toolkit- thinking in systems new - agcihorsesmouth.agci.org/sites/default/files/toolkit... ·...

5
horsesmouth.agci.org Thinking in Systems The basic idea of this activity is to develop a systems model with inputs, outputs, stocks (or “pools”), and flows (or “fluxes”). In the series of videos on phosphorus, Dr. Crews uses a technique common to many scientists: he simplifies a complex system to further understanding it or better communicating it to others. In this activity you will think about how to use a simple model to illustrate a complex system found in your everyday life. In part 1, you will diagram this system in its simplest form, assuming the system is fully functioning. In part 2, you will think about what can cause this system to not work well, adding complexity to your model to use it as a tool to explain the cause of proper/improper functioning. Thinking in Systems Systems and Cycles Systems and cycles form an important part of science. A system is the setting in which cycles occur. A cycle can involve changes in state, such as the water cycle: liquid to solid to gas and back again. A cycle can also involve a change in life phase: birth to growth to adulthood to reproduction to death. Cycles can also involve changes in composition, such as carbon cycle: for example, the change CO2 to CH2O +O2 (organic matter) to decomposition, where carbon is broken down and released as CO2 or CH4. Systems include both a cycle and all the factors that may influence the cycle. In order to study and better understand them, systems can be represented by simple models. TERMS adapted from Thinking in Systems by Donella Meadows, p. 177178 System: “A set of elements or parts that is coherently organized and interconnected in a pattern or structure that produces a characteristic set of behaviors.” Everyday examples: The U.S. interstate highway system, your Facebook news feed, a human digestive system, the water cycle Stock: “an accumulation of material or information that has built up in a system over time.” Everyday examples: the number of cars in a parking garage, a ream of paper, a plate of food, nutrients in the soil (a.k.a. pool) Flow: “material or information that enters or leaves a stock over a period of time.” Everyday examples: the rate of cars entering a highway from an onramp, the number of new posts made by friends on your Facebook newsfeed every hour, food entering or leaving your body (a.k.a. flux)

Upload: others

Post on 29-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Toolkit- Thinking in Systems New - AGCIhorsesmouth.agci.org/sites/default/files/toolkit... · horsesmouth.agci.org !!! Thinking in Systems The!basic!idea!of!this!activity!is!to!developa!systems!model!withinputs,!outputs,!stocks!(or!“pools”),!

 

horsesmouth.agci.org

 

   

Thinking in Systems The  basic  idea  of  this  activity  is  to  develop  a  systems  model  with  inputs,  outputs,  stocks  (or  “pools”),  and  flows  (or  “fluxes”).   In  the  series  of  videos  on  phosphorus,  Dr.  Crews  uses  a  technique  common  to  many  scientists:  he  simplifies  a  complex  system  to  further  understanding  it  or  better  communicating  it  to  others.  In  this  activity  you  will  think  about  how  to  use  a  simple  model  to  illustrate  a  complex  system  found  in  your  everyday  life.    In  part  1,  you  will  diagram  this  system  in  its  simplest  form,  assuming  the  system  is  fully  functioning.  In  part  2,  you  will  think  about  what  can  cause  this  system  to  not  work  well,  adding  complexity  to  your  model  to  use  it  as  a  tool  to  explain  the  cause  of  proper/improper  functioning.      

Thinking in Systems  

Systems  and  Cycles  Systems  and  cycles  form  an  important  part  of  science.  A  system  is  the  setting  in  which  cycles  occur.    A  cycle  can  involve  changes  in  state,  such  as  the  water  cycle:  liquid  to  solid  to  gas  and  back  again.    A  cycle  can  also  involve  a  change  in  life  phase:  birth  to  growth  to  adulthood  to  reproduction  to  death.    Cycles  can  also  involve  changes  in  composition,  such  as  carbon  cycle:  

for  example,  the  change  CO2  to  CH2O  +O2  (organic  matter)  to  decomposition,  where  carbon  is  broken  down  and  released  as  CO2  or  CH4.    Systems  include  both  a  cycle  and  all  the  factors  that  may  influence  the  cycle.  In  order  to  study  and  better  

understand  them,  systems  can  be  represented  by  simple  models.  

TERMS    adapted  from  Thinking  in  Systems  by  Donella  Meadows,  p.  177-­‐178    

• System:  “A  set  of  elements  or  parts  that  is  coherently  organized  and  inter-­‐connected  in  a  pattern  or  structure  that  produces  a  characteristic  set  of  behaviors.”  Everyday  examples:  The  U.S.  interstate  highway  system,  your  Facebook  news  feed,  a  human  digestive  system,  the  water  cycle  

• Stock:  “an  accumulation  of  material  or  information  that  has  built  up  in  a  system  over  time.”  Everyday  examples:  the  number  of  cars  in  a  parking  garage,  a  ream  of  paper,  a  plate  of  food,  nutrients  in  the  soil  (a.k.a.  pool)  

• Flow:  “material  or  information  that  enters  or  leaves  a  stock  over  a  period  of  time.”    Everyday  examples:  the  rate  of  cars  entering  a  highway  from  an  on-­‐ramp,  the  number  of  new  posts  made  by  friends  on  your  Facebook  newsfeed  every  hour,  food  entering  or  leaving  your  body  (a.k.a.  flux)  

 

Page 2: Toolkit- Thinking in Systems New - AGCIhorsesmouth.agci.org/sites/default/files/toolkit... · horsesmouth.agci.org !!! Thinking in Systems The!basic!idea!of!this!activity!is!to!developa!systems!model!withinputs,!outputs,!stocks!(or!“pools”),!

 

horsesmouth.agci.org

Thinking in Systems  

Part  1:  Diagramming  a  System  Instructions:  1.  Think  of  a  system  in  your  everyday  life  that  sometimes  works  well  and  sometimes  doesn’t            work  well  or  at  all.    2.  Take  a  picture  of  or  draw  something  that  represents  that  system.  Put  that  image  in  a  power            point  slide,  like  Dr.  Crews  did.  Alternatively,  images  can  be  drawn  in  a  science  journal.  3.  Identify  the  basic  function  of  the  system  and  basic  flows  in  and  out  of  the  system.  Flows            might  be  money,  energy,  parts  of  a  product,  or  something  else.  Add  these  flows  to  your  image  as            arrows.  If  you  have  numbers  for  each  aspect,  be  sure  to  include  these  numbers  clearly.        4.  Identify  places  in  the  process  where  your  moving  component  (energy,  money,  etc.)  might  be  lost            or  changed  into  something  new.  5.  What  processes  happen  within  the  system  that  might  affect  its  functioning?    What  would  slow            down  or  speed  up  the  process?    Is  there  anything  that  would  shut  the  system  down  altogether?  6.  Think  about  ways  that  people,  even  you,  could  alter  or  improve  this  system  to  get  a  desirable                  outcome.  Share  your  ideas  with  a  friend  or  in  a  journal.    

Example:  Some  cities  offer  a  bike-­‐share  system  to  help  residents  and  visitors  get  around  without  using  cars  or  buses.    In  such  systems,  bikes  are  the  item  that  moves  throughout  the  system  (like  phosphorus  through  the  air,  water,  and  soil).  However,  unlike  phosphorus,  the  bikes  (hopefully)  do  not  change  form.  Bikes  move  from  one  area  to  another  within  the  bike  system,  and  under  special  circumstances  (purchase  or  loss)  bikes  may  join  or  leave  the  system.  altogether.    

Page 3: Toolkit- Thinking in Systems New - AGCIhorsesmouth.agci.org/sites/default/files/toolkit... · horsesmouth.agci.org !!! Thinking in Systems The!basic!idea!of!this!activity!is!to!developa!systems!model!withinputs,!outputs,!stocks!(or!“pools”),!

 

horsesmouth.agci.org  

Thinking in Systems  

Part  2:  Manipulating  a  System  The  idea  of  this  activity  is  to  continue  development  of  the  system  model  created  in  Thinking  in  Systems  Part  1  with  inputs,  outputs,  stocks  (or  “pools”),  and  flows  (or  “fluxes”).  In  this  part,  you  will  begin  to  manipulate  your  system  in  ways  comparable  to  how  traditional  farmers  discovered  techniques  to  augment  the  cycle  of  phosphorus.    In  this  exercise,  you  will  be  asked  to  consider  ways  to  augment  your  system  to  allow  for  higher  productivity  or  operability  within  your  system  while  operating  within  limits  to  growth  that  you  identify.  The  example  system  used  in  Part  1  was  a  city  bike  share  system,  and  this  example  is  extended  below.  

Example:    Pressures  for  growth:  

• Increasing  number  of  users  (people)  using  the  bike  share  system  

• Many  riders  take  similar  routes,  making  bikes  more  scarce  at  some  docking  stations  

• Increasing  theft  or  disrepair  of  bicycles  within  system  

Limits  to  growth:  • Cost  of  introducing  new  bicycles  and  

docking  stations  within  system  • Availability  of  resources  to  manufacture  

new  bikes  and  docking  stations  • Available  real  estate  for  docking  station  

expansion    

PART  2:  INSTRUCTIONS    

1.  Think  about  all  the  dimensions  of  your  system  from  start  to  finish.  Write  down  all  the  pressures  for  growth  on  the  system,  as  well  as  all  the  limits  to  growth  within  that  system.  

2.  Identify  strategies  that  respond  to  each  of  the  pressures  for  growth  you  listed  and  that  are  sensitive  to  your  noted  limits  to  growth.  Think  about  the  strategies  used  in  traditional  agriculture  that  Tim  Crews  describes  as  analogies  to  strategies  that  you  may  choose  to  implement  in  your  system.  

3.  Update  your  system  drawing  to  describe  how  strategies  affect  the  performance  of  the  system.  Use  additional  visuals  as  needed.  

 

Cook,  Lindsey.  2013  “How  Capital  Bikeshare  has  Grown.”  The  Washington  Post:  Aug  2,  2013.    

Page 4: Toolkit- Thinking in Systems New - AGCIhorsesmouth.agci.org/sites/default/files/toolkit... · horsesmouth.agci.org !!! Thinking in Systems The!basic!idea!of!this!activity!is!to!developa!systems!model!withinputs,!outputs,!stocks!(or!“pools”),!

 

horsesmouth.agci.org

INSTRUCTIONS-­‐Continued  

4.  When  you  have  finished,  graph  a  potential  change  within  your  system  based  on  one  of  the  pressures  or  limits  you  described.  In  the  bike  system  example,  you  might  graph  predicted  growth  of  bike  numbers  if  the  population  grows  by  10%  over  the  next  15  years.    What  other  factors  might  play  a  role  and  keep  your  line  from  being  a  simple  increase  or  decrease?    For  our  bike  share  program,  an  increase  in  population  might  also  lead  to  an  increase  in  bike  theft.  

If  you  were  graphing  the  current  phosphorus  cycle,  do  you  think  that  the  pool  of  phosphorus  in  the  soil  would  be  growing,  shrinking,  or  neither?  What  are  the  factors  influencing  the  phosphorus  system?  

5.  How  is  your  system  similar  to  a  natural  system  like  the  phosphorus  cycle?    How  is  it  different?  Share  your  ideas  with  a  friend  or  record  them  in  your  science  journal.  

Part  3:  Transformational  Changes  in  a  System  

Recall  the  simple  system  you  developed  in  Part  1  and  added  to  in  Part  2  of  “Thinking  in  Systems.”  In  this  exercise,  you  will  be  asked  to  consider  how  large  changes  may  alter  your  system  -­‐-­‐  in  either  positive  or  negative  ways.  The  example  system  used  in  Parts  1  and  2  was  a  city  bike  share  system.    Instructions:   1.  Think  about  conditions  that  would  lead  to  a  transformation  of  your  system—what  could  cause  a  sudden  and  enormous  change  in  the  quantity  of  inputs/outputs  or  the  speed  of  processes  within  the  system?  Make  a  list  of  possible  causes  of  transformational  change  as  well  as  possible  positive  and  negative  consequences  of  that  change.  

Thinking in Systems  

Page 5: Toolkit- Thinking in Systems New - AGCIhorsesmouth.agci.org/sites/default/files/toolkit... · horsesmouth.agci.org !!! Thinking in Systems The!basic!idea!of!this!activity!is!to!developa!systems!model!withinputs,!outputs,!stocks!(or!“pools”),!

 

horsesmouth.agci.org  

 Part  3-­‐  continued    

                                 

2.  Select  one  of  the  transformational  changes  you  identified  in  Part  2,  and  alter  your  system  map  to  characterize  the  changes  to  your  system.    3.  Evaluate  your  transformed  system  to  determine  whether  it  still  behaves  in  a  manner  that  meets  the  original  goals  of  your  system.  Also,  evaluate  the  extent  to  which  transformations  in  the  system  carry  consequences  that  might  positively/negatively  affect  other  systems  outside  of  your  own.    4.  Compare  and  contrast  your  system  to  a  natural  system  such  as  the  phosphorus  cycle.    

Thinking in Systems  

Examples:    • New  city  policy  limits  vehicle  traffic,  pushing  a  significantly  larger  share  of  the  

population  towards  riding  bikes.  Consequences:  

o For  a  period,  demand  overwhelms  supply  of  shared  bicycles  o More  diverse  routes  are  added  to  the  system  which  enable  easier  

rebalancing  between  redocking  systems  • Bikes  are  retrofitted  with  small  motors,  which  increase  the  speed  of  trips  and  

enable  longer  routes  Consequences:  

o A  entire  new  set  of  individuals  begin  to  bike,  leading  to  a  dramatic  increase  in  demand  for  bikes  

o Longer  routes  lead  to  a  much  larger  demand  for  distribution  of  docking  stations  

o Shared  motorized  bicycles  begin  to  replace  cars  on  roadways  

   

Meadows,  Donella  H.  2008.  Thinking  in  Systems:  A  Primer.  Chelsea  Green  Publishing,  Vermont.  

Further Reading