turbina francis

20
TURBINA FRANCIS

Upload: sergio-quispe-rodriguez

Post on 24-Jun-2015

466 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Turbina Francis

TURBINA FRANCIS

Page 2: Turbina Francis

INTRODUCCION TURBOMAQUINA

Es una maquina en la cual se recibe o se transfiere energía de un fluido

CLASIFICACION

POR EL SENTIDO DE TRANSFERENCIA DE ENERGIA TURBINAS BOMBAS

POR LA VARIACION DE LA PRESION A TRAVEZ DEL ROTOR ACCION REACCION

POR LA DIRECCION DEL FLUJO EN EL ROTOR RADIAL AXIAL DIAGONAL

Page 3: Turbina Francis

OBJETIVOS

•Conocer y analizar el principio de funcionamiento de la turbina Francis.

•Determinar las características de operación a diferentes presiones de entrada.

•Estudiar la variación de sus respectivas potencias y eficiencias generadas para cada presión e ingreso del flujo del caudal dado por los álabes de la turbina.

Page 4: Turbina Francis

Es una turbina hidráulica de Reacción, Radial y descarga axial.

ELEMENTOS ROTOR

Es el corazón de la turbina, ya que aquí tiene lugar el intercambio de energía entre la máquina y el fluido.

ESTATOR Parte estatica que proyecta el fluido hacia el rotor

ALABES DIRECTORES Los álabes directores también pueden llegar a funcionar como

reguladores de flujo, abriéndose o cerrándose a manera de válvula para regular el caudal que entra a la máquina

CARCAZA Cubre el rotor y el estator

TURBINA FRANCIS

Page 5: Turbina Francis

MATERIALES Y EQUIPOS USADOS Turbina Francis.-

Marca :ARMFIELD HIDRAULIC ENGINEERING Co.

Tipo : Ns 36 MK2. Potencia : 2,5 BHP. Velocidad : 1000 RPM.

Tamaño nominal del rodete :6 “. Velocidad especifica :36 RPM. Altura neta :20 pies. Velocidad de embalamiento máximo:1800 RPM. Diámetro de la volante :12 “. Diámetro de la entrada :6 “.

Page 6: Turbina Francis

Bomba.-

Motor: Neman Motor INC Casco: 2560/DD 2182 BB RPM: 3600BB voltaje: 220v Ciclo: 60 amperaje: 26A Fase: 3 HP=10 Factor de servicio: 1.15

Bomba: SIGMUND PUMP LTD. Tipo: MN63 N° serie: 147305 

Page 7: Turbina Francis

FRENO DE CINTA BALANZA

PROUNY

wracLBHP D .).arg( BALANZA SALTINRango: 0-20KgAprox: 100g

Page 8: Turbina Francis

PESAS REGLA TACOMETRORango1m TACOMETRO

SMITH

Aprox: 1mm Rango: 0-2000RPMAPROX: 20RPM

Page 9: Turbina Francis

PROCEDIMIENTO

Volante

(Freno

prony)

Tanque medidor de caudal (weirs)

Tacómetro

Manómetro

Pesas

Bomba

Turbina

1

2

1.21-h

ESQUEMA TURBINA FRANCIS DEL LABORATORIOESQUEMA TURBINA FRANCIS DEL LABORATORIO

Page 10: Turbina Francis

PROCEDIMIENTO

Page 11: Turbina Francis

TABLA DE DATOS

  POSICIÓN 1 (20% abierto) POSICIÓN 2 (50% abierto) POSICIÓN 3 (totalmente abierto)

 

ALTURA DEL

LINIMETRO

BALANZA

CARGA

VELOCIDAD

ANGULAR

ALTURA DEL

LINIMETRO

BALANZA

CARGA

VELOCIDAD

ANGULAR

ALTURA DEL

LINIMETRO

BALANZA

CARGA

VELOCIDAD

ANGULAR

  h1 (cm) D (kg) W (kg) n (RPM)h1

(cm)D

(kg)W (kg) n (RPM) h1 (cm)

D (kg)

W (kg) n (RPM)

1 16.2 0 0 1329 18 0 0 1459 21.5 0 0 1458

2 16.8 1 0.5 1238 18.8 1 0.5 1405 22.5 0.8 0.5 1393

3 17 1.7 1 1213 19.4 1.8 1 1355 22.7 1.7 1 1369

4 17 1.5 1.5 1145 19.8 2.7 1.5 1310 22.9 2.6 1.5 1360

5 17.2 2 2 1051 20 4.2 2.5 1274 23.3 3.4 2 1333

6 17.5 2.5 2.5 1030 20.2 5.9 3.5 1417 23.47 4.2 2.5 1291

7 17.9 3 3 1000 20.6 7.6 4.5 1150 23.9 6 3.5 1212

8 18 3.5 3.5 920 21 9.7 5.5 1119

TABLA 1. DATOS DEL LABORATORIO•A una presión de 6psi.•A 20%, 50% y totalmente abierto, se refiere a las posiciones de los álabes directrices.

Page 12: Turbina Francis

CONSTANTES

Peso Específico del AGUA γ 9806,65 N / m3

Aceleración de la gravedad g 9,80665 m / s2

Presión de INGRESO P2 6 Psi <> 41368.55 Pa

Diámetro del ducto de ingreso Φ2 0,152 mDiámetro del ducto de salida Φ1 0,25 mAltura del punto de ingreso h2 1,865 m

Altura del punto de inicio del linímetro hA 0,655 m

Radio de la volante R 0,152 m

ÁLABES DIRECTRICES: POSICIONES 1, 2 y 3.

POTENCIA HIDRÁULICA

PH = γ . Q . HT

PH = γ . 1,416 . h15/2 . [ ( P2 - P1) / γ + ( v2

2 - v12 ) / (2 . g) + ( z2 - z1 ) ]

P1 = 0

Q = vi . Ai

Ai = π . Φi

z2 - z1 = h2 - hA - h1 = 1,21 - h1

PH = γ . 1,416 . h15/2 . [ P2 / γ + ( 1,0025 . h1

5 ) . ( Φ2-4 - Φ1

-4) / ( π2 . g ) + ( 1,21 - h1 ) ]PH = f (h1)

CÁLCULOS Y RESULTADOS

Relaciones utilizadas en los cálculos

POTENCIA AL EJE

PEJE = T . ω

D: Lectura del dinamómetro

T = ƒ .R W: Peso de la carga

ƒ = D - W n: RPM

ω = 2 . π . n / 60 R: Radio de la volante

PEJE = ( D - W ) . R . 2 . π . n / 60

PEJE = f ( D; W; n)

Page 13: Turbina Francis

n

QHHPa E

g

VVPZHE 2

22

21

2

25

4

416,1

D

h

A

QV

EJEMPLO DE CÁLCULO

Como se repiten los mismos pasos en los cálculos, trabajaremos con un dato y calcularemos todas sus potencias y eficiencias para así comprobar nuestra veracidad en los resultados. Dato a utilizar:

P= 6 psi, h= 0.170 m, ω= 1213 RPM, LD= 1.7 kgf con una carga de 1 kgfAL 20 % abiertos los alabes directrices

•Cálculo de la Potencia hidráulica (HPa)

Donde: HPa = Potencia hidráulica (HP) = Peso específico (1000 kg/m3)

Q = Caudal (m3/s)HE = Altura efectiva (mH2O)

N = Factor de conversión (76)

La altura efectiva la definimos mediante la fórmula de Bernoulli aplicada a la disposición que se tiene en el laboratorio:

Donde: Z = Altura geodésica D1 = Diámetro de entrada = 6’’

D2 = Diámetro de salida = 9’’

Q = CaudalP/ = Altura estática

La altura estática que se mide con el manómetro a la entrada de la turbina se mantuvo constante e iguala a 6 psi durante toda la experiencia, siendo este valor igual a 4,2223 mH2O.

La altura geodésica hace referencia a la diferencia física real en altura entre el nivel del líquido en el pozo y el punto más elevado de la tubería de descarga o el nivel del agua a la salida.

Page 14: Turbina Francis

2 21 2

2

2

2

1.865 0.655 1.21 0.170 1.04

6 1 6894.75934.223

9.8 11000

E

P V VH Z

g

Z h m

P psi kgf Pax x mH O

kgf N psim

52

12

1,416(0.170)0.925

0.0254(6 '' )4 1''

Q mV smA x

52

12

1,416(0.170)0.411

0.0254(9 '' )4 1''

Q mV smA x

5.909EH m

Ahora con los datos de cálculo:

Entonces la Potencia Hidráulica será:

52

3

9.811000 (1.416 ) 5.909

1902.824

0.9E

kgf Nx x h x m

QH m kgfHPa W

n

Considerando una eficiencia hidráulica de 90%

•Potencia al Freno (BHP)

wracLBHP D .).arg( ………. (3)

Donde: LD: Lectura del dinamómetro

carga: pesas ω: velocidad angular. r = 15.5 cm

Page 15: Turbina Francis

Ahora considerando los datos:

2./9.81 60(1.7 1) . .0.155 .1213 . 135.203

1 1

rad sNBHP kgf m RPM W

kgf RPM

•Eficiencia Total (ηT)

HPa

BHPT

135.2030.14975 14.98%

902.824T

………. (6)

Page 16: Turbina Francis

EFICIENCIA TOTAL (η)

POSICIÓN 1 POSICIÓN 2 POSICIÓN 3

VELOCIDAD

ANGULAR

POTENCIA

HIDRÁULICA

POTENCIA AL EJE

EFICIENCIA TOTAL

(en %)

VELOCIDAD

ANGULAR

POTENCIA HIDRÁULI

CA

POTENCIA AL EJE

EFICIENCIA

TOTAL(en %)

VELOCIDAD

ANGULAR

POTENCIA HIDRÁULIC

A

POTENCIA AL EJE

EFICIENCIA TOTAL(en %)

n (RPM) PH (W) PEJE (W) η n (RPM) PH (W) PEJE (W) η n (RPM) PH (W) PEJE (W) η

1 1329 694,980950

0 1459 1045,07801 0 0 1458 0 1772,87045 0

2 1238 760,8114798,564291

12,9551532 1405 1167,53368 111,54165 9,5536137 1393 635,437845 1995,38934 0,318453063

3 1213 779,66667135,20345

17,3411872 1355 1265,226 172,60693 13,642379 1369 1457,143065 2042,50461 0,713409929

4 1145 779,66667182,32005

23,3843592 1310 1333,24292 250,31190 18,774665 1360 1672,605 2090,44219 0,800120189

5 1051 807,99013266,99936

33,0448787 1274 1368,14 344,86355 25,206744 1333 1937,1807 2188,84819 0,885022865

6 1030 841,09792328,01686

38,9986537 1417 1403,63978 465,08333 33,134094 1291 1861,1532 2213,98905 0,840633425

7 1000 893,26951382,15557

42,7816651 1150 1476,47964 567,66025 38,446873 1212 1938,70125 2343,03857 0,827430362

8 920 907,53008395,53101

43,5832404 1119 1551,82934 748,35615 48,224127

Llenamos la tabla con los cálculos de las potencias y eficiencias y a continuación presentamos los gráficosAzul: Posición 1Rojo: Posición 2Verde: Posición 3

Page 17: Turbina Francis

800 900 1000 1100 1200 1300 1400 15000

500

1000

1500

2000

2500

Page 18: Turbina Francis

800 900 1000 1100 1200 1300 1400 15000

500

1000

1500

2000

2500

Page 19: Turbina Francis
Page 20: Turbina Francis

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

•En el punto 6 para la posición 2, se observa que la velocidad de rotación aumenta cuando debería seguir la tendencia de disminuir, esto arrastra error en el calculo para dicho punto como se puede observar en las graficas, esto ocasiona que las graficas de la posición 2 sean cóncavas hacia arriba cuando deberían ser iguales a las otras posiciones (cóncavo hacia abajo).

•Las concavidades hacia abajo en las potencias al eje y por lo tanto en las eficiencias indican que a medida que se aumenta la carga, disminuyen las velocidades de rotación pero aumentan las potencias, de esta manera hasta llegar a una eficiencia máxima y luego decrecer.

•Los valores mismos de la eficiencia, podemos ver que son bastante bajos, en su mayoría menores a 45% e incluso tan bajos como 10%. Esto no coincide con las altas eficiencias que las turbinas Francis suelen tener.

•Se observa claramente que a medida que se va abriendo los alabes directrices, las potencias al eje y por tanto las eficiencias aumentan, cosa que es obviamente lo lógico.

RECOMENDACIONES

•Para obtener un valor más exacto de la eficiencia hidráulica se debe tener las siguientes consideraciones:

• Calibrar el dinamómetro cuando la rueda gire sin carga.

• Colocar las pesas una sobre otra, sin retirar ninguna ya puesta, ya que la variación de presión des calibra el dinamómetro.

• Conseguir un dinamómetro lo más preciso posible.

• Evitar el calentamiento en la volante, echando agua como líquido refrigerante.

• Teniendo en cuenta la antigüedad de los equipos, asumir que en los resultados existirá un error, ya sea pequeño o grande, en nuestros resultados finales.

• Es recomendable que la presión de entrada de la turbina sea de 3 o 4 psi, para que la bomba no tenga problemas de mantenerla por faltas de caudal y hace poder tener más puntos en la tercera serie de datos.