trends in cmos digital design

44
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 1 CMOS Digital Circuit Design How to Make Both Ends Meet? Susanta Sen Institute of Radio Physics and Electronics University of Calcutta

Upload: rajesh-roshan

Post on 16-Jul-2015

272 views

Category:

Engineering


7 download

TRANSCRIPT

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 1

CMOS Digital Circuit DesignHow to Make Both Ends Meet?

Susanta SenInstitute of Radio Physics and Electronics

University of Calcutta

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 2

Review of

MOS Transistor

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 3

The MOS Transistor

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 4

MOS Transistor

Zero Bias

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 5

MOS Transistor (contd.)

VDS

ID

Channel Pinches off → Current Saturates

VG

Saturation Current increases with VG

Vt

Threshold Voltage Vt → Device Turns ON

MOS can be used as SWITCH

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 6

MOS as SWITCHDesigning Logic Circuits

Logic ‘0’ = 0V : Logic ‘1’ = VDD

n-MOS : VG ≤ Vt → OFF : VG = VDD → ON

p-MOS: Negative VGS required

Connect Source to VDD

Gate Voltage → Negative w.r.t. Channel

VG ≥ VDD– |Vt| → OFF : VG = 0 → ON

S

VDD

VG0 to VDD D

G

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 7

n-MOS SWITCHTransferring Logic ‘1’ (VDD):

VDD

Vin = VDD VtVDD

Vo

t

Transistor OFF

Source Impedance High

Weak ‘1’

Transistor ON

Source Impedance Low

Strong ‘0’VDD

Vin = 0 VVo

t

VDD

Transferring Logic ‘0’ (0 V):

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 8

p – MOS Switch

Transferring Logic ‘1’ (VDD):

VDD

Vo

t

0V

VDD Strong ‘1’

Transferring Logic ‘0’ (0 V):

0V

0 V

t

Vo

VDD

Vt

Weak ‘0’

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 9

CMOS Logic• Use n-MOS to produce Logic ‘0’ → Pull DOWN• Use p-MOS to produce Logic ‘1’ → Pull UP

The CMOS Inverter

Equivalent Circuit

Logic ‘1’ Output

Logic ‘0’ Output

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 10

Switching Theory

Revisited

MOS Circuit Design

Digital Logic

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 11

Review of Switching Theory

C

A B

F = C iff (A and B)

Switches in Series

A

B

C F = C iff (A or B)

Switches in Parallel

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 12

Using n-MOS Switch

Constraint : C = ‘0’

A B

Series Connection

C = ‘0’ F = ‘0’ when (A . B) is TRUE

⇒ A nand B

A

B

C = ‘0’ F = ‘0’ when (A or B) is TRUE

⇒ A nor B

Parallel Connection

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 13

Using p-MOS SwitchConstraint : C = ‘1’

A B

C = ‘1’ F = ‘1’ when ( A . B) is TRUE

⇒ A + B

Series Connection

C = ‘1’

A

B

F = ‘1’ when ( A + B) is TRUE

⇒ A . B

Parallel Connection

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 14

CMOS Logic Design

• Pull UP Network– Build using p-MOS– Turns ON when Function is TRUE

• Pull DOWN Network– Build using n-MOS– Turns ON when Function is FALSE

• Operationally Complement

• Topologically Dual

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 15

CMOS Logic (contd.)

A

A

B

BA

A

B

B

FF

NAND GateNOR Gate

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 16

CMOS Design ExampleConsider the Function

f = A . (B + C)

Design the Pull Down Network first

A

B C

Pu

ll U

p

F

B

A

C

f = [A . (B + C)] is true

The Pull Down Network connects

‘f ’ to ground when

Connect Ground

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 17

Assignments

1. F = A.B + C

2. F = (A + B).(C + D)

3. F = A + B.C

4. F = A + B.C

5. F = A.C + B.C

6. F = A ⊕ B

Steady State Input-Output Characteristics

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 19

VDD

VO

Vi

(=VG)

MOS Amplifier

VDS

ID

VDD

VG

Vi

VO

Load Line

RL

ID

VO = VDD – ID.RL

VDD

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 20

Non Linear Load

VDSVDD

ID

VDD

VO

Vi

LOAD LINEVO= VDD – Vdiode

VO

Vi

VDD

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 21

Non Linear Load (contd.)

Vi

VO

VB

VDD

VDD

VDS

ID

VDD

VO

Vi

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 22

The CMOS InverterAmplifier or Inverter ?

Vi VO

VO

Vi

Gate Bias of PMOS changes with Input Voltage

VDD

VDDVDS

ID

VDD

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 24

A Closer Look

In presence of Noise

VOn = f (Vi + vn)

= f (Vi) + vn(∂VO/∂Vi) + vn2(∂2VO/∂Vi

2)+…VO

Vi

noisy_output = noiseless_output +noise x gain + higher order terms

VO= f (Vi) → Gain = ∂VO/∂Vi

ViHViL

VOL

VOH

Digital → Noise immunity Analog → High Gain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 25

Noise Margins

VO

Vi

ViHViL

VOL

VOH

Digital → Noise immunity

NML = VIL – VOL

NMH = VOH – VIH

VOH

ViH

1 {

VOL

ViL

0 {Undefined

Region

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 26

Vi VO

VO

Vi

VDD

VDDVDS

ID

VDD

Tuning the Characteristics

• Make the n-MOS wider• It conducts more current

ID = ½ µCox[VGS – Vt]2 (W/L)

• Best Noise Margin • When Vi = Voat VDD/2

• Wp = 3.Wn

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 27

When the Signal Changes!

The CMOS Inverter

Logic ‘1’ Output

VDD

Vo

t Logic ‘0’ Output

Vo

t

VDD

Energy dissipated in Pull Up Network

Energy dissipated in Pull Down Network

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 30

A Second Look at Changing Signals!

The CMOS Inverter

Logic ‘1’ Output

VDD

Vo

t Logic ‘0’ Output

Vo

t

VDD

Takes Time to change → Propagation Delay

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 31

Attention to Speed

• p-MOS slower than n-MOS– Hole mobility < Electron mobility– Pull-UP → Higher Resistance– Rise time longer

• Make p-MOS wider– Resistance α W/L Ratio– Wp = n. Wn → n = √µn /µp ≅ 2

• Widen transistors connected in Series– Increases Input Capacitance

• Avoid Series connection of p-MOS– Prefer NAND over NOR

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 32

∀ µn / µp → 2.7

• p-MOS wider than n-MOS– Wp/Wn = 3 → symmetric characteristics

• Best Noise Margin

• Increased Capacitive Load– Reduced speed

• Wp/Wn = 2 → Best speed

• Design is a trade-off – Speed & Robustness

CMOS Logic Design

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 33

LHSO

E

k

HH

LH

SO2 fold degenerate valence band

E

kHH

• Light hole (LH) band moves upward

→ higher probability of occupancy• Low effective mass → higher mobility• Tunable mobility

Promise of Strained Si

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 34

a Si=

5.4

3 A aGe= 5.64 Å

Si Substrate

Ge epitaxial layer

Tensile strain

%2.40

0 =−=a

aaε

Si – Ge hetero-structures

aSi= 5.43 Å

Compressive strain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 35

• Si1-xGex has a bulk relaxed lattice constant smaller than Ge.

• Strain decreases

Strain Engineering: Si1-xGex alloySiGe epitaxial layer

Si Substrate Tensile strain

Compressive strain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 36

Virtual substrate for strained-Si

• Strained layers grow up to a critical thickness• Beyond Critical thickness → misfit dislocations appear• As more layers grow → strain relaxes and defects reduce

Strain relaxed Si-Ge Virtual Substrate

Tensile Strained Si epitaxial layer

HRTEM image of Strained Si on Virtual Substrate

Strained-Si

SiGe (X % Ge) buffer cap, 0.9 µm

X % Ge

0.0%Ge

Step graded SiGe buffer, 2.1 µm

Si buffer, 0.5 µm

n-Si (100) substrate

HRTEM

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 38

Ref: S. Takagi et al., ISSCC (2003) p. 376

Mobility enhancement with strain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 39

Strained Si Layer Structure

• Strained-Si PMOS layer structure

• Type-II Band Alignment– before charge sharing

– after charge sharing at Zero bias

– Biased to inversion

Si 1

-xG

e x

Rel

axed

Str

ain

ed-S

i

SiO

2

(a)

EC

EV

(b)

EC

EV(d)

EC

EV(c)

Po

ly-S

i

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 40

The Device Capacitance Model

EC

EV

EC

EV

Si 1

-xG

e x

Rel

axed

SiO

2

(a)

Po

ly-S

i

Str

ain

ed-S

i

C1

C2

C3

ST

I

Channel

Strained-Si

Si 1-

xG

e x

C4Source / Drain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 41

Design Optimization• NMOS → Min. size : WN = 3λ• PMOS → WP varied from 3λ to 9λ• Calculate

–Propagation delay–Shift from symmetry |(VDD/2 – Logic threshold)|

• Repeat for different strains (%Ge in VS)• Converge (for same WP)

–Min. propagation delay &–Min. shift from symmetry

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 42

Parameter Values (250 nm technology)

Parameter ValueDielectric Constant (Si1 x‑ Gex) 11.9 + 4x

Grading Coefficient (m)Bottom → 0.48

Side Wall → 0.32

µ Cox (Bulk)Electron → 150 X 10-6 AV-2

Hole → 30 X 10-6 AV-2

VDD 2.5 V

|VT|n-MOS → 0.43 V

p-MOS → 0.40 V

Channel Length Modulation Parameter

n-MOS → 0.06 V-1

p-MOS → 0.10 V-1

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 44

30% Ge

13.0

13.5

14.0

14.5

15.0

15.5

3 5 7 9P-transistor width (lamda)

Pro

pa

ga

tio

n d

ela

y

(nS

)

0

50

100

150

200

250

300

350

400

Sh

ift

fro

m s

ym

me

try

(m

V)

30% Ge composition

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 45

35% Ge

12.012.212.412.612.813.013.213.413.613.814.0

3 5 7 9P-transistor width (lamda)

Pro

pa

ga

tio

n d

ela

y

(nS

)

0

50

100

150

200

250

300

350

Sh

ift

fro

m s

ym

me

try

(m

V)

35% Ge composition

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 46

40% Ge

10.8

11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4

3 5 7 9P-transistor width (lamda)

Pro

pa

ga

tio

n d

ela

y

(nS

)

0

50

100

150

200

250

300

Sh

ift

fro

m s

ym

me

try

(m

V)

40% Ge composition

Min. shift from symmetryMin. Propagation delay

Summary

40% Ge in VS is most optimum

Conclusion

4

5

6

7

8

0.25 0.35 0.45Ge composition (x)

P-T

ran

sis

tor

Wid

th

(lam

bd

a)

S. Sen, S. Chattopadhyay, B. Mukhopadhyay; CODEC-2012

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 48