transition-metal-catalyzed decarboxylative coupling november 13, 2007 dino alberico

53
Transition-Metal-Catalyzed Decarboxylative Coupling Transition-Metal-Catalyzed Decarboxylative Coupling November 13, 2007 Dino Alberico

Upload: ashlee-farmer

Post on 30-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Transition-Metal-Catalyzed Decarboxylative Coupling Transition-Metal-Catalyzed Decarboxylative Coupling

November 13, 2007

Dino Alberico

Decarboxylative CouplingDecarboxylative Coupling

Decarboxylative Biaryl Coupling

Decarboxylative Heck-Type Coupling

OH

O

X = I, Br

RR

R'X

R'

+ transition-metal catalyst

OH

O

R R

+ transition-metal catalystR'

R'

Biaryl CompoundsBiaryl Compounds

cavicularin

O

HOHO

HO

NH

Me

Me

OH

OH

HO

korupensamine A

OMe

OMe

MeO

MeO

CO2Me

NHAc

allocolchicine

N

NH

O

rhazinilam

Cl

NH

O

NCl

CO2H

O

NN

N NH

N

N

N

N

CO2H

NF

HN

O

OH

OH

HO2C

C8H17OCN

C7H15

N

PPh2

OH

OH PCy2

Me2N

Diovan (Valsartan, Novartis) Micardis (Telmisartan, Boehringer) Boscalid (BASF)

NCB 807 (Merck)

Lipitor (Atorvastatin, Pfizer)

Natural Products

Pharmaceuticals Agrochemicals

LigandsPAHLiquid Crystals

Biaryl Formation Using Transition MetalsBiaryl Formation Using Transition Metals

X, Y: I, Br, Cl, OTf, ONs, B, Sn, Si, Zn, Mg, H

Transition Metal (either stoichiometric or catalytic): Cu, Ni, Pd, Pt, Ru, Rh, Ir

XR

YR' R R'

+transition metal

Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.

XR

XR R R

+Cu (stoichiometric or excess)

MeO

MOMO

I

CONHiPr

Cu-bronze, 200 oCCONHPr

OMOM

MOMO

PrHNOC

OMe

MeO

66%

O

O

O

O

OMe

MeO NMe2

Taspine

Ullmann CouplingUllmann Coupling

Kelly, T. R.; Xie, R. L. J. Org. Chem. 1998, 63, 8045.

Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174.

Example:

Drawbacks: - stoichiometric amount of copper - high reaction temperatures - limited to symmetrical biaryls - unsymmetrical biaryl can be formed by using aryl halides of different reactivity but require a large excess of the activated aryl halide

Transition-Metal-Catalyzed Cross-CouplingTransition-Metal-Catalyzed Cross-Coupling

Lin, S.; Danishefsky, S. J. Org. Lett. 2000, 2, 2575.

Suzuki Coupling

Stille Coupling

Sauer, J.; Heldmann, D. K.; Pabst, R. Eur. J. Org. Chem. 1999, 1, 313.

OBn

BO

O

CO2Me

NHCbz NH

O

I

O

BocN

BnO

CO2Me

NHCbz

NH

O

O

BocNPdCl2(dppf)2, CH2Cl2,

K2CO3, DME, 80 oC, 2h

75%+

N

N

SnBu3

N

Br

N

N

N

+

Pd(PPh3)4, toluene, 110 oC

72%

XR'

YR R R'

+transition metal catalyst

aryl halide

X: I, Br, Cl, OTf

organometallic

Y: B, Sn, Si, Zn, Mg

Transition-Metal-Catalyzed Cross-CouplingTransition-Metal-Catalyzed Cross-Coupling

Amatore, C.; Jutand, A.; Negri, S.; Fauvarque, J.-F. J. Organomet. Chem. 1990, 390, 389.

Bumagin, N. A.; Sokolova, A. F.; Beletskaya, I. P. Russ. Chem. Bull. 1993, 42, 1926.

Hatanaka, Y.; Hiyama, T. Synlett 1991, 845.

Negishi Coupling

Hiyama Coupling

Kumada Coupling

Me Si(Me)2F2 TfOH

O

H

OMe

Pd(PPh3)4,

n-Bu4NF, THF,

50 oC, 5 h

92%

+

S

N

MeMeO

MeO

S

N

MeMeO

MeO ZnCl Br

PdCl2(dppf),THF, rt, 1.5 h

97%+

CNIS MgBr

Pd(PPh3)4,THF, rt, 2 h

73%CN

S+

Direct ArylationDirect Arylation

X: I, Br, Cl, OTf B, Sn, Si, Mg, Zn

XR'

YR R R'

+transition metal catalyst

aryl halide

X: I, Br, Cl, OTf

organometallic

Y: B, Sn, Si, Zn, Mg

XR'

HR R R'

+transition metal catalyst

Cross-Coupling

Direct Arylation

Challenge: - how to arylate a typically unreactive aryl C-H bond - how to selectively arylate an aryl C-H bond

1. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (Shameless Promotion)

2. Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.

Direct ArylationDirect Arylation

Bringmann, G.; Ochse, M.; Götz, R. J. Org. Chem. 2000, 65, 2069.

Intramolecular Direct Arylation

Examples:

Julie Côté, Shawn K. Collins

Y

X

Y

HR1

R2

R1 R2

transition metal catalyst

O

OBr

N

Oi-Pr

Oi-Pr

Me

Me

Bn

NaOAc, DMA, 140 °C O

O

N

Me

Me

Bn

Oi-Pr

Oi-Pr

NH

Me

Me

OH

OH

HOP

korupensamine A

5'

OPd

OOPd

O

P

P

Meo-Tol o-Tol

o-Tolo-Tol

Me(10 mol%)

74%

OMe

O

O

Cl

NO2

Cl

O

O

NO2

O2N

O2N

Pd catalyst

Direct ArylationDirect Arylation

Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y. J. Org. Chem. 2005, 70, 3113.

Intermolecular Direct Arylation – Using a Directing Group

Examples:

Alexandre Larivée, James Mousseau, André Charette

XR'

HR R R'

+transition metal catalyst

DG DG

OH NHROROH

O O

H

NR

NN

O

N

RN

NN

NHR

OHN R

O

Directin Group (DG):

N+

N-

O

BrN+

N-

O

Pd(OAc)2, P(tBu)3, K2CO3, M.S., toluene, 125 °C

80%

+

N

O [RuCl2(6-C6H6)]2, (2.5 mol%),

PPh3, K2CO3, NMP, 120 °C

100%

N

OPh

Ph

Br

+

(2.5 equiv)

Direct ArylationDirect Arylation

Pivsa-Art, S.; Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Bull. Chem. Soc. Jpn. 1998, 71, 467.

Intermolecular Direct Arylation – Electronic Bias of Heterocycles

Examples:

Ohta, A.; Akita, Y.; Ohkuwa, T.; Chiba, M.; Fukunaga, R.; Miyafuji, A.; Nakata, T.; Tani, N.; Aoyagi, Y. Heterocycles, 1990, 31, 1951.

YX+ transition metal catalyst

Y

N

NR

NR

NN

O O

NN

S

S

N

NR

NO

N

N

O

R

N

N

O

R

N N

N

N

N N

NN

N N

N

Pd(OAc)2 (5 mol%), PPh3, Cs2CO3,DMF, 140 °C

83%

N

N

N

NI+

S

Pd(PPh3)4 (5 mol%), KOAc, DMA, 150 °C

66% SNO2

Br NO2+

NR

NR

Cross-Coupling of Aromatic C-H SubstratesCross-Coupling of Aromatic C-H Substrates

Li, X.; Hewgley, B.; Mulrooney, C.A.; Yang, J.; Kozlowski, M.C. J. Org. Chem. 2003, 68, 5500.

Stuart, D. S.; Fagnou, K. Science 2007, 316, 1172.Stuart, D. S.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072.

Dwight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B.Org. Lett. 2007, 9, 3137.

Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904.

OH

OH

OH

NH

NH

10 mol%

CuI (10 mol%), O2,

Cl(CH2)2Cl, 40 °C

85%

CO2Me

CO2Me

CO2Me

NAc

MeO

NAc

MeO

Pd(TFA)2 (10 mol%),

Cu(OAc)2 (3 equiv),

CsOPiv (40 mol%),

pivalic acid, MW, 140 °C

84%

+

O

O

Pd(OAc)2 (10 mol%),

H4PMo11VO40 (10 mol%),

AcOH/benzene (3:2),

O2 (3 atm), 120 °C

98%

+

(30 equiv)

excess

N

+

(100 equiv)

Pd(OAc)2 (10 mol%),

benzoquinone (0.5 equiv),

Ag2CO3 ( 2equiv),

DMSO (4 equiv),

130 °C, 12 h

89%

N

HR'

HR R R'

+transition metal catalyst

Limitations to Aforementioned Transition-Metal Catalyzed MethodsLimitations to Aforementioned Transition-Metal Catalyzed Methods

X: I, Br, Cl, OTf

XR'

HR R R'

+transition metal catalyst

-preparation of organometallic partner can require several synthetic steps - more solvents, more purifications, more time, higher costs, more harmful to the enviroment

- a stoichiometric amount of undesired, and sometimes toxic, organometallic by-product is produced

- challenging to control regioselectivity- for intermolecular direct arylation reactions of arenes, a directing group is needed;

which may take several steps to introduce and then remove if not desired in the final product

- challenging to control regioselectivity

- large excess of one arene is needed

- an excess of oxidant is needed (sometimes an organometallic reagent is used)

HR'

HR R R'

+transition metal catalyst

XR'

YR R R'

+transition metal catalyst

aryl halideX: I, Br, Cl, OTf

organometallicY: B, Sn, Si, Zn, Mg

R

protections,

lithiations,

halogenations,

metallations, etc.

organometallic by-product

+

Aryl-Aryl Bond Formation via Decarboxylative CouplingAryl-Aryl Bond Formation via Decarboxylative Coupling

X: I, Br, Cl, OTf

XR'

CO2HR R R'

+transition metal catalyst + CO2

Advantages (for best case scenario): - aryl carboxylic acids are ubiquitous in nature - many are commercially available and inexpensive - easier to control regioselectivity - no extra steps are needed to introduce the acid moiety

- fewer purifications- use of less solvent- less time - less energy wasted www.carbonfootprint.com- lower costs- more environmentally friendly

- more environmentally friendly CO2 by-product

(compared to toxic organometallic reagents) Albert Arnold (Al) Gore Jr.

Nobel Peace Prize 2007Academy Award Winner 2007

CO2 Sucks!

Baudoin, O. Angew. Chem. Int. Ed. 2007, 46, 1373.

Disadvantages:

It’s Done in NatureIt’s Done in Nature

HN

N

O

O

R O

O

NH2

H O

O

HN

N

O

O

R O

O

NH2

HO

O

HN

N

O

O

R

H

NH2

O

OOC

O

Enzymatic decarboxylation of orotidine monophosphate (OMP), followed by protonation of the carbanion

Begley, T. P.; Ealick, S. E. Curr. Opin. Chem. Biol. 2004, 8, 508.

Earlier Work – Stoichiometric Transition MetalEarlier Work – Stoichiometric Transition Metal

Peschko, C.; Winklhofer, C.; Steglich, W. Chem. Eur. J. 2000, 6, 1147.

Nilsson, M. Acta Chem. Scand. 1966, 20, 423.

N

O

OiPrO

MeO

iPrO

MeO MeOOiPr

Lamellarin L triisopropyl ether

N

O

O

iPrO

MeO MeOOiPr

Br

OiPr

OMe

HO2CPd(OAc)2 (1 equiv), PPh3 (2 equiv),

CH3CN / Et3N (3:1), 150 °C, 80 min

97%

NO2 O

OHBr

NO2

+

MeO

OMe

(1 equiv)(1.2 equiv)

Cu2O (0.8 equiv),

quinoline, 240 °C 15 min

50%

NO2 O

OHI

NO2

+

(1 equiv)(1.2 equiv)

Cu2O (0.8 equiv),

quinoline, 240 °C 15 min

"The yield of crystalline product was 10%, but can probably be improved to ca. 30%"

Effect of the Additive:

NHOH

O Pd[P(tBu)3]2 (5 mol%), additive (1 equiv),

Cs2CO3 (1.5 equiv),

DMF, MW, 170 °C, 8 min

N

Br

+

NH

Me MeMe

none

nBu4NOAc

nBu4NI

nBu4NBr

nBu4NCl

nBu4NCl H2O

nBu4NF

77%

64%

76%

86%

74%

88%

77%

9%

18%

8%

5%

trace

trace

11%

(2 equiv) 1 (equiv)

N

OHOH

O

Me

Pd[P(tBu)3]2, nBu4NBr, DMF, MW, 170 °C, 8 min

N

OOH

O

Me

Br

+N

OH

Me

Catalytic Decarboxylative Coupling of Heteroaryl CarboxylatesCatalytic Decarboxylative Coupling of Heteroaryl Carboxylates

X

Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen, K. H.; Bailey, M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350.

Y

XOH

O Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),

DMF, MW, 170 °C, 8 min Y

X

Br

+

(2 equiv) 1 (equiv)

N

OOH

O

Me

NOH

OMe

OOH

OO

OH

O

MeN

SOH

O

MeN

SOH

OO

OH

O

O

Me

OH

O

N

O

Me

N

Me

O O

MeN

S

MeN

S O

O

Me

Ph Ph Ph Ph Ph Ph Ph

Ph

R R

53% 88% 86% 41% 74% 23% 63%

SOH

O

Me

S

Me

Ph

86%

Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),

DMF, MW, 170 °C, 8 min

no reaction

St-Onge Decarboxylative Coupling ReactionSt-Onge Decarboxylative Coupling Reaction

Starting Materials:

Products:

Scope of the Aryl BromideScope of the Aryl Bromide

NOH

O Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),

DMF, MW, 170 °C, 8 min

N Ar+

(2 equiv) 1 (equiv)

N

Me

77%

Me Me

OMeN

Me NO2

Ar Br

N

Me

S MeN

Me N

66% 78% 85%

Proposed MechanismProposed Mechanism

OOH

O

Ar

PdL2 O Ar

R

O PdLAr

R

Ar Br

Ar PdL Br

OOH

O

R

OOH

O

PdLArR

CO2

OOH

O

PdLAr

If R = H

C2

C3

C3 to C2 migration and decarboxylation

reductive elimination

oxidative addition

coordination to carboxylatefollowed by

electrophilic palladation at C3

deprotanation

reductive elimination

O

Ar

Ar

side-product in some cases

Comparison of Regioselectivity with Direct ArylationComparison of Regioselectivity with Direct Arylation

Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),DMF, MW, 170 °C, 8 min

SOH

O

Me

S

Me

O

HO

S

Me

Br

S

Me

S

Me

S

Me

S

Me

63%only product

19%only product

+

3.3:139%

Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),DMF, MW, 170 °C, 8 min

Br

Pd[P(tBu)3]2 (5 mol%), nBu4NCl H2O (1 equiv),

Cs2CO3 (1.5 equiv),DMF, MW, 170 °C, 8 min

Br

Decarboxylative Coupling of Aromatic CarboxylatesDecarboxylative Coupling of Aromatic Carboxylates

NO2 O

OH Br Cl

NO2Cl

+ conditions

NO2

HNO2

O2N

Cl Cl Cl

These substrates were selected for optimization for two reasons:

1. Reactants, products, and by-products can be detected by GC

2. The product is a precursor to Boscalid (BASF)

Cl

NH

O

NCl

Boscalid (BASF)

Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 13, 662.Goossen, L. J.; Rodriguez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy, L. M. J. Am. Chem. Soc. 2007, 129, 4824.

OptimizationOptimization

Other Notable Reagents: Pd Source: PdCl2 Ligands: BINAP, P(Cy)3

Additives: KBr, NaF Base: Ag2CO3

Solvents: DMSO, DMPU, diglyme

NO2 O

OH Br Cl

NO2Cl

+ conditions

Catalyst

Pd(acac)2 (2 mol%)

none

Pd(acac)2 (2 mol%)

Pd(acac)2 (2 mol%)

Pd(acac)2 (2 mol%)Pd(acac)2 (2 mol%)

Pd(acac)2 (2 mol%), CuI (30 mol%)

Pd(acac)2 (2 mol%), CuI (1 mol%)

Catalyst

PPh3 (6 mol%)

PPh3 (6 mol%)

PPh3 (6 mol%)

PPh3 (6 mol%)

PPh3 (6 mol%)P(iPr)Ph2 (6 mol%)

bipyridine (30 mol%)

1,10-phenanthroline (3 mol%)

Base (1.5 equiv)

K2CO3

CuCO3

CuCO3

CuCO3

CuCO3

CuCO3

K2CO3

K2CO3

Additives (1.5 equiv)

none

none

none

KF

KF / 3 A mol sievesKF / 3 A mol sieves

3 A mol sieves

3 A mol sieves

Solvent

NMP

NMP

NMP

NMP

NMPNMP

NMP

NMP

Temperature ( °C)

120

120

120

120

120120

160

160

Yields

0

0

5%

32%

84%98%

78%

98%

(1.5 equiv) (1 equiv)

Proposed MechanismProposed Mechanism

XR'L2Pd

R'

X

L2PdR'

R'

R

Pd(0)L2

O

O [Cu]+X-

R R

[Cu]+

O

O

R

R

[Cu]CO2oxidativeaddition

reductiveelimination

transmetallation

decarboxylation

anionexchange

Scope of Aryl HalideScope of Aryl Halide

Br BrBr Br

OMe

Cl Cl I

Cl CN

N

Br

N

Br

A: 93%B: 23%

A: 80%B: 30%

A: 94%B: 94%

A: 88%B: 97%

A: 13%B: 53%

A: 14%B: 98%

A: 0B: 66%

A: 12%B: 96%

A: 84%B: 38%

A

Pd(acac)2 (2 mol%), P(iPr)Ph2 (6 mol%),

CuCO3 (1.5 equiv), KF (1.5 equiv),

mol sieves, NMP, 120 °C, 24 h

B

Pd(acac)2 (2 mol%), CuI (1 mol%),

1,10-phenanthroline (3 mol%), K2CO3 (1.5 equiv),

mol sieves, NMP, 160 °C, 24 h

NO2 O

OH

NO2

Ar+

(1.5 equiv) (1 equiv)

Ar X

Br

R

R = H, Me, nPr, OMe, SMe, F, CN, C(O)Me, C(O)Ph, CHO, CO2Et, NO2, CF3

A: 67-97%

B: 62-98%

stoichiometric Cu

catalytic Cu

Pd(acac)2 (2 mol%), P(iPr)Ph2 (6 mol%),

CuCO3 (1.5 equiv), KF (1.5 equiv),

mol sieves, NMP, 120 °C, 24 h

Pd(acac)2 (2 mol%), CuI (1 mol%),

1,10-phenanthroline (3 mol%), K2CO3 (1.5 equiv),

mol sieves, NMP, 160 °C, 24 h

+

(1.5 equiv) (1 equiv)

Ar X

stoichiometric Cu

catalytic Cu

O

OH

R R

Ar

Except for R = 2-NO2

X

Scope of Aryl CarboxylateScope of Aryl Carboxylate

Stoichiometric Cu Conditions: Works well for a wide range of aryl carboxylic acids.

Catalytic Cu Conditions: Only works with 2-nitro substituted aryl carboxylic acid.

Examining the DecarboxylationExamining the Decarboxylation

O

OH

Cu2O, (7.5 mol%),

1,10-phenanthroline (15 mol%),NMP / quinoline, 170 °C, 6 h

R R

H

NO2

H

CN

H HH H

F

H

O2N

O iPrO OOMe

H HNC

100% 40% 79% 70% 75% 28% 52% 23%

NO2

CO2H

In order to design an effective catalyst for a range of carboxylic acids, they examined

the relative reactivity toward decarboxylation compared to 2-nitrobenzoic acid.

Aryl-Aryl Coupling - Stoichiometric Cu: excellent yield

Aryl-Aryl Coupling - Catalytic Cu: excellent yield

Protodecarboxylation - Catalytic Cu: excellent yield

Discrepancies:CN

CO2H

Aryl-Aryl Coupling - Stoichiometric Cu: modest yield

Aryl-Aryl Coupling - Catalytic Cu: no reaction

Protodecarboxylation - Catalytic Cu: modest yield

Examining the DecarboxylationExamining the Decarboxylation

O

OH

Cu2O, (7.5 mol%),

1,10-phenanthroline (15 mol%),

NMP / quinoline, 170 °C, 6 h

(KBr)

H

NO2

H

CN

H

No KBr:

15 mol% KBr

100 mol% KBr

with 1,10-phenanthroline: 100%no 1,10-phenanthroline: 95%

with 1,10-phenanthroline: 40%no 1,10-phenanthroline: 15%

with 1,10-phenanthroline: 100%no 1,10-phenanthroline: 95%

with 1,10-phenanthroline: 25%no 1,10-phenanthroline: 10%

with 1,10-phenanthroline: 95%no 1,10-phenanthroline: 60%

with 1,10-phenanthroline: 10%no 1,10-phenanthroline: 0

R R

More General Catalytic Copper ConditionsMore General Catalytic Copper Conditions

PdBr2 (3 mol%), CuBr (10 mol%),

1,10-phenanthroline (10 mol%), K2CO3 (1 equiv),

mol sieves, NMP, 160 °C, 24 h+

(1 equiv) (1.2 equiv)

Br

O

OH

R R

CO2H CO2H CO2H CO2H CO2H S CO2HCO2H

F OMe CF3OH O

61% 69% 76% 46% 31% 62% 79%

CO2H CO2H CO2H CO2HCO2H

CN SO2Me NH NHAc

34%55%

42%97%

091%

042%

041%

MeO

catalytic Cu:stoichiometric Cu:

Application – Synthesis of ValsartanApplication – Synthesis of Valsartan

Cl

NC

B(OH)2

NC

H2N CO2Me

1. NBS2.

+Pd cat., K2CO3,

H2O, TBAB, , 2 d

NC

HN CO2Me

B

NC

Br

NC

+ Pd cat., K2CO3

1. nBuCOCl, Et3N2. NaN3, nBu3SnCl3. NaOH

O

O

H

O

H2N CO2Me

NaCNBH3H

O

N CO2H

NN

N NH

O

nBu

Valsartan (Diovan, Novartis)

69% 70-90%

73% no yield reported

60-85%

Buhlmayer, P.; Furet, P.; Criscione, L.; de Gasparo, M.; Whitebread, S.; Schmidlin, T.; Lattmann, R.; Wood, J. Bioorg. Med. Chem. Lett. 1994, 4, 29.

Application – Synthesis of ValsartanApplication – Synthesis of Valsartan

Goossen, L. J.; Melzer, B. J. Org. Chem. 2007, 72, 7473.

N CO2H

NN

N NH

O

nBu

Valsartan (Diovan, Novartis)

R

NC

HO2C

NC

R

Br+

HO2C

NC

R

Br+

PdBr2 (2 mol%), CuO (15 mol%),

PPh3 (20 mol%), KF (0.5 equiv), K2CO3 (1 equiv),

mol sieves, quinoline, 170 °C, 24 h

(1 equiv) (1.2 equiv)

NC

R

NC NC NC NC

O

H

O

O

OMe

MeO

71% 51% 81% 80%

Application – Synthesis of ValsartanApplication – Synthesis of Valsartan

1. NaN3, nBu3SnCl

TBAB

2. NaOH

NCBr

O

HO

O

81%

HO2C

NC

+

1. PdBr2, CuO, PPh3, KF,

K2CO3, mol sieves,

quinoline, 170 °C, 24 h

2. HCl

H2N CO2Me

NaCNBH3

NC

HN CO2Me

nBuCOCl, pyridine

NC

N CO2Me

O

N CO2H

NN

N NH

O

90%

98%

55%

Valsartan39% yield over 4 steps

Decarboxylative Coupling of Electron-Rich Aryl CarboxylatesDecarboxylative Coupling of Electron-Rich Aryl Carboxylates

Other Reagents Examined:

Catalyst Source: PdCl2(MeCN)2, Pd(O2CCF3)2, Pd(CN)2, Pd(OAc)2,

Pd(dppf)2Cl2(CH2Cl2)2, Pd(PPh3)4, Pd2(dba)3,

NiCl2(PPh3)2, Ni(acac)2

Ligands: BINAP, P(Cy)3, DavePhos, xanthphos

Additives: LiBH4, LiCl, MgCl, CaCl2, CsCl, BiCl3, CuI

Base: Li2CO3, Na2CO3, K2CO3, Cs2CO3, AgOAc, TMSOK

Solvents: DMA, DMF, DMSO/DMF mixtures, sulfolane

OMe

OMe

CO2HI OMe

OMe

OMe

OMe

+

(1 equiv)(1.3 equiv)

PdCl2 (30 mol%), AsPh3 (60 mol%),Ag2CO3, (3 equiv), DMSO, 150 °C, 6 h

90%

Becht, J.-M.; Catala, C.; Le Drain, C.; Wagner, A. Org. Lett. 2007, 9, 1781.

Optimization:

Scope of Aryl CarboxylateScope of Aryl Carboxylate

CO2HI OMe

OMe

+

PdCl2 (30 mol%), AsPh3 (60 mol%),

Ag2CO3, (3 equiv), DMSO, 150 °C, 6 h

OMe

OMe

OMe OMe

OMe

OMe

MeO

OiPr

OiPr

OMe NO2OMe

NO2OMe F

F

OMeF

Cl

OMe

Br OMe

MeO

F

F

F

75% 65% 65% 79%

63% 92% 82%

RR

OOMe

65%

Scope of Aryl IodideScope of Aryl Iodide

CO2HI+

PdCl2 (30 mol%), AsPh3 (60 mol%),

Ag2CO3, (3 equiv), DMSO, 150 °C, 6 h

OMe

OMe

OMe

OMe

MeOMe

OMe

ClOMe

Br

OMe

OMe

OMe

OMe

Ac

OMe

OMe

89% 62% 76% 78% 58%

84% 77% 70%

OMe

OMe

OMe

OMeR

R

OMe

OMe

OMe

OMe

OMe

CF3

OMe

OMe

71%

NO2

OMe

OMe

59%

CO2Et

Decarboxylative Heck-Type CouplingDecarboxylative Heck-Type Coupling

OH

O

R R

+ transition-metal catalystR'

R'

Heck-Mizoroki ReactionHeck-Mizoroki Reaction

I R+

Pd catalyst

R

Mizoroki, T.; Mori, K.; Ozaki, A. Bull. Chem. Soc. Jpn. 1971, 44, 581. Heck, R. F.; Nolley, J. P., Jr. J. Org. Chem. 1972, 37, 2320. Review: Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009.

Example:

Larson, R. D. et. al. J. Org. Chem. 1996, 61, 3398.

NCl OH

CO2Me

I+

NCl O CO2MeNCl S

CO2H

OH

singulair

Pd(OAc)2 (1 mol%),Et3N, MeCN, 85°C NCl OH CO2Me

tautomerization

83%

Mechanism of the Heck Reaction of Aryl HalidesMechanism of the Heck Reaction of Aryl Halides

Pd0L2 X

PdIIL2X

R

R

RPdIIL2H

base oxidativeaddition

insertion

ß-hydrideelimination

PdIIL

L

PdIIL

R

HH

PdIIL2XH

R

X = I, Br, Cl, OTf

XX

X

internalrotation

base.HX

Decarboxylative Heck-Type CouplingDecarboxylative Heck-Type Coupling

Optimized Conditions:

Notes: - 5:95 DMSO/DMF is important - DMF alone or DMSO alone gave lower yields - at least one ortho substitutent is needed

Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002, 124, 11250.

MeO

MeO OMe

O

OH MeO

MeO OMe

Pd(O2CCF3)2 (20 mol%),

AgCO3 (3 equiv),

5% DMSO-DMF,

80 °C, 1 h(1.5 equiv)

+

91%

O

OH R'

Pd(O2CCF3)2 (20 mol%),

AgCO3 (3 equiv),

5% DMSO-DMF,

80 - 120°C, 0.5 - 3 h(1.5 equiv)

+

42 - 99%18 examples

R'

R R

R''

R''

CO2H CO2H CO2H CO2H CO2H

OMe

MeO

MeO

OMe

OMe OMe

CO2H CO2H

CO2H CO2H CO2H

Me

Me Me

F

F

F

F

F

F

F

Cl

Cl

OMe

OMe

Br

NO2 NO2

MeO

MeO

OOS

F3C

CO2H

Me

CO2HCO2H

Me N OMeMeO

CO2H

CO2Et CO2tBu

Me

ScopeScope

Scope of Aryl Carboxylic Acid:

Scope Of Alkene:

Side ReactionsSide Reactions

MeO

O

OH MeO

OMe

Pd(O2CCF3)2, AgCO3,

5% DMSO-DMF, 120 °C, 3 h+

MeO

OMe

O

OH

Pd(O2CCF3)2, AgCO3,

DMF, 120 °C, 3 h+

major product

MeO

O

OH

MeO

Pd(O2CCF3)2, AgCO3,

5% DMSO-DMF, 120 °C, 3 h+

major product

O

O

OMe

MeO

O

OOMe

71%

Importance of 5% DMSO-DMF

Importance of ortho substituent

These side reactions probably occur by a C-H insertion or ortho-palladation reaction

Arylation of 2-Cycloalken-1-onesArylation of 2-Cycloalken-1-ones

O

OH

Pd(O2CCF3)2 (20 mol%),

AgCO3 (2 equiv),

5% DMSO-DMF,

80 - 120°C, 0.5 - 3 h(1.5 equiv)

+

R R

O

R R'

( )nO

( )nRR'

O

OMe

O

Me

O

OMe

O

NO2 N

O

OMe

OMe Me

Me

OMe

Br

MeO

MeO MeO

89% 61% 58% 49% 63%

OMeO

MeO OMeO

OMeMeO

O

OMeMeO

30%

O

OMeMeO

86%

O

64%

O

81% 65%

Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6, 433.

Reaction of 2-Methyl-cyclopenten-1-oneReaction of 2-Methyl-cyclopenten-1-one

O

OH

Pd(O2CCF3)2 (20 mol%),

AgCO3 (2 equiv),

5% DMSO-DMF,

80 - 120°C, 0.5 - 3 h

+

O

MeO MeO

O

MeOOMe

OMeOMe

MeO

O

OMeMeO

24% 5%

OMe

MeO

OOMe

Heck Reactions of Aryl Carboxylates vs Aryl HalidesHeck Reactions of Aryl Carboxylates vs Aryl Halides

ineffective in decarboxylative Heck-type coupling

O

OH

Pd(O2CCF3)2 (20 mol%),

AgCO3 (2 equiv),

5% DMSO-DMF, 80 °C, 0.5

92%

+

MeO OMe

O

I+

MeO OMe

O

MeO OMe

O

Pd(OAc)2, NaHCO3,

Bu4NCl, DMF, 80 °C, 17 h

57% MeO OMe

O

I

Me

Pd(OAc)2, NaHCO3,

Bu4NCl, DMF, 80 °C, 21 h

100% (HPLC)

+

O

Me

O

O

OH

Me

7 reported reactions yields range 3% - 57%

Mechanistic Studies – Insight into the Decarboxylation StepMechanistic Studies – Insight into the Decarboxylation Step

Heck Reaction with Aryl Halides – Oxidative Addition Occurs

Heck Reaction with Aryl Carboxylic Acids – What Happens?

Pd(0)

Pd(0)

I Pd(II)

O

OH

I

L

Loxidative addition

Pd(II) X

L

L

Does this intermediate form.

If so, how does it form and what are X and L.

Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323.

Mechanistic Studies – Insight into the Decarboxylation StepMechanistic Studies – Insight into the Decarboxylation Step

Pd

OMe

MeO

OMe

OCF3

O

C

1H NMR Studies

At 80 oC, A and B start disappearing and C forms.

After 15 min at 80 oC, only C is observed.

OMeMeO

MeO CO2Na DMSO-d6, rt

Pd OO

OCF3F3C

O

(1.2 equiv)

O

O

PdO

O

O

O

PdO CF3

OOMe

MeO

OMe

OMe

MeO

OMe

OMe

OMe

OMe

A:B ratio = 6:1

+

A

B

+

Mechanistic Studies – Insight into the Decarboxylation StepMechanistic Studies – Insight into the Decarboxylation Step

OMeMeO

MeO CO2Na DMSO-d6, room temperature

Pd OO

OCF3F3C

O

(1.2 equiv)O

O

PdO

O

O

O

PdO CF3

OOMe

MeO

OMe

OMe

MeO

OMe

OMe

OMe

OMe

+

A B

13C

13C NMR Studies

After 8 min at 60 oC, C and 13CO2 observed

Pd

OMe

MeO

OMe

OCF3

O

C

13CO2+

X-Ray of Palladium IntermediateX-Ray of Palladium Intermediate

Proposed Mechanism for the Decarboxylation StepProposed Mechanism for the Decarboxylation Step

Trifluoroacetate Plays a Key Role in the Decarboxylative Palladation

- an excess of NaO2CCF3 only slightly slowed the rate of decarboxylative palladation

- addition of 1.1 equiv of LiBr or nBu4NBr results in no decarboxylative palladation

- Pd(OAc)2, PdCl2, PdO2, Pd(OTf)2 were ineffective

- electron-donating phosphine or trialkyl amine ligands inhibit the reaction

Importance of DMSO:- rate of decarboxylation is dependent on the solvent

- 19:1 DMF-d7 : DMSO-d6 was 2-fold greater than DMSO-d6 alone

- this is consistent with the dissociation of DMSO occurring prior to or during the rate-determining step

Pd(O2CCF3)2DMSO-d6,

23 °CMeO

MeO OMe

O

ONaMeO

MeO OMe

O

O Pd O2CCF3

DMSO

DMSO

80 °COPd

O

DMSO

F3CCO2

MeOOMe

MeOPd O2CCF3

DMSO

DMSO

OMe

MeO

MeO

CO2

rate-determining step

- Conclusion: electron-deficient Pd center is needed for decarboxylative palladation

Final Steps: Alkene Insertion and Final Steps: Alkene Insertion and ββ-Hydride Elimination-Hydride Elimination

R alkene insertion

ß-hydrideeliminationPd O2CCF3

DMSO

DMSO

MeOMeO

R

Pd(II)

H

MeO

R

+

OMe

OMe OMe

OMe

OMe

MeO

NMR, X-ray, and deuterium experiments indicate the final steps are alkene insertion and

β-hydride elimination (similar to Heck reactions involving aryl halide)

However, NMR studies indicate a reactivity pattern opposite to that of Heck reactions of aryl halides,

that is:

CNCO2tBu> >

Competition ExperimentsCompetition Experiments

CO2H

OMeMeO

I

OMeMeO

I

OMeMeO

Pd(O2CCF3)2 (20 mol%), AgCO3,

5% DMSO-DMF, 80 °C, 24 h

OMeMeO

R

+

+

+

OMeMeO

R

OMeMeO

R

Pd(OAc)2 (10 mol%), NaHCO3,

nBu4NBr, DMF, 110 °C, 30 h

Pd(PPh3)4 (10 mol%), Et3N, DMF, 110 °C, 30 h

CN CO2tBu Ph+ +

(1 equiv) (1 equiv) (1 equiv)

CN CO2tBu Ph+ +

(1 equiv) (1 equiv) (1 equiv)

CN CO2tBu Ph+ +

(1 equiv) (1 equiv) (1 equiv)

R = CN < CO2tBu < Ph

1 : 2 : 2.7

R = CN < CO2tBu < Ph

17 : 7 : 1

R = CN < CO2tBu < Ph

17 : 6 : 1

Conclusions: These differences are due to the electron-deficient nature of the Pd(II) species

Other Interesting Transition-Metal Catalyzed Decarboxylative CouplingsOther Interesting Transition-Metal Catalyzed Decarboxylative Couplings

OMe

OMe

CO2H

R

Pd(O2CCF3)2 (20 mol%),

CF3CO2H (10 equiv),

5% DMSO-DMF, 70 °C

OMe

OMe

H

R

Dickstein, J. S.; Mulrooney, C. A.; O'Brien, E. M.; Morgan, B. J.; Kozlowski, M. C. Org. Lett. 2007, 9, 2441.

CO2H

R

ArAr

R

Ar

Ar

Ar

Ar

[Cp*IrCl2]2 (2 mol%), Ag2CO3,

o-xylene, 160 °C, 6h+

Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007

BnS OH

O O

H R

O

Cu(2-ethylhexanoate)2(20 mol%),

wet THF, air, 23 °C

NH

NMeO

+

(22 mol%)

BnS R

O OH

Lalic, G.; Aloise, A. D.; Shair, M. D. J. Am. Chem. 2003, 125, 2852.

The EndThe End

I Love CO2!

Albert Arnold (Al) Gore Jr.Nobel Peace Prize 2007 and future CO2 lover