandtheresultsobtaineddidnotvary51muchinbothofthesecases.Heprovedthatnongrayselfabsorptionisimportanttoconsider.NongrayselfabsorptionwasfirstindicatedbyOlstad[58]whofoundthatnongrayselfabsorptionmayreducetheradiativeheattransferandhencecancauseasubstantialeffect.ThesignificanceofconsideringtheatomiclineswasnoticedfirstlybyBibermanetal.[59]beforethis,mostofthespectralmodelsforatomswerebasedonstepmodels[60]whicharenotasaccurateaslinebylinemodels.Butlinebylinecalculationswereavoidedduetothefactthattheyrequirehighcomputationalpowerwhichwasnotavailableinthosetimes.Butfrompastfewyears,LinebyLinecalculationshavebecomepossible.Allthankstothegrowingmoderntechnologywhichmadepossibletofabricatepowerfulcomputerscapableofperforminghighendcalculationsinvolvinghugelevelofcomplexity.The

    64linebylinecalculationsareveryexpensivecomputationallyas

  • theyrequireveryaccuratedataforabsorptioncoefficientsatverylargenumbersofwavelengthsmaybehundredsofthousandsofwavelengths.Also,thespectralatomiclineshaveastrongopacitynature,so

    30inordertofindtheabsorptionandemissioncoefficients

    accurately,veryhighspectralresolutionisneeded.Higherthespectralresolution,higheristheaccuracywithwhichtheabsorptionandemissioncoefficientarecalculated.Afterfindingthespectralradiativeproperties,RTEissolvedateachofthewavelengthpointandthetotalintensityisthesummedbyusinganyintegrationscheme.3.7CalculationofAtomicElectronicExcitedStatePopulationusingBoltzmanndistributionOntheterminationofthelaserpulse,LTEandchemicalequilibriumconditionshavebeenassumedintheregionofplasmaformation.Bychemicalequilibrium,itismeantthatifleft52alonethennochemicalreactionwilloccuri.e.theconcentrationofthereactantsandproductswillnotchangeovertime.Itcanalsobestatedasthattherateoftheforwardreactionissameasthatofthebackwardreaction,bothproceedingatthesamerate.Similarly,bythermalequilibriumitisreachedwhenanidealgasdistributionfunctionhasreachedtoacertainMaxwellBoltzmanndistributionandgetsstabilized.Thisprocessmayoccurslowlyorfast.Forslowprocesses,itcanbeapproximatedbyasequenceofequilibriumstates.Weknowthattheenergiesofmolecules,atoms,orelectronsarequantized.Inordertoexplainanychemicalsystemsweshouldfirstknowtheenergiesofthequantumstatesandalsothedistributionofparticlesamongthevariousquantumstates.Energiesofthequantumstates

    56canbeobtainedfromtheSchrodingerequationandtheBoltzmanndistributionlaw

    instatisticalmechanicsenablesustodeterminehowvariouslargenumberofparticlesdistributethemselvesthroughoutasetofallowedenergylevels.Forequilibriumcases[41],allthedegreesofthefreedomi.e.translational,vibrational,rotationalandelectronic,degreesoffreedomareall

    60populatedaccordingtotheBoltzmanndistribution.Itischaracterizedbyonecommontemperature.

    [61]TheBoltzmanndistribution[62]isgivenas?C2Ejnj?eTnQ(3.20)Wheren

    21isthetotalpopulationofthespecies,Qisthepartitionfunction

    andEj[cm1]istheenergyofthejthstate.Thepartitionfunctionisgivenby53Q??gjeTL?C2Ej(3.21)j?1WhereListhetotalnumberofenergylevels,gjisthedegeneracy.SpectralModelsSpectralradiationmodelsmaybecategorizedintothefollowingmethods:1)GreyGasModel2)linebylinecalculations(LBL)3)Bandmodels4)Globalmodelsand5)kdistributionmethods(whichcanbeformulatedasnarrowbandandglobalmodels)GreyGasModelGraygasmodelassumesthatthelinestrengthisevenacrossthespectrumofinterest.Tocarryoutagraycalculation,

  • 11aconstant(gray)absorptioncoefficientcanbedefinedforeachcellandtheRTEcanberewrittenas[41]=(())WherekP()

    11isthePlanckmeanabsorptioncoefficient,givenas54()=0

    0()()()Wherek

    11()isthespectralabsorptioncoefficientforthegasmixture

    LBLAccuratesimulationofradiationheattransferrequiresthelinebylineradiationmodelwhichisnearlyimpossibleforengineeringpracticebecauseofthehighcomputationalcost.But

    2withthehelpofpowerfulcomputers,linebylinecalculationshave

    becomepossible,thoughveryexpensive.Theselinebylinecalculationsalsorequireveryaccurateabsorptioncoefficientdataathundredsofthousandsofwavelengths.TheRTEmustbesolvedateachwavelength,andthetotalintensityiscalculatedbyapplyingasuitableintegrationschemeinwavelengthspace.Thespectrumissampledalongaseriesofchosenfrequencies3.8RTEsolutionMethodsThetwobasicstepsinvolvedinsolvinganyradiationproblemare:?Findingthegaspropertiesintheflowfieldforallgasconditions?SolvingtheRTEusinganymethodCompletethreedimensionalsolutionoftheRTEwithextensivespectralmodellingisveryexpensivecomputationally.RTEequationasobtainedfromequation(3.4)dI??k??Ib??I??(3.22)ds55TheaboveRTEdescribesthechangeintheintensityoflightasitpassesthrougharadiativelyparticipatingmedium.SpectralintensityIisobtainedfromthe

    10solutionoftheRTE,thedivergenceofthespectralradiativefluxcanbecalculated

    as[45]?qrad,??k?(4?I?b?G?)(3.23)WhereGisthespectralincidentradiationandisdefinedasG???I?d?(3.24)4?AndtheIbisthespectralblackbodyintensityand

    4isgivenbyPlanckslaw[42]I?

    b??b?E2hc2?h0c0(3.25)n2?5(en??T?1)The

    12divergenceofthetotalradiativeheatfluxisthenobtainedbyintegrationovertheentirespectrum

  • ??.qrad???qrad,?d?(3.26)0RTEis

    10anintegrodifferentialequationanditdependsonthethreespatial,twodirectionalandonespectralvariable.

    Duetothis,the

    4analyticalsolutionisalmostimpossibleformostofthe

    problems.ThiscreatestheneedtosolveRTE

    4numericallyusingvariousradiationmodelsforspatialanddirectionaldependenciesandspectralmodelsforthespectraldependency.OnesuchradiationmodelistheP1radiationmodel[

    63].56P1ApproximationModelItisoneofthevariousmethodswhichareusedtosolveRTEnumerically.Itisalsocalledasmethodofspecialharmonics.AsexplainedabovethatintegrodifferentialnatureofRTEmakesitadifficulttasktosolveitanalytically.Themethodofspecialharmonicsprovidesamethodtogettheapproximatesolutionbytransformingtheequationoftransfer

    53intoasetofsimultaneouspartialdifferentialequations.

    ItwasfirstproposedbyJeans.P1radiationmodelavailableinOpenFOAM,the

    1lowestorderimplementationofthesphericalharmonicsmethod

    isusedtosolveRTEequation

    1byexpandingtheradiativeintensityintoaseriesofsphericalharmonics.

    Oneofthe

    14mainassumptionofthismodelisthatthedirectionaldependenceintheradiativetransferequationisintegratedoutresultinginadiffusionequationfortheincidentradiation[

    64].Thismethodisquiteuseful

  • 1becauseofitscomparativelyhighaccuracyandlowcomputationalcost.Advantagesofthe

    P1model:?RTEisquiteeasytosolvewithlesscomputationaldemand?

    14Itworkswellforcaseswheretheopticalthicknessislarge,=a*L>3,whereL=distancebetweentheobjects.?Conversionofthe

    governingRTEintorelativelysimplerpartialdifferentialequations

    4Inthismethod,theradiativeintensityisapproximatedbyatwodimensionalFourierseries,splittingtheintensitysspatialanddirectionaldependency.[45]IftheFourierseriesistruncatedafteroneelement,thenP1radiationmodelis

    obtained.

    4P1radiationmodelgives57twospatialdifferentialequations,oneforthegradientofthedirectionallyaveragedintensityG

    4andanotherforthegradientoftheradiativeheatflux

    whichareasunder[64]:qrad,????G?13k?(3.27)And?.qrad,??k?(4?I?b?G?)(3.28)Thesetwoequations

    4canbecombinedtoasecondorderpartialdifferentialequationofelliptictype

    [42]?.(?G?)?k?(G??4?I?b)1(3.29)3k?It

    1isaHelmholtzequationwhichcanbediscretizedinthefinitevolumeframeworkofOpenFOAM.

    The

    1boundaryconditionsfortheP1equationareofmixedtype(thirdkind)andgivenby

  • G??32k???2????w?w??G?..nw?4?I?bw??(3.30)?Wherethespectralwallemittance,Ibwisthespectralblackbodyintensityofthewallbasedonthewalltemperatureandnwisthenormalvectortothewall.TheP1equationisthensolvedforcompleterangeofwavelengthfrom800A0to20,000A0takingspectralresolution=0.02584CHAPTERResultsandDiscussionsInthischapter,variousresultsandimportantfindingshavebeendiscussedwiththehelpoffigureswhichwereobtainedduringsimulationAlso,workingofthecodehasbeendiscussed.594.1WorkingMethodologyHypersoniccodethatwasdevelopedtocalculatetheflowconditionswastakinglargetimetoconverge.So,theinitialflowfileddataattime0.02swastakenfrompastliterature[25].Theflowfielddataforvariousspeciesobtainedwasintermsofconcentration.ItwasfirstconvertedintomassfractionsastheinitialconditionsinOpenFOAMaredefinedusingmassconcentrations.TheinitialflowfielddatainOpenFOAMisasshowninthefollowingfigures:Teardropplasma60Figure:ContourPlotofdensity(rho)att=0.02sFigure:ContourPlotofpressure(p)att=0.02s61Figure:ContourPlotoftemperature(T)att=0.02sFigure:ContourPlotofconcentrationofOatt=0.02s62Figure:ContourPlotofconcentrationofNatt=0.02sFigure:LineplotforatomicspecieNalong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02s63Figure:LineplotforatomicspecieOalong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02sFigure:Lineplotforpressurealong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02s64Figure:Lineplotfortemperaturealong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02sFigure:Lineplotfordensityalong

    3alinepassingthroughthemiddleofthedomain

    alongXaxisattime=0.02s65Calculationofnumberdensityfrommassfractions12FindingBoltzmannequilibriumpopulationdistributionusingnumberdensity3UsingthepopulationdistributionandspectroscopicdatafromNISTdatabase,spectralcoefficientsaredeterminedusingLBLmethod[10]SolvingRTEusingP1solverandintegratingoverwavelength.[12]4Tocarryoutthesimulationsandsolvealltheequations,aC++coderadLBLhasbeendeveloped.AftermodellingtheentiredomainincludingtheplasmainOpenFOAM,numberdensityofNandOiscalculatedatT=17800K(EquilibriumPlasmatemperature).NumberdensityofNcomesouttobe2.53x1018cm3andforOitsvalueis1.43x1019cm3atatimestep=0.02s.Thisnumberdensityisusedtofindouttheatomicelectronicstate

  • equilibriumpopulationusingBoltzmanndistribution.Usingpopulationdistributionandspectroscopicdata,

    30absorptionandemissioncoefficientsarecalculatedusingtheequationsdescribedinthe

    previoussection.Spectroscopicdatarequiredforthecalculationof

    19emissionandabsorptioncoefficientswastakenfromNISTdatabase.Absorptionandemissioncoefficientsare

    66determinedfortherangeofwavelengthfrom800A0to20,000A0takingspectralresolutiontobe=0.02.Asexplainedinthepreviouschapteralso,thevalueofthespectralresolutionshouldbeverysmalltogetaccurateresults.Thisvaluewastakenafteritwasfoundthattherewasnotmuchnoticeablechangeinthetotalemission.Foreachspecie,fourhundredwavelengthspointsweretakenatatimeduetomemorylimitationi.e.withspectralresolutionof0.02,thewholewavelengthsintervalfrom80020000A0wasdividedinto2250blockseachhaving400wavelengthspoints.Eachblockwassolvedseparatelyforfindingtheabsorptionandemissioncoefficients.Fig4and5showsvariationofabsorptionSpectrumofNandabsorptionSpectrumofOwithwavelengthatT=17800K.67Figure:EmissionSpectrumofOatT=17800K,numberdensity=1.43e19cm3Figure:EmissionSpectrumofNatT=17800K,numberdensity=1.43e19cm3Figure:AbsorptionSpectrumofOatT=17800K,numberdensity=1.43e19cm368Figure:AbsorptionSpectrumofNatT=17800K,numberdensity=1.43e19cm3Usingabsorptionandemissioncoefficients,RTEissolvedforeachwavelengthpointandintegrationisdoneoverallthewavelengthrangetofindoutthetotalradiationlossoverallthewavelengthrangeintheentiredomain.Specie.q(mJ/s)O145.33N52Total197.35Table:Showingthevalueof.qoverentiredomainforOandNatatimestep(0.02s)Theradiationlossoverthewholesimulationtimeupto60sfrom0.02swasroughlyestimatedas69=197.35mJ/sx30s=5.92JThisisthemaximumapproximatelosswhichcanoccur.Previouslyreportedradiationlosswas0.33J.Sowehaveestimated20timeshigherlossesthanthepreviouslyreporteddata.[25]70

    445ChapterConclusionsandFutureWork5.1Conclusions

    Whenalaserpulsedisfocussedonadomainthenitundergoesmainlythreetypesofchangesfluiddynamic,chemicalandradiativechanges.Fromthepastliterature,itwasfoundthatfluiddynamicandchemicalchangeshavebeenstudiedwellinthepastbuttheradiativechangesweremostlyneglectedinmostofthecases.Jordaretaltriedforthefirsttimetocalculatetheradiativelossesbuttheyalsoconcludedradiativelossestobenegligible.TheycalculatedtheradiativepropertiesusingmultigroupmethodinwhichameanvalueofabsorptioncoefficientisassignedtofrequencygroupssoastoeasetheprocessthesolvingtheRTE.WehavetriedtousethemostaccuratemethodforcalculatingtheradiativelosseswhichisLinebyline.Inthismethod,thewholerangeofwavelengthisfinelydiscretizedintolargenumberofwavelengthpoints.RadiativepropertieswerecalculatedateachofthewavelengthpointsandthenRTEwassolvedatallthosepointsseparately.Itwasfoundthatthetotalradiativelossis5.92J.TheearliervaluefortheradiativelossesbyJordaretal.was0.33J.Hence,ourvaluewascomingouttobeatleasttwentytimesmorethanthepreviouslyreporteddata.Butthetotalenergywhichwasdepositedwas

  • 93mJ.Hencetheradiativelosswhichisoccurringduetoradiativecoolingisverylessascomparedtotheenergydeposited.71So,theseimportantconclusionscanbederived:?Emissionspectrumandabsorptionspectrumhavethickopticallines.?Ascanbeseenfromthefigures4.9to4.11thattheemissioncoefficientishighforNandObutstilltheradiationlossesarecomingoutverylessbecausetheabsorptioncoefficientisalsohighforboththesespecies,sotheenergywhichisemittedduetoradiationgetsabsorbedagainduetohighabsorptioncoefficientoftheatomicspecieNandOandhencethenetlosscomesouttobenegligible.?SincethemostaccuratemethodLBLalsoshowedthatradiationlossesarenegligiblesoourstudyvalidatestheassumptionofneglectingtheradiationlosseswhichwasassumedinallpreviousstudieswithoutanyproof.Inallthepreviousstudiesofthelaserenergydeposition,itwasassumedthattheradiationlossesarenegligibleduetodifficultyinfindingthem.Ourstudyhasvalidatedthatassumptionwithproperjustification.5.2FutureWork?Theworkdescribedinthisthesiswasdoneatatmosphericconditions.Laserenergydepositionalsohasapplicationsatlowpressureconditions.So,thereisaneedtostudylowpressureeffectively.?Hypersonicsolverwastakinglargetimetoconverge.Itsefficiencycanbeimproved.726ChapterReferences1.Radziemski,L.J.,etal.,Timeresolvedlaserinducedbreakdownspectrometryofaerosols.Analyticalchemistry,1983.55(8):p.12461252.2.Phuoc,T.X.,Laserinducedsparkignitionfundamentalandapplications.OpticsandLasersinEngineering,2006.44(5):p.351397.3.Radziemski,L.J.andD.A.Cremers,Laserinducedplasmasandapplications.1989.4.Cheroff,G.,F.Stern,andS.Triebwasser,QuantumEfficiencyofGaAsInjectionLasers.AppliedPhysicsLetters,1963.2(9):p.173174.5.Shen,Y.R.,Principlesofnonlinearoptics.1984.6.Cremers,D.A.,etal.,LaserInducedBreakdownSpectroscopy,ElementalAnalysis.2006:WileyOnlineLibrary.7.Miziolek,A.W.,V.Palleschi,andI.Schechter,Laserinducedbreakdownspectroscopy.2006:CambridgeUniversityPress.8.Kandala,R.andG.V.Candler,Numericalstudiesoflaserinducedenergydepositionforsupersonicflowcontrol.AIAAjournal,2004.42(11):p.22662275.9.Goodman,J.W.,Statisticaloptics.NewYork,WileyInterscience,1985,567p.,1985.1.10.Justin,J.Z.,Quantumfieldtheoryandcriticalphenomena.Clarendon,Oxford,1989.11.Einstein,A.,Thephotoelectriceffect.Ann.Phys,1905.17:p.132.12.Hirschfelder,J.O.,etal.,Moleculartheoryofgasesandliquids.Vol.26.1954:WileyNewYork.13.Eisberg,R.M.,Fundamentalsofmodernphysics.1967:Wiley.14.Chin,S.L.,MultiphotonlonizationofAtoms.2012:Elsevier.15.Delone,N.B.,Basicsofinteractionoflaserradiationwithmatter.1993:AtlanticaSguierFrontires.16.Mandel'Shtam,S.,etal.,Investigationofthesparkdischargeproducedinairbyfocusinglaserradiation,II.SovietPhysicsJETP,1966.22(1).17.Orr,D.,Magneticpulsationswithinthemagnetosphere:Areview.JournalofAtmosphericandTerrestrialPhysics,1973.35(1):p.150.18.Ramsden,S.andP.Savic,Aradiativedetonationmodelforthedevelopmentofalaserinducedsparkinair.1964,DTICDocument.19.DeMichelis,C.,Laserinducedgasbreakdown.IEEEJournalofQuantumElectronics,1969.5(4):p.188202.20.Ghosh,S.andK.Mahesh,Numericalsimulationofthefluiddynamiceffectsoflaserenergydepositioninair.JournalofFluidMechanics,2008.605:p.329354.21.Bradley,D.,etal.,Fundamentalsofhighenergysparkignitionwithlasers.CombustionandFlame,2004.138(1):p.5577.22.Mortazavi,M.,etal.,NumericalSimulationofEnergyDepositioninaSupersonicFlowPastaHemisphere.AIAAPaper2014,2014.944:p.118.7323.Dors,I.,C.Parigger,andJ.Lewis,Fluiddynamiceffectsfollowinglaserinducedopticalbreakdown.AIAApaper,2000.717:p.2000.24.Dors,I.G.andC.G.Parigger,Computationalfluiddynamicmodeloflaserinducedbreakdowninair.Appliedoptics,2003.42(30):p.59785985.25.Joarder,R.,G.Gebel,andT.Mosbach,Twodimensionalnumericalsimulationofadecayinglasersparkinairwithradiationloss.InternationalJournalofHeatandMassTransfer,2013.63:p.284300.26.Bogatyreva,N.,M.Bartlova,andV.Aubrecht.Meanabsorptioncoefficientsofairplasmas.inJournalofPhysics:ConferenceSeries.2011.IOPPublishing.27.Jasak,H.,A.Jemcov,andZ.Tukovic.OpenFOAM:AC++libraryforcomplexphysicssimulations.inInternationalworkshoponcoupledmethodsinnumericaldynamics.2007.28.Bansal,A.,A.Feldick,andM.Modest.SimulationofHypersonicFlowandRadiationoveraMarsReentryVehicleUsingOpenFOAM.in50th

  • AIAAAerospaceSciencesMeetingincludingtheNewHorizonsForumandAerospaceExposition.2012.29.Kurganov,A.andE.Tadmor,Newhighresolutioncentralschemesfornonlinearconservationlawsandconvectiondiffusionequations.JournalofComputationalPhysics,2000.160(1):p.241282.30.Lundstrom,A.,OpenFOAMtutorial:Reactingfoam.ChalmersUniversityofTechnology.2008.31.Gordon,S.andB.J.McBride,Computerprogramforcalculationofcomplexchemicalequilibriumcompositions,rocketperformance,incidentandreflectedshocks,andChapmanJouguetdetonations.1971.32.Anderson,J.D.andJ.Wendt,Computationalfluiddynamics.Vol.206.1995:Springer.33.Wang,A.andM.F.Modest,Highaccuracy,compactdatabaseofnarrowbandkdistributionsforwatervaporandcarbondioxide.JournalofQuantitativeSpectroscopyandRadiativeTransfer,2005.93(1):p.245261.34.Ankit,B.,F.Andrew,andM.Michael,SimulationofHypersonicFlowandRadiationoveraMarsReentryVehicleUsingOpenFOAM,in50thAIAAAerospaceSciencesMeetingincludingtheNewHorizonsForumandAerospaceExposition.2012,AmericanInstituteofAeronauticsandAstronautics.35.Druguet,M.C.,G.V.Candler,andI.Nompelis,EffectsofnumericsonNavierStokescomputationsofhypersonicdoubleconeflows.AIAAjournal,2005.43(3):p.616623.36.Kurganov,A.,S.Noelle,andG.Petrova,SemidiscretecentralupwindschemesforhyperbolicconservationlawsandHamiltonJacobiequations.SIAMJournalonScientificComputing,2001.23(3):p.707740.37.Roe,P.L.,ApproximateRiemannsolvers,parametervectors,anddifferenceschemes.Journalofcomputationalphysics,1981.43(2):p.357372.38.Butcher,J.C.,Thenumericalanalysisofordinarydifferentialequations:RungeKuttaandgenerallinearmethods.1987:WileyInterscience.39.Galloway,L.,Sutherland'sLaw.1976:WhiteLionPublishers.7440.Shuen,J.S.,M.S.Liou,andB.V.Leer,Inviscidfluxsplittingalgorithmsforrealgaseswithnonequilibriumchemistry.JournalofComputationalPhysics,1990.90(2):p.371395.41.Bansal,A.,Kdistributionmodelsforgasmixturesinhypersonicnonequilibriumflows.2011,ThePennsylvaniaStateUniversity.42.Modest,M.F.,Radiativeheattransfer.2013:Academicpress.43.Modest,M.F.,BackwardMonteCarlosimulationsinradiativeheattransfer.Journalofheattransfer,2003.125(1):p.5762.44.Sparrow,E.M.andR.D.Cess,Radiationheattransfer.SeriesinThermalandFluidsEngineering,NewYork:McGrawHill,1978,Augmenteded.,1978.1.45.Siegel,R.andJ.R.Howell,Thermalradiationheattransfer.NASASTI/ReconTechnicalReportA,1992.93:p.17522.46.Whiting,E.E.,etal.,NEQAIR96,Nonequilibriumandequilibriumradiativetransportandspectraprogram:user'smanual.1996.47.Sohn,I.,etal.,Advancedradiationcalculationsofhypersonicreentryflowsusingefficientdatabasingschemes.JournalofThermophysicsandHeatTransfer,2010.24(3):p.623637.48.Ask,R.andR.F.Power,RPPhotonicsEncyclopedia.49.Modest,M.F.,Chapter10RadiativePropertiesofMolecularGases,inRadiativeHeatTransfer(SecondEdition),M.F.Modest,Editor.2003,AcademicPress:Burlington.p.288360.50.Ralchenko,Y.,A.Kramida,andJ.Reader,NISTatomicspectradatabase(version4.0).NationalInstituteofStandardsandTechnology,Gaithersburg,MD,2010.51.Nicolet,W.,User'smanualforRAD/EQUIL/1973:Ageneralpurposeradiationtransportprogram.1973.52.Wiese,W.L.,M.Smith,andB.Glennon,Atomictransitionprobabilities.Vol.:HydrogenthroughNeon.Acriticaldatacompilation.NSRDSNBS4,Washington,DC:USDepartmentofCommerce,NationalBuereauofStandards,1966,1966.1.53.Chambers,L.H.,Predictingradiativeheattransferinthermochemicalnonequilibriumflowfields.Theoryanduser'smanualfortheLORANcode.1994.54.Simeonsson,J.B.andA.W.Miziolek,TimeresolvedemissionstudiesofArFlaserproducedmicroplasmas.Appliedoptics,1993.32(6):p.939947.55.Yoshikawa,K.K.andB.H.Wick,Radiativeheattransferduringatmosphereentryatparabolicvelocity.1961.56.Howe,J.T.andJ.R.Viegas,Solutionsoftheionizedradiatingshocklayer,includingreabsorptionandforeignspecieseffects,andstagnationregionheattransfer(Solutionsfornonadiabaticshocklayerinbluffbodystagnationregionathypersonicspeeds).1963.57.Hoshizaki,H.andK.Wilson,Convectiveandradiativeheattransferduringsuperorbitalentry.AIAAJournal,1967.5(1):p.2535.58.Olstad,W.B.,Stagnationpointsolutionsforinviscidradiatingshocklayers.1970.7559.Biberman,L.,S.Y.Bronin,andM.Brykin,Movingofabluntbodythroughthedense

  • atmosphereunderconditionsofsevereaerodynamicheatingandablation.Actaastronautica,1980.7(1):p.5365.60.Patch,R.,W.Shackleford,andS.Penner,Approximatespectralabsorptioncoefficientcalculationsforelectronicbandsystemsbelongingtodiatomicmolecules.JournalofQuantitativeSpectroscopyandRadiativeTransfer,1962.2(3):p.263271.61.Widom,B.,Statisticalmechanics:aconciseintroductionforchemists.2002:CambridgeUniversityPress.62.Reichl,L.E.andI.Prigogine,Amoderncourseinstatisticalphysics.Vol.71.1980:UniversityofTexaspressAustin.63.Gbel,F.andC.Mundt.ImplementationoftheP1radiationmodelintheCFDsolverNSMBandinvestigationofradiativeheattransferintheSSMEmaincombustionchamber.in17thAIAAInternationalSpacePlanesandHypersonicSystemsandTechnologiesConference.2011.64.Vdovin,A.,RadiationheattransferinOpenFOAM.FinalAssignmentfortheCourseCFDwithOpenSourceSoftware,2009.76